THE NUMERICAL FUNCTION OF A
∗–REGULARLY VARYING SEQUENCE

Dragan Đuričić and Aleksandar Torgašev*

Abstract. In this paper, we impose some conditions under which there is a close relation between the asymptotic behaviour of a ∗–regularly varying sequence and the asymptotic behaviour of its numerical function δc(x), x > 0.

1. Introduction and results

A sequence of positive numbers (cn) is called O–regularly varying [2], if we have
\[\lim_{n \to +\infty} c\left[\lambda n \right] c_n < +\infty, \quad \lambda > 0. \] (1)

The class of all O–regularly varying sequences is denoted ORV.

An O–regularly varying sequence (cn) is called ∗–regularly varying [6], if it is nondecreasing, and if
\[\lim_{\lambda \to 1+} k_c(\lambda) = 1. \] (2)

The class of all ∗–regularly varying sequences is denoted ∗RV.

The above two classes of sequences represent the important objects in the sequential theory of regular variability in the Karamata sense [1], and in particular in the theory of statements of Tauberian type [4], as well as in some other parts of qualitative analysis of divergent processes [7].

The class \(K^*_c \) [5], consists of all ∗–regularly varying sequences which satisfy the condition
\[k_c(\lambda) = \lim_{n \to +\infty} \frac{c\left[\lambda n \right]}{c_n} > 1, \quad \lambda > 1. \] (3)

AMS (MOS) Subject Classification 1991. Primary: 26A12.

Key words and phrases: Regularly varying sequence, numerical function.

*Research supported by Science Fund of Serbia under Grant 1457.
Notice that, in particular, the class K^*_c contains all nondecreasing regularly varying sequences in the Karamata sense [1] whose index $\rho > 0$, and also all sequences whose general term is the n-th ($n \in \mathbb{N}$) partial sum of a $*$-regularly varying sequence, but does not contain slowly varying sequences in the Karamata sense [1].

If next, (c_n) is an increasing sequence of positive numbers, then its numerical function $\delta_c(x)$, $x > 0$, is defined by $\delta_c(x) = \sum_{c_n \leq x} 1$, $x > 0$.

We shall prove several statements about the mentioned classes.

By \sim we shall denote the weak, while by \asymp the strong asymptotic equivalence.

Theorem 1. Let (c_n) be an increasing sequence from the class K^*_c and assume that $g: [1, +\infty) \mapsto (0, +\infty)$ is a continuous and increasing function. Then we have
\begin{equation}
(4) \quad c_n \sim g(n), \quad n \to \infty,
\end{equation}
if and only if
\begin{equation}
(5) \quad \delta_c(x) \sim g^{-1}(x), \quad x \to +\infty.
\end{equation}

Notice that if (c_n) is an arbitrary increasing sequence of positive number which is not in the class K^*_c, it is easy to construct a continuous and increasing function $g: [1, +\infty) \mapsto (0, +\infty)$, so that (4) is true but not (5) or, (5) is true but not (4).

Corollary 1. Let (c_n) be an increasing sequence from the class K^*_c, and (d_n) be an increasing sequence of positive numbers. Then we have
\begin{equation}
(4') \quad c_n \sim d_n, \quad n \to \infty
\end{equation}
if and only if
\begin{equation}
(5') \quad \delta_c(x) \sim \delta_d(x), \quad x \to \infty.
\end{equation}

Corollary 1 follows easily from the theorem above.

Corollary 2. Let (c_n) be an increasing sequence from the class K^*_c and let $g: [1, +\infty) \mapsto (0, +\infty)$ be a continuous and increasing function. If (4) holds, then we have
\begin{equation}
(6) \quad \sum_{c_n \leq x} c_n \sim x g^{-1}(x), \quad x \to +\infty.
\end{equation}

Corollary 3. Let (c_n) be an increasing sequence from the class K^*_c and (d_n) be an increasing sequence of positive numbers. If (4') holds, then we have
\begin{equation}
(6') \quad \sum_{c_n \leq x} c_n \sim \sum_{d_n \leq x} d_n, \quad x \to +\infty.
\end{equation}
2. Proofs of statements

Proof of the theorem. Consider the function \(f(x), x \geq 1 \), for which we have \(c_n = f(n) \). It is obviously linear on intervals \([n, n+1], n \in \mathbb{N}\).

For any \(\delta > 0 \), there is some \(n_0 = n_0(\delta) \in \mathbb{N} \), so that for all \(n \geq n_0 \) we have \(1 \leq 1 + \frac{1}{n} \leq \delta + 1 \), so that we find \(1 \leq \lim_{n \to +\infty} \frac{c_{n+1}}{c_n} \leq K_c(1+\delta) \). Since by assumption \((c_n) \in K^*_c \), it is \(* \)-regularly varying, so that \(\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = 1 \). If (4) holds true, then we have \(f(x) \sim g(x), x \to +\infty \), because for all \(n \leq x < n+1, n \in \mathbb{N} \), we have that

\[
\frac{c_n}{c_{n+1}} \cdot \frac{c_{n+1}}{g(n+1)} \leq \frac{f(x)}{g(x)} \leq \frac{c_n}{g(n)} \cdot \frac{c_{n+1}}{c_n},
\]

Next, let for any \(\lambda > 0 \), \(\overline{K}_f(\lambda) = \lim_{x \to +\infty} \frac{f(\lambda x)}{f(x)} \). Then for every \(\delta > 0 \) we have

\[
\overline{K}_c(\lambda) \leq \overline{K}_f(\lambda) \leq \lim_{x \to +\infty} \frac{f([\lambda x] + 1)}{f([x])} \leq \leq \lim_{x \to +\infty} \frac{c_{[\lambda x]} + 1}{c_{[x]}} \cdot \lim_{x \to +\infty} \frac{c_{[\lambda x]} + 1}{c_{[\lambda x]}} \leq \overline{K}_c(\lambda) \cdot \overline{K}_c(1+\delta),
\]

because

\[
\lim_{x \to +\infty} \frac{[\lambda x] + 1}{[\lambda x]} = 1 + .
\]

This means that for every \(\lambda > 0 \) we have \(\overline{K}_c(\lambda) = \overline{K}_f(\lambda) \).

If we next redefine \(f(x) \) by \(f(0) = 0 \), and on the interval \([0, 1]\) as a linear function, then we have that \(f \in K^*_c \) (see [5]). If we in a similar way redefine \(g(x) \) for \(0 \leq x < 1 \), and we suppose (4), then by [3] we have

\[
(7) \quad f^{-1}(x) \sim g^{-1}(x), \quad x \to +\infty.
\]

Since \(\delta_c(x) = [f^{-1}(x)], x > 0 \), we obtain (5).

Conversely, supposing that (5) holds true, then with the so redefined functions \(f \) and \(g \) we have (7). Since \(f \in K^*_c \), we get \(f(x) \sim g(x), x \to +\infty \), so that we obtain (4).

Remark. If \((c_n) \) is an increasing and unbounded \(* \)-regularly varying sequence, out the class \(K^*_c \), then (5) implies (4) for every function \(g \) described in the Theorem. But it is not difficult to see that there is a function \(g \) which has properties from the Theorem, such that (4) does not implies (5).

If a sequence \((c_n) \) is increasing and unbounded, and it is not \(* \)-regularly varying, it is not clear if, in the general case, (4) and (5) are equivalent to each other for an arbitrary function \(g \) described in the Theorem.
Proof of Corollary 2. By assumptions, we have that
\[
\sum_{c_n \leq x} c_n = \int_0^x t \, d\delta_c(t) \leq x \delta_c(x), \quad x > 0.
\]
On the other side, we have
\[
\sum_{c_n \leq x} c_n \geq \int_{x/2}^x t \, d\delta_c(t) \geq \frac{x}{2} \left(\delta_c(x) - \delta_c\left(\frac{x}{2}\right) \right), \quad x > 0.
\]
Since \((c_n) \in K^*_c\) we have that \(k_c(\lambda) > 1, \lambda > 1\), so that \(k_c(2) > 1\). In other words, \(k_c\left(\frac{1}{2}\right) < 1\). Next, define \(p = 1 - k_c\left(\frac{1}{2}\right)\). Then for all \(x \geq x_0\) we have that
\[
\frac{p}{4} \leq \sum_{c_n \leq x} c_n x \delta_c(x) \leq 1,
\]
so that \(\sum_{c_n \leq x} c_n \asymp x \delta_c(x), x \to +\infty\). By assumptions of the colollary, and the Theorem, we have that then \(\delta_c(x) \sim g^{-1}(x), x \to +\infty\), so that (6) holds true.

Finally, Corollary 3 is a direct consequence of the Theorem and the Corollary 2.

3. References

First author: Technical Faculty,
Svetog Save 65, 32000 Čačak, Serbia & Montenegro
Second author: Mathematical Faculty,
Studentski trg 16a, 11000 Belgrade, Serbia & Montenegro
Received: January 15, 2002.