
Mathematica Moravica
Vol. 13 - 2 (2009), 7–22

p-Adic Approach to Linear 2-Normed Spaces

Mehmet Açıkgöz, Nurgül Aslan, Nurten Köşkeroğlu,
and Serkan Aracı

Abstract. We shall construct some new p-adic approaches to linear
2-normed spaces by using the facts that known about p-adic numbers,
p-adic analysis and give some results in this sense.

1. Introduction

Kummer, in 1850, first introduced to p-adic numbers. Then the German
Mathematician, Kurt Hensel (1861-1941) developed the p-adic numbers in
a paper which was concerned with the development of algebraic numbers
in power series, around the end of the nineteenth century, in 1897. Then
p- adic numbers were generalized to ordinals (or valuation) by Kürschak
in 1913, and Minkowski (1884), Tate (1960), Kubota-Leopoldt (1964), Iwa-
sawa, Serre, Mazur, Manin, Katz, and the others. There are numbers of all
kinds such as rational, real, complex, p-adic, . . . Hensel’s p-adic’s numbers
are now widely used in many fields such as analysis, physics and computer
science. The p-adic numbers are less well known than the others, but they
play a fundamental role in number theory in other parts of mathematics.
Although, they have penatrated several mathematical fields, among them,
number theory, algebraic geometry, algebraic topology and analysis. These
numbers are now well-established in mathematical world and used more and
more by physicists as well. Over the last century p-adic numbers and p-
adic analysis have come to play an important role in number theory. They
have many applications in mathematics, for example: Representation the-
ory, algebraic geometry, and modern number theory and many applications
in mathematical physics since 1897, for example; String theory, QFT, quan-
tum mechanics, dynamical systems, complex systems, etc. Recently, Branko
Dragovich in his study ([5]) he constructed p-adic approach to the genetic
code and the genome and gave a new approach between p-adic fields and
biology with chemistry, especially orghanic cemistry. The other researchers
gave the different approach with p-adic on various disciplines of mathematics
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and its allied subjects. But, up to now, no work on linear 2-normed spaces
has been done in the sense of p-adic.

The concept of linear 2-normed spaces has been investigated by Gähler in
1965 ([9]) and has been developed extensively in different subjects by others.
Lewandowska published a series of papers on 2-normed sets and generalized
2-normed spaces in 1999-2003 ([15]-[17]).

In this paper we will not give a detailed information about p-adic number
fields but we shall start with a review of p-adic numbers ( see ([1], [2], [3], [7],
[8], [10], [11], [12], [13], [14], [19]) for more details) and 2-normed spaces and
related concepts such as generalized 2-normed spaces, convergent sequences,
2-Banach spaces,...etc. (see ([4], [6],[9], [15], [16], [17], [20]) for more details.)

It is the aim of this paper is to give the reader a very understandable and
readable connection between the concepts in p-adic numbers, p-adic analysis
and linear 2-normed spaces. We shall not go deeper into the topic of p-adic
analysis in our this first manuscript, but we hope in the next.

2. Preliminaries

Throughout this paper, we will use the notations; p for a prime number,
Z - the ring of rational integers, Z+ - the positive integers, Q - the field
of rational numbers, R - the field of real numbers, R+ - the positive real
numbers, Zp - the ring of p-adic rational integers, Qp - the field of p-adic
rational numbers, C - the field of complex numbers and Cp - the p-adic
completion of the algebraic closure of Qp. For each x ∈ R, the absolute
value of x is denoted by |x| and defined

|x| =
{
−x , if x ≥ 0
x , if x ≤ 0 .

Thus |0| = 0 and |x| > 0 if x 6= 0. It is not difficult to check that |x + y| ≤
|x|+ |y| and |xy| ≤ |x| |y| for every x, y ∈ R, as usual.

In [21], some inequalities are defined as follows:
Suppose that N (x) , a non-negative real valued function defined on Q

such that N (0) = 0, N (x) is positive if x 6= 0, and N (xy) = N (x) N (y)
for all x, y ∈ Q, and

(2.1) N (x + y) ≤ K (N (x) + N (y))

for K ≥ 1 and x, y ∈ Q. The well-known triangle inequality satisfies for
K = 1. The other version of the triangle inequality, is the ultrametric which
is stronger and is shown by

(2.2) N (x + y) ≤ max {N (x) , N (y)}
for all x, y ∈ Q. By using the property (2.1), we have

(2.3) N

(
2n∑

k=1

xk

)
≤ Kn

2n∑
k=1

N (xk)
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where n ∈ Z+ and xk’s are in Q. The proof can be easily made by induction
over n. The usual absolute value function, |x| satisfies these conditions
with the well-known triangle inequality. For x = 0 and x 6= 0, if we have
N (x) = 0 and N (x) = 1, respectively. In this case, N (x) satisfies these
conditions with the ultrametric type of the triangle inequality.

If q ∈ C we assume that |q| < 1. If q ∈ Cp, it will be assumed that
N (1− q)p < p

− 1
p−1 with N (p)p < p−ordp(p) = p−1, where ordp (p) be the

normalized exponential valuation of Cp. We use the function

[x] = [x : q] =
1− qx

1− q

and

lim
q→1

1− qx

1− q
= x,

for any x in the complex case and any x with N (x)p ≤ 1 in the p-adic case.
Every x ∈ Q with |x|p ≤ 1 is the limit of a sequence of integers in the

p-adic metric. That is; {
x ∈ Q : |x|p ≤ 1

}
is the same as the closure of Z in Q with respect to the p-adic metric. Set

Zp =
{

x ∈ Qp : |x|p ≤ 1
}

.

Every x ∈ Qp is the limit of a sequence of rational numbers in the p-adic
metric. Because Q = Qp.(Q is the closure of Q). It is also that for x ∈ Zp

in the p-adic metric. So we have, Z = Zp in Qp ( see [21] for details).
Now, let us give a brief knowledge about linear 2-normed spaces by start-

ing their definitions and related facts with some examples.

Definition 1. Let X be a linear space of dimension greater than 1 over K,
where K is the real or complex numbers field. Suppose N (., .) be a non-
negative real-valued function on X ×X satisfying the following conditions:
(2N1) N (x, y) > 0 and N (x, y) = 0 if and only if x and y are linearly

dependent vectors,
(2N2) N (x, y) = N (y, x) for all x, y ∈ X,
(2N3) N (λx, y) = |λ|N (x, y) for all λ ∈ K and all x, y ∈ X,
(2N4) N (x + y, z) ≤ N (x, z) + N (y, z) for all x, y, z ∈ X.

Then N (., .) is called a 2-norm on X and the pair (X, N (., .)) is called a
linear 2-normed space. In addition, for all scalars α and all x, y, z ∈ X, we
have the following three properties of 2-norms:

(P1) They are non negative,
(P2) N (x, y) = N (x, y + αx),
(P3) N (x− z, y − z) = N (x− y, x− z).
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Every 2-normed space is a locally convex topological vector space. In fact
for a fixed b ∈ X, pb (x) = N (x, b) for all x ∈ X, is a seminorm and the
family P = {pb : b ∈ X} generates a locally convex topology on X. Such a
topology is called the natural topology induced by 2-norm N (., .).

First we give some examples on linear 2-normed spaces.

Example 1. Let X = R3. Define

N (x, y) = max {|x1y2 − x2y1|+ |x1y3 − x3y1| , |x1y2 − x2y1|+ |x2y3 − x3y2|} ,

where x = (x1, x2, x3) and y = (y1, y2, y3) ∈ R3.

Then N (., .) is a 2-norm on R3 (see [6] for details).

Example 2. Let Pn denotes the set of real polynomials of degree less than
or equal to n, on the interval [0, 1] . By considering usual addition and scalar
multiplication, Pn is a linear vector space over the reals. Let {x1, x2, ..., x2n}
be distinct fixed points in [0, 1] and define the 2-norm on Pn as

N (f, g) =
2n∑

k=1

∣∣f (xk) .g′ (xk)− f ′ (xk) .g (xk)
∣∣ .

Then (Pn, N (., .)) is a 2-normed space.

Example 3. Let X = R3 and consider the following 2-norm on X :

N (x, y) = |x× y| =

∣∣∣∣∣∣det

 i j k
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ ,
where x = (x1, x2, x3) and y = (y1, y2, y3) .Then (X, N (., .)) is a 2-normed
space.

Definition 2. (i) A sequence {xn}n≥1 in a 2-normed space (X, N (., .)) is
called a Cauchy sequence if there exist two linearly independent elements y
and z in X such that {N (xn, y)} and {N (xn, z)} are real Cauchy sequences.

(ii) A sequence {xn}n≥1 in a 2-normed space (X, N (., .)) is called conver-
gent if there exists x ∈ X such that {N (xn − x, y)}n≥1 thends to zero for
all y ∈ X.

(iii) A 2-normed space (X, N (., .)) is called 2-Banach space if every
Cauchy sequence is convergent.

Lemma 1. [6] (i) Every 2-normed space of dimension 2 is a 2-Banach space,
when the underlying field is complete.

(ii) If {xn}n≥1 is a sequence in 2-normed space (X, N (., .)) and

lim
n→∞

N (xn − x, y) = 0, then lim
n→∞

N (xn, y) = N (x, y) .
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3. p-adic ordinal, p-adic norm, p-adic metric, p-adic expansion
and related examples

In this section, we introduce the notions of p-adic ordinal, p-adic norm,
p-adic metric(distance), p-adic expansion and some related concepts with
some examples. Let Q be the field of rational numbers, 0 6= x ∈ Q and p
is a fixed prime number. Every rational number can be represented in the
form

x = pn.
a

b

with gcd(a, b) = 1, a, n ∈ Z, b ∈ Z+ and neither a nor b is divisible by p
(that is (p, a) = 1, (p, b) = 1.). The integer n and the rational number a

b are
well defined by F.T.A. (Fundamental Theorem of Arithmetic). Now, let us
give the definition of p-adic ordinal as follows:

Definition 3. The p-adic ordinal (or valuation) is the function

ordp : Q → Z ∪ {∞}

with

ordp (x) = n for 0 6= x ∈ Q and ordp (0) = ∞.

For all x,y ∈ Q, we have the following some basic facts:

1) ordp (xy) = ordp (x) +ordp (y),
2) ordp (x + y) ≥ min{ordp (x), ordp (y)}, with equality when ordp (x) 6=

ordp (y),
3) ordp (0) = ∞,
4) A clear consequence of the first property is that ordp

(
x
y

)
=

ordp (x)−ordp (y).

Example 4. Let us suppose p = 3. Then we have:

ord3 (3) = ord3

(
31.1

)
= 1, ord3 (5) = ord3

(
51.30

)
= 0,

and

ord3

(
1
9

)
= ord3

(
3−2.1

)
= −2.

By using the ordinal(valuation) function, we can define an p-adic norm
function on Q, as follows:

Definition 4. For x ∈ Q, let the p-adic norm of x be given by

N (x)p =
{

p−ordpx , for x 6= 0
p−∞ = 0 , for x = 0 .
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Example 5. Let x = 63
550 = 7.32

2.52.11
= 2−1.32.5−2.71.11−1. Then we have the

followings.

N

(
63
550

)
p=2

= 2, N

(
63
550

)
p=3

=
1
9
, N

(
63
550

)
p=5

= 25,

N

(
63
550

)
p=7

=
1
7
, N

(
63
550

)
p=11

= 11,

and for the others N
(

63
550

)
p≥13

= 1.

The p-adic norm satisfies the following relations:
(i) N (x)p ≥ 0 for all x,

(ii) N (x)p = 0 if and only if x = 0,
(iii) N (xy)p = N (x)p .N (y)p for all x, and y,
(iv) N (x + y)p ≤ N (x)p + N (y)p for all x, and y,

(v) N (x + y)p ≤ max
{

N (x)p , N (y)p

}
for all x, and y.

(v(i)) if N (x)p 6= N (y)p then N (x− y)p = max
{

N (x)p , N (y)p

}
,

(v(ii)) if N (x)p = N (y)p then N (x− y)p = N (x)p.
In the above, the properties, (iv) and (v) are called the triangle inequal-

ity and the strong triangle inequality (ultrametric version of the triangle
inequality) respectively. We observe that the relation (iv) follows from the
relation (v).

By
dp (x, y) = N (x− y)p

we define the p-adic metric (distance) on Q, for fixed a prime number p, and
x, y ∈ Q, as follows:

Definition 5. For all x, y, z ∈ Q,

D1) dp (x, y) = N (x− y)p > 0 for x 6= y and d p (x, x) = 0,
D2) dp (x, y) = dp (y, x),
D3) dp (x, z) ≤ dp (x, y) + dp (y, z) , ( the triangle inequality),
D4) dp (x, z) ≤ max {dp (x, y) , dp (y, z)} , ( the ultrametric inequality).
The properties given above from 1 to 3, they are called the axioms of

p-adic metric and the pair (X, dp) is called a p-adic metric space. If the
metric also satisfies the fourth property then this metric is called a p-adic
ultrametric space.

To prove from (D1) to (D4); For all x, y, z ∈ Q, we suppose that x 6= y.
For x− y, we have

x− y = pn a

b
for n ∈ Z,

a

b
∈ Q and ordp

(a

b

)
= 0,

where gcd(a, b) = 1 and neither a nor b is divisible by p.
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Firstly,

dp (x, y) =
∣∣∣pn.

a

b

∣∣∣
p

= p−n =
1
pn

> 0.

Also, by definition, we obtain

dp (x, x) = |x− x|p = |0|p = 0

and

dp (x, y) = |x− y|p = p−ordp(x−y) = p−ordp(y−x) = |y − x|p = dp (y, x) .

Now, let us prove the property (D4); For this we have

dp (x, z) = |x− z|p = |(x− y)− (z − y)|p
= p−ordp((x−y)−(z−y))

≤ p−min(ordp(x−y), ordp(z−y))

= max {dp (x, y) , d (z, y)}
= max {dp (x, y) , dp (y, z)} .

The property (D4) implies property (D3). So the desired proof completes.
Two points are p-adically closer as long as r is higher, such that pr divides

N (x− y)p. Amazingly, for p = 5, the result is that 135 is closer to 10 than
35.

Example 6. For p = 7-adic metric; we have

d (3, 52) < d (3, 4)

since
d (3, 52) = |52− 3|p=7 = |49|p=7 =

∣∣72
∣∣
p=7

=
1
72

=
1
49

and
d (3, 4) = |4− 3|p=7 = |1|p=7 =

∣∣70
∣∣
p=7

=
1
70

= 1.

Definition 6. A sequence (xn)∞n=1 of rational numbers converges to x ∈ Q
in p-adic metric if for every ε > 0, there is an l ≥ 1 such that

dp (xn, x) = |xn − x|p < ε

for every n ≥ l.

For the given two sequences of rational numbers which are (xn)∞n=1 and
(yn)∞n=1 converge to x, y ∈ Q, in the p-adic metric respectively, then the
sequence of sums xn + yn and product xnyn converge to the sum, x + y and
to the product, xy of the limits of initial sequences.

Definition 7. A sequence (xn)∞n=1 of rational numbers is a Cauchy sequence
with respect to the p-adic metric if for each ε > 0 there is an l ≥ 1 such that

dp (xn, xm) = |xn − xm|p < ε

for all n, m ≥ l.
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Every convergent sequence in Q is a Cauchy sequence. If (xn)∞n=1 is a
Cauchy sequence in Q with respect to the p-adic metric, then the limit

lim
n→∞

(xn − xn+1) = 0

in p-adic metric. We know that the analogous statement also works for the
standard metric |x− y|. For the p-adic metric, the converse holds because
of the ultrametric version of the triangle inequality.

Definition 8. ([13]) A p-adic number α can be uniquely written in the
canonical series form

α =
∞∑

j=n

ajp
j

where each of 0 ≤ aj ≤ p−1 and the p-adic norm of the number α is defined
as N (α)p = p−n. Note that the series

1 + p + p2 + p3 + · · ·
converges to 1

1−p in the p-adic norm. Now,let us consider the power series
expansion, as an example;

α = 2 + 3p + p2 + 3p3 + p4 + 3p5 + p6 + · · ·
= 2 + 3p

(
1 + p2 + p4 + · · ·

)
+ p2

(
1 + p2 + p4 + · · ·

)
= 2 +

(
3p + p2

) (
1 + p2 + p4 + · · ·

)
since 1 + p2 + p4 + · · · converges to

(
1− p2

)−1, we have

α = 2 +
3p + p2

1− p2
.

For p = 5, we have 5-adic expansion of α = 1
3 , which can be written in the

form
1
3

= 0.2313131 · · · (p = 5)

= 0.231 (p = 5) .

The purpose of this paper is to construct a new p-adic approach to linear
2-normed spaces by using the facts that known about p-adic numbers and
p-adic analysis.

4. p-Adic Approach to Linear 2-Normed Spaces

The main results of this paper are given in this section with new definitions
we have done in the sense of linear 2-normed spaces. Here we present a p-
adic version of the results of linear 2-normed spaces and we will investigate
some elementary p-adic analysis, including concepts such as convergence
of sequences, completion of sequences, Banach spaces and other concepts
(topics) familiar from elementary real analysis, in the field of the p-adic
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numbers, Qp with the p-adic norm N (.)p, but now in the context of p-adic
linear 2-normed spaces over Qp with the p-adic 2-norm N (., .)p.

Definition 9. (i) The p-adic ordinal (valuation) of x, and y, for 0 6= x, y ∈
Z, is

ordp (x, y) = max {r : pr|x and pr|y} ≥ 0.

(ii) For a
b , c

d ∈ Q , The p-adic value of a
b and c

d is

ordp

(a

b
,
c

d

)
= ordp (a, c)− ordp (a, d)− ordp (b, c) + ordp (b, d) .

(iii) For a
b , c ∈ Q , with d = 1;The p-adic value of a

b and c is

ordp

(a

b
, c
)

= ordp (a, c)− ordp (b, c) .

Notice that in all cases, ordp, in 2-norm, gives an integer and that for
rational numbers a

b , and c
d the value of ordp(a

b , c
d) is well defined. i.e., if

a

b
=

a′

b′
and

c

d
=

c′

d′

then

ordp

(a

b
,
c

d

)
= ordp

(
a′

b′
,
c′

d′

)
.

We also introduce the convention that ordp (0, y) =ordp (x, 0) = ∞.
For example; by taking

a

b
=

1
7
,

c

d
=

1
5
,

a′

b′
=

3
21

,
c′

d′
=

3
15

and for p = 7, using the definition 9, we have

ord7

(
1
7
,
1
5

)
= ord7 (1, 1)− ord7 (1, 5)− ord7 (7, 1) + ord7 (7, 5)

= 0

and

ord7

(
3
21

,
3
15

)
= ord7 (3, 3)− ord7 (3, 15)− ord7 (21, 3) + ord7 (21, 15)

= 0

For example; by taking

a

b
=

2
5
,

c

d
=

3
5
,

a′

b′
=

4
10

,
c′

d′
=

6
10

and for p = 5, using the definition 9, we have

ord5

(
2
5
,
3
5

)
= ord5 (2, 3)− ord5 (2, 5)− ord5 (5, 3) + ord5 (5, 5)

= 1



16 p-Adic Approach to Linear 2-Normed Spaces

and

ord5

(
4
10

,
6
10

)
= ord5 (4, 6)− ord5 (4, 10)− ord5 (10, 6) + ord5 (10, 10)

= 1

For example; by taking

a

b
=

2
4
,

c

d
=

4
16

,
a′

b′
=

6
12

,
c′

d′
=

12
48

and for p = 2, using the definition 9, we have

ord2

(
2
4
,

4
16

)
= ord2 (2, 4)− ord2 (4, 4)− ord2 (2, 16) + ord2 (4, 16)

= 0

and

ord2

(
6
12

,
12
48

)
= ord2 (6, 12)− ord2 (12, 12)− ord2 (6, 48) + ord2 (12, 48)

= 0

Example 7. For 7
3 , 4 ∈ Q , The p = 5-adic value of 7

3 and 4 is

ord5

(
7
3
, 4
)

= ord5 (7, 4)− ord5 (3, 4)

= max {r : 5r | 7 and 5r | 4} −
−max {r : 5r | 3 and 5r | 4}

= 0

and

ord5

(
25
3

, 5
)

= ord5 (25, 5)− ord5 (3, 5)

= max {r : 5r | 25 and 5r | 5} −
−max {r : 5r | 3 and 5r | 5}

= 1− 0
= 1

The p-adic valuation has the following properties:

Proposition 1. For all x, y ∈ Q, we have for ordp;
(i) ordp (x,y) = ∞ iff x = 0, or y = 0,

(ii) ordp (xz, y) = ordp (x, y) +ordp (z, y) ,
(iii) ordp (x + z, y) ≥ min

{
ordp (x, y) , ordp (z, y)

}
implies

ordp (x, y) 6=ordp (z, y).
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Proof. (i) ordp (x, y) = max {r : pr | x , pr | y} = ∞. We know that
ordp (0, y) = ordp (x, 0) = ∞.

(ii)

ordp (xz, y) = max {r : pr | xz , pr | y}
= max {r : (pr | x and pr | y) and (pr | z and pr | y)}
= max {r : pr | x , pr | y}+ max {r : pr | z , pr | y}
= ordp (x, y) + ordp (z, y) .

(iii) Let x,y,z be non zero elements of rational numbers. Write x = pr a
b

and z = ps c
d , where a, b, c, d ∈ Z with p - a, b, c, d and r, s ∈ Z. Now, if

r = s, we have

x + z = pr
(a

b
+

c

d

)
= pr

(
ad + bc

bd

)
which gives ordp (x + z, y) ≥ r since p - bd. Now suppose that r 6= s, and
say s > r.

x + z = pr
(a

b
+ ps−r c

d

)
= pr

(
ad + ps−rbc

bd

)
Notice that s− r > 0 and p - ad, then, we have

ordp (x + z, y) ≥ min
{
ordp (x, y) , ordp (z, y)

}
. �

Now, we consider our fundamental definition of this paper.

Definition 10. For x,y ∈ Q, let the p-adic norm of x, y be given by

N (x, y)p =
{

p−ordp(x,y) , for x, y 6= 0
p−∞ = 0 , for x = 0 or y = 0

where
ordp (x, y) = max {r : pr|x and pr|y} .

Example 8. Let x = 2
5 and y = 3

5 . Using the above definition, we have the
followings:

N (x, y)p = N

(
2
5
,
3
5

)
p=5

=
1
5
,

since ord5

(
2
5
,
3
5

)
= 1 from example given above.

Proposition 2. Let the function N (., .)p be a non-negative real-valued func-
tion on Q×Q satisfying the following conditions:

N (., .)p : Q×Q → R+ ∪ {0} = {r : r ≥ 0}
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(a) N (x, z)p = 0 if and only if x = 0 or z = 0,

(a) N (xy, z)p = N (x, z)p .N (y, z)p for all x, y and z ∈ Q,

(c).N (x + y, z)p ≤ max
{

N (x, z)p , N (y, z)p

}
and with equality N (x, z)p 6=

N (y, z)p ,

where N (., .)p is a non-Archimedean norm on Q.

Proof. (i) N (x, z)p = 0 ⇒ordp (x, z) = ∞ ⇒ x = 0 or z = 0. If x = 0 and
z = 0 then

N (x, z)p = p−ordp(0) = p−∞ =
1

p∞
= 0.

(ii) N (xy, z)p = N (x, z)p .N (y, z)p

(a) If xy = 0 or z = 0 then N (xy, z)p = 0.
(b) If xy 6= 0 or z 6= 0 then

N (xy, z)p = p−ordp(xy,z) = p−ordp(x,z)−ordp(y,z)

= p−ordp(x,z).p−ordp(y,z)

= N (x, z)p .N (y, z)p .

(c) To prove this property, we have

N (x + y, z)p = p−ordp(x+y,z) =
1

pordp(x+y,z)

≤ 1
pmin{ordp(x,z), ordp(y,z)}

= p−min{ordp(x,z), ordp(y,z)}

= max
{

p−ordp(x,z), p−ordp(y,z)
}

= max
{

N (x, z)p , N (y, z)p

}
.

This is the desired result. �

Let N (x, z)p be a non-negative real valued function defined on the rational
numbers Q × Q such that N (x, z)p = 0 for x = 0 or z = 0, N (x, z)p > 0
when x 6= 0, z 6= 0. N (xy, z)p = N (x, z)p.N (y, z)p for all x, y, z ∈ Q and

(4.1) N (x + y, z)p ≤ K
(
N (x, z)p + N (y, z)

)
p

for some K ≥ 1 and all x, y, z ∈ Q. For the usual triangle inequality one ask
that this condition holds with K = 1, i.e.,

(4.2) N (x + y, z)p ≤ N (x, z)p + N (y, z)p

for all x, y, z ∈ Q.



Mehmet Açıkgöz, Nurgül Aslan, Nurten Köşkeroğlu, and Serkan Aracı19

The ultrametric version of the triangle inequality is stronger still and asks
that

(4.3) N (x + y, z)p ≤ max
(
N (x, z)p , N (y, z)p

)
for all x, y, z ∈ Q. If N (., .) satisfies (4.1), n is a positive integer and
x1, x2, x3, ..., x2n , z ∈ Q, then

(4.4) N

(
2n∑

k=1

xk, z

)
p

≤ Kn
2k∑

k=1

N (xk, z)p

as one can check using induction on k. For all a > 0, N (x, z)a is a nonnega-
tive real-valued function on Q which vanishes at 0, is positive at all nonzero
x ∈ Q, and sends products to products.

If N (x, z)p satisfies (4.1), then

(4.5) N (x + y, z)a
p ≤ Ka

(
N (x, z)a

p + N (y, z)a
p

)
when 0 < a ≤ 1 and

(4.6) N (x + y, z)a
p ≤ 2a−1.Ka

(
N (x, z)a

p + N (y, z)a
p

)
when a ≥ 1.

In particular, if N (x, z)p satisfies the well-known triangle inequality (4.2)
and 0 < a ≤ 1, then N (x, z)a

p also satisfies the well-known triangle in-
equality. If N (x, z)p satisfies the ultrametric version (4.3) of the triangle
inequality, then N (x, z)a

p satisfies the ultrametric version of the triangle
inequality for all a ≥ 0.

Definition 11. Let X be a linear space of dimension greater than 1 over
K, where K is the real or complex numbers field. Suppose N (., .) be a non-
negative real-valued function on X ×X satisfying the following conditions:
(2N1) N (x, y)p = 0 if and only if x and y are linearly dependent vectors.
(2N2) N (xy, z)p = N (x, z)p .N (y, z)p for all x, y, z ∈ X,
(2N3) N (x + y, z)p ≤ N (x, z)p + N (y, z)p for all x, y, z ∈ X,
(2N4) N (λx, y)p = λN (x, y)p for all λ ∈ K and all x, y ∈ X.

Then N (., .)p is called a p-adic 2-norm on X and the pair
(
X, N (., .)p

)
is

called a p-adic linear 2-normed space.

Definition 12. A sequence {xn}n≥1 in a p-adic linear 2-normed space(
X, N (., .)p

)
is called convergent if there exists an x ∈ X such that

lim
n→∞

N (xn − x, z)p = 0

for all z ∈ X.
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Definition 13. A sequence {xn}n≥1 in a p-adic linear 2-normed space(
X, N (., .)p

)
is called a Cauchy sequence if, for ∀ε > 0 there exists ∃M1 ∈

X, n, m > M1 such that N (xm − xn, z)p < ε.

Definition 14. A p-adic linear 2-normed space
(
X, N (., .)p

)
is called a

complete if every Cauchy sequence is convergent in p-adic linear 2-normed
space.

Definition 15. A p-adic linear 2-normed space
(
X, N (., .)p

)
is called a

p-adic 2-Banach space if every p-adic linear 2-normed space is complete.

Proposition 3. If limn→∞N (xn, z)p exists then we say that {xn} is a
Cauchy sequence with respect to N (., .)p.

Proof. Let us suppose that limn→∞N (xn, z)p = x. Then we can obtain a
constant M1 such that n > M1 ⇒ N (x− xn, z)p < ε

2 . If m,n > M1, then

N (x− xn, z)p <
ε

2
and N (x− xm, z)p <

ε

2
,

hence by using the triangle inequality, we have

N (xm − xn, z)p = N (xm − x + x− xn, z)p

≤ N (xm − x, z)p + N (x− xn, z)p

<
ε

2
+

ε

2
= ε. �

Definition 16. A sequence (xn) is called a null sequence in p-adic linear
2-normed space, if

lim
n→∞

N (xn, x)p = 0.

Example 9. Let xn = pn and z = pr with r < n in the p-adic 2-norm over
X = Q. Then

N (pn, pr)p =
{

p−ordp(pn,pr) , if pn 6= 0 and pr 6= 0
p−∞ , if pn = 0 or pr = 0.

.

In this case N (pn, pr)p = p−n = 1
pn = 0, as n → ∞. Therefore,

limn→∞N (xn, x)p = 0. Hence this sequence is a null sequence with respect
to the p-adic 2-norm.

Definition 17. A p-adic number (α, β) can be uniquely written in the form

(α, β) =
∞∑

i=n, j=m

(
aip

i, bjp
j
)

where each of 0 ≤ ai,bj ≤ p − 1 and p-adic 2-norm of the number (α, β) is
defined as N (α, β)p = n, (n ∈ R) and the double series(

1 + p + p2 + p3 + · · · ,1 + p + p2 + p3 + · · ·
)
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converges to 1
1−p in the p-adic 2-norm.

Example 10. Let α = 4.13131313 · · · and β = 0.02313131 · · · with p = 5.
Set (α, β) as follows, we have

(α, β) = (4.13131313..., 0.02313131...)

= (4.5−1 + 1.50 + 3.51 + 1.52 + 3.53 + ...,

0.50 + 2.51 + 3.52 + 1.53 + ...)

=
(4

5
+
(
1 + 52 + 54 + ...

)
+ 3.5

(
1 + 52 + 54 + ...

)
,

5 + 5
(
1 + 52 + 54 + ...

)
+ 3.52

(
1 + 52 + 54 + ...

))
=
(

4
5

+ 16
(
1 + 52 + 54 + ...

)
, 5 + 80

(
1 + 52 + 54 + ...

))
=
(

4
5

+ 16
(

1
1− 25

)
, 5 + 80

(
1

1− 25

))
=
(

4− 2
3
, 5− 10

3

)
=
(

2
15

,
5
3

)
then

ord5

(
2
15

,
5
3

)
= ord5 (2, 5)− ord5 (2, 3)− ord5 (15, 5) + ord5 (15, 3)

= −1.

Finally, we obtain

N

(
2
15

,
5
3

)
5

= 5−ord5( 2
15

, 5
3) = 5−(−1) = 5.
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