Inhibition of microbial biofilm formation by *Cydonia oblonga* Mill. fruit peel and leaf ethanolic extracts

DEJAN STOJKOVIĆ¹, **KRISTINA JEVREMOVIĆ**¹, **MARIJA SMILJKOVIĆ**¹, **JELENA ŽIVKOVIĆ**²*, and **MARINA SOKOVIĆ**¹

¹University of Belgrade, Institute for Biological Research “Siniša Stanković”, Department of Plant Physiology, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.

²Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia

*Corresponding author: jzivkovic@mocbilja.rs

Received: November 17, 2018
Accepted: December 18, 2018
Published on-line: December 20, 2018
Published: December 25, 2018

Biological activities of *Sorbus aucuparia* L. leaves extract were tested in our study. This study aimed to investigate the activity of *Cydonia oblonga* Mill. peels and leaf ethanolic extracts on biofilm formation of different microbial strains, including pathogenic bacteria and food poisoning strains. It was shown that both of the investigated extracts inhibited biofilm formation in a dose dependent manner with sub-minimal inhibitory concentrations. The percentage of biofilm formation inhibition varied for each bacterial strain and was in the range of 10-100%, for both of the tested extracts. The ability of extracts to inhibit already formed biofilms presented as minimal concentration necessary to disrupt biofilms and concentrations was in the range of 10-100 µg/mL for the leaf extract and 5-75 µg/mL for the peel extract. The investigated extracts showed a promising antimicrobial effect comparable to, or even higher than the used reference compounds, which make these plant parts attractive for pharmaceutical and food industry.

Key words: *Cydonia oblonga*; peel; leaves; biofilm; antibacterial

http://dx.doi.org/10.5937/leksir1838058S

1. INTRODUCTION

Cydonia oblonga Mill. (quince), a plant of Rosaceae family is well known for its medicinal, nutritional, and ornamental uses (Ashraf et al., 2016). As a rich source of secondary metabolites (phenolic compounds, steroids, terpenoids, sugars, and organic acids) it possess a wide range of bioactivities (antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, cardiovascular, antidepressant, antidiarrheal, hypolipidemic, diuretic, and hypoglycaemic). Although the ripe fruit of quince have a pleasant, lasting, and powerful flavour, consumption of fresh quince fruits is not widespread mainly due to excessive and aggressive astringency and sourness as well as woodiness (Griñán et al., 2019). Due to its hardness and acidity, it is not edible without prior processing (Griñán et al., 2019), but it is generally used for preparation of jam, jelly, liqueur, and marmalade, and it is applied in canning and for aromatic distillation (Baroni et al., 2018).

In nature, mostly of microorganisms, are organized in the form of biofilms, and about 80% of human infections are connected with the development of biofilms (Zijngje et al., 2010). The formation of biofilm may contain one or more species. It is often formed on organic or inorganic surfaces. The major component of biofilm is water (95%) then extracellular matrix (1-2%) and microorganisms (2-5%). Biofilm’s forming can be organized in three phases: annexation, maturation and dispersion (Williams and Câmara, 2009). Also depending on a number of factors, like a physical environmental factor or available food, there are three types of biofilm: heterogenous-mosaic type, and porous type which is intersected by water channels and thick-confluent type (Tolker-Nielsen, 2014). Infections caused by biofilms are considerably complicated, because these infections are asymptomatic.

This work aimed to investigate the activity of *Cydonia oblonga* Mill. peels and leaf ethanolic extracts on biofilm formation of different microbial strains, including pathogenic bacteria and food poisoning strains.

2. MATERIALS AND METHODS

2.1. Sample collection and extract preparation

Cydonia oblonga Mill. leaves and fruits were collected in Vranje, southern Serbia. Peels were separated from the fruits and further used for the experiments. The powdered fruit peels and leaves (~10 g) were extracted by stirring with 300 mL of ethanol, at room temperature, 150 rpm, for 24 h. The extract was filtered through Whatman No. 4 paper. The residue was then re-extracted twice with additional portions (300 mL).
of ethanol. The combined extracts were evaporated at 45 °C (rotary evaporator Büchi R-210, Flawil, Switzerland) to remove ethanol.

2.2. Microorganisms

The microorganisms tested included 5 bacterial: Gram-negative bacteria Escherichia coli (ATCC 35210), Pseudomonas aeruginosa (ATCC 27853), and Salmonella typhimurium (ATCC 13311), Gram-positive bacteria Listeria monocytogenes (NCTC 7973) and Staphylococcus aureus (ATCC 6538), and a yeast Candida albicans (ATCC 10231). The species were maintained in Mueller Hinton Agar and Tryptone Soy Agar (MHA, TSA, Tor- lak, Serbia). The organisms were obtained from the Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, Belgrade, Serbia.

2.3. Biofilm susceptibility test

The effect of peels and leaves ethanolic extracts of C. oblonga on the biofilm were determined as previously described by Pierce et al. (2008), with some modifications. Briefly, fresh overnight cultures of bacteria and yeast were harvested from liquid cultures for cells and re-suspended for suspensions of 1 × 10^6 cells/mL final density. Biofilms were formed in 96-well polystyrene flat bottom TC treated microtirte plates (Sarstedt, North Carolina, USA). The plates were incubated at 37 °C for 48 h to allow biofilm formation. The culture media was removed, and the wells were washed three times with saline solution to remove the non-adhered cells. The extracts solution (200 µL) was added to the wells. The microplates were incubated at 37 °C for 24 h. Three repetitions were performed. After 24 h at 37 °C, biofilm reduction was determined by fol-

2.4. Inhibition of biofilm formation

Biofilm was grown as described previously. The effect of different concentrations of the extract (ranging from 5 to 125 µg/mL of MIC) on biofilm forming ability was tested on polystyrene flat-bottomed microtirte 96 well plates as described (Pierce et al., 2008), with some modifications. Briefly, 100 µL of overnight cultures were added to each well of the plates in the presence of 100 µL sub-inhibitory concentrations (subMIC) of the extracts (0.5, 0.25 and 0.125 mg/mL MIC) or 100 mL medium (control). After incubation for 24 h at 37 °C, each well was washed twice with sterile PBS (pH 7.4), dried, and stained for 10 min with 0.1% crystal violet in order to determine the biofilm mass. After drying, 200 µL of 95% ethanol (v/v) was added to solubilize the dye that had stained the biofilm cells. The excess stain was washed off with dH2O. After 10 min, the content of the wells was homogenized and the absorbance at $\lambda = 625$ nm was read on a Sunrise™– Tecan ELISA reader.

3. RESULTS AND DISCUSSION

It is well known that biofilm forming pathogens are essential for severe infections which are commonly very difficult to treat. This is due to the high resistance of biofilms to antibiotics, antiseptics and disinfectants as well as to host defence mechanisms (Rozalski et al., 2013). Therefore, biofilms present severe problems for food and healthcare industries.

In our study the ability of extracts to inhibit already formed biofilms was presented as minimal concentration necessary to disrupt biofilms and these concentrations were in the range of 10-100 µg/mL for the leaf extract and 5-75 µg/mL for the peel extract (Table 1). For most of the bacterial strains investigated extracts showed significantly higher activity compared to the used standard compounds. Namely, commercial antibiotics ampicillin and streptomycin showed bacteriostatic activity in the range of 50 to 250 µg/mL, and bactericidal activity in the range of 100 to 500 mg/mL.

In test of microplate biofilm formation of microorganisms, leaf extract was more effective among the two tested extracts, and its MIC and MBC values were lowest against Staphylococcus aureus (MIC=5 µg/mL and MBC=10 µg/mL). The most resistant microbial biofilm was the one formed by Pseudomonas aerugi-

Table 1. Minimal inhibitory (MIC), minimal bactericidal (MBC) and fungicidal concentrations (MFC) of C. oblonga extracts (µg/mL) that influenced biofilms

<table>
<thead>
<tr>
<th>MO strain</th>
<th>Peel extract</th>
<th>Leaf extract</th>
<th>Ampicillin</th>
<th>Streptomycin</th>
<th>Miconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC MBC (MFC)</td>
<td>MIC MBC (MFC)</td>
<td>MIC MBC</td>
<td>MIC MBC</td>
<td>MIC MFC</td>
</tr>
<tr>
<td>S. aureus</td>
<td>10 20 5</td>
<td>10 100 150 250 500</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>L. monocytogenes</td>
<td>20 20 10</td>
<td>20 150 300 150 300</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ps. aeruginosa</td>
<td>80 100 60</td>
<td>75 100 200 50 100</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>E. coli</td>
<td>40 80 20</td>
<td>20 300 500 50 100</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>100 100 50</td>
<td>75 150 200 50 100</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>C. albicans</td>
<td>60 80 40</td>
<td>60 - - - -</td>
<td>- -</td>
<td>- -</td>
<td>1 1</td>
</tr>
</tbody>
</table>
significant antimicrobial activity against *Pseudomonas aeruginosa*, *Escherichia coli*, *Staphylococcus aureus* and *Candida albicans*. Karar et al. (2014) showed that *C. oblonga* fruit is a rich source of polyphenols including chlorogenic acids, proanthocyanidins and flavonol C- and O-glycosides. Also, same authors showed that *C. oblonga* fruits possess significant antibacterial activity against *E. coli* which is in accordance with its traditional use as a food preservative. According to previous results the content of polyphenols in quince leaves is higher compared to some other plant parts, and tannins can make 17% of the total content. This group of compounds possess significant antibacterial activity against certain microorganisms such as *S. aureus*, *E. coli* and *S. epidermidis*, due to ability to precipitate microbial proteins and to make nutritional proteins inaccessible for them (Cerempei et al., 2016).

CONCLUSION

In the present study we have demonstrated for the first time antibiofilm potential of the quince leaf and peel extracts. The investigated extracts showed a promising antimicrobial effect comparable to, or even higher than the used reference compounds, which makes these plant parts also attractive for pharmaceutical and food industry.

ACKNOWLEDGMENTS

Acknowledgment. This work has been supported by the Serbian Ministry of Education, Science and Technological Development with financial support (Grant numbers OI173032, III46013 and TR31089).

REFERENCES

