A CONVERGENCE CRITERION OF SERIES

Nebojša Elez

Abstract. In this article is given a convergence criterion of series, which is similar to classical criterions of Abel and Dirichlet, and also some of its consequences and applications.

1. Results

Theorem 1. Series $p_1a_1 + p_2a_2 + \cdots + p_na_n + \cdots$ is convergent if the following conditions are satisfied:

- 1. Sequence $a_1, a_2, \ldots, a_n, \ldots$ is nonincreasing and series $a_1 + a_2 + \cdots + a_n + \cdots$ is convergent.
- 2. Sequence $p_1, \frac{p_1+p_2}{2}, \dots, \frac{p_1+p_2+\dots+p_n}{n}, \dots$ is bounded.

Proof. We have

(1)
$$\sum_{k=1}^{n} p_k a_k = \sum_{k=1}^{n} (a_k - a_{k+1}) \sum_{\nu=1}^{k} p_{\nu} + a_{n+1} \sum_{k=1}^{n} p_k.$$

For $p_n = 1$ (n = 1, 2, ...) this equality becomes

(2)
$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} k(a_k - a_{k+1}) + na_{n+1}.$$

The first condition of the theorem implies that the sequence $a_1, a_2, ..., a_n, ...$ is nonnegative and converges to zero, and further, by Pringsheim's theorem [1, Page 27], that the series with nonnegative members $\sum_{k=1}^n k(a_k-a_{k+1})$ converges. This and the second condition of the theorem imply that the series $\sum_{k=1}^{\infty} k(a_k-a_{k+1}) \frac{1}{k} \sum_{\nu=1}^k p_{\nu}$, i.e. the series $\sum_{k=1}^{\infty} (a_k-a_{k+1}) \sum_{\nu=1}^k p_{\nu}$ (absolutely) converges, and that

$$\lim_{n \to \infty} a_{n+1} \sum_{k=1}^{n} p_k = \lim_{n \to \infty} n a_{n+1} \frac{1}{n} \sum_{k=1}^{n} p_k = 0.$$

AMS (MOS) Subject Classification 1991. Primary: 40105. Key words and phrases: Convergence criterin of series.

From (1) we then conclude that the series $\sum_{k=1}^{\infty} p_k a_k$ converges.

From the proof of this theorem it can be easily seen that the theorem holds true if the condition (1) is changed by the weaker condition (1').

1') Series $\sum_{n=1}^{\infty} n(a_n - a_{n+1})$ is absolutely convergent and $\lim_{n \to \infty} na_n = 0$.

Corollary 8. If $a_1, a_2, \ldots, a_n, \ldots$ is nonincreasing sequence and series $a_1 + \cdots + a_n + \cdots$ is convergent, then the series

$$\sum_{n=1}^{\infty} (-1)^n n a_n, \quad \sum_{n=1}^{\infty} n a_{n^2}, \quad \sum_{n=1}^{\infty} 2^n a_{2^n}$$

are convergent.

Proof. According to the proved criterion, it is sufficient to prove that the second condition of the previous theorem is satisfied for corresponding coefficients at a_n in these series.

If we take $p_n=(-1)^na_n$, then $0\leqslant \frac{p_1+\cdots+p_n}{n}\leqslant 1$, thus the series $\sum_{n=1}^{\infty}(-1)^nna_n$ is convergent. For the second series we can take $q_n=\begin{cases} \sqrt{n}, & \sqrt{n}\in N\\ 0, & \sqrt{n}\notin N \end{cases}$, and then we have

$$0 \leqslant \frac{q_1 + \dots + q_n}{n} = \frac{1 + 2 + \dots + \left[\sqrt{n}\right]}{n} \leqslant \frac{n + \sqrt{n}}{2n} \leqslant 1.$$

Thus, the series $\sum_{n=1}^{\infty} na_{n^2}$ is convergent.

For the third series, we take $r_n = \left\{ \begin{array}{ll} n, & \log_2 n \in N \\ 0, & \log_2 n \notin N. \end{array} \right.$ Hence, we have

$$0 \leqslant \frac{r_1 + \dots + r_n}{n} = \frac{1 + 2 + \dots + 2^{\lceil \log_2 n \rceil}}{n} \leqslant \frac{2 \cdot 2^{\log_2 n}}{n} = 2,$$

therefore, the series $\sum_{n=1}^{\infty} 2^n a_{2^n}$ is convergent.

Let us remark that the convergence of the third series is a part of the claim of Cauchy's condensational criterion, here proved in a different way.

Theorem 2. Let the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ and $\sum_{n=1}^{\infty} \frac{b_n}{n}$ be convergent with the corresponding nonincreasing sequences $\left(\frac{a_n}{n}\right)_1^{\infty}$, $\left(\frac{b_n}{n}\right)_1^{\infty}$. Then trigonometric series

$$\sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

converges for every real x.

Proof. The statement is trivial for $x=2k\pi$ $(k\in Z)$. The given trigonometric series can be written in the form

$$\sum_{n=1}^{\infty} (n\cos nx) \frac{a_n}{n} + \sum_{n=1}^{\infty} (n\sin nx) \frac{b_n}{n}.$$

According to the theorem 1, if we take into account conditions of this theorem, it is sufficient to prove that sequences

$$\frac{\cos x + 2\cos 2x + \dots + n\cos nx}{n}, \quad \frac{\sin x + 2\sin 2x + \dots + n\sin nx}{n}$$

are bounded. This last fact is direct implication of boundedness of the sequence

$$\frac{1}{n} \left| \sum_{k=1}^{n} k e^{ikx} \right|,$$

which can be proved as follows:

We have, for $\zeta \neq 1$

$$\sum_{k=1}^{n} k\zeta^{k} = \zeta \sum_{k=1}^{n} k\zeta^{k-1} = \zeta \left(\sum_{k=1}^{n} \zeta^{k}\right)' =$$

$$= \zeta \left(\frac{1 - \zeta^{n-1}}{1 - \zeta}\right)' = \zeta \frac{-(n+1)\zeta^{n} + n\zeta^{n+1} + 1}{(1 - \zeta)^{2}}.$$

Hence

$$\frac{1}{n} \left| \sum_{k=1}^{n} k e^{ikx} \right| = \frac{1}{n} \left| e^{ix} \frac{-(n+1)e^{inx} + ne^{i(n+1)x} + 1}{(1 - e^{ix})^2} \right| \le \frac{2(n+1)}{n \left| 1 - e^{ix} \right|^2}, \quad x \ne 2k\pi \quad (k \in \mathbb{Z}). \quad \Box$$

2. References

[1] D.S. Mitrinović, D.D. Adamović, Nizovi i redovi, Naučna knjiga, Belgrade, 1980.

Faculty of Science P.O. Box 60, 34000 Kragujevac Yugoslavia

Received 7 Jan. 1999.