CR-Warped Product Submanifolds of Lorentzian Manifolds*

SIRAJ UDDIN

Abstract. In this paper, we study warped product CR-submanifolds of a Lorentzian Sasakian manifold. We show that the warped product of the type $M = N_\bot \times_f N_T$ in a Lorentzian Sasakian manifold is simply CR-product and obtain a characterization of CR-warped product submanifolds.

1. Introduction

Warped product manifolds were introduced by Bishop and O’Neill in [3] to construct new examples of negatively curved manifolds. These manifolds are obtained by warping the product metric of a product manifold onto the fibers and thus provide a natural generalization to the product manifolds. Let (N_1, g_1) and (N_2, g_2) be semi-Riemannian manifolds of dimensions m and n, respectively and f, a positive differentiable function on N_1. Then the warped product [3] of (N_1, g_1) and (N_2, g_2) with warping function f is defined to be the product manifold $M = N_1 \times N_2$ with metric tensor $g = g_1 + f^2 g_2$. The warped product manifold $(N_1 \times N_2, g)$ is denoted by $N_1 \times_f N_2$. If U is tangent to $M = N_1 \times_f N_2$ at (p, q) then

$$\|U\|^2 = \|d\pi_1 U\|^2 + f^2(p)\|d\pi_2 U\|^2,$$

where π_1 and π_2 are the canonical projections of M onto N_1 and N_2, respectively. The function f is called the warping function of the warped product manifold. In particular, if the warping function is constant, then the warped product manifold M is said to be trivial. Let X be vector field on N_1 and Z be vector field on N_2, then from Lemma 7.3 of [3], we have

$$\nabla_X Z = \nabla_Z X = \left(\frac{Xf}{f}\right) Z,$$

2000 Mathematics Subject Classification. Primary: 53C25, 53C42, 53C50.

Key words and phrases. Warped product, CR-submanifold, contact CR-warped product, Lorentzian Sasakian manifold.

*This work is supported by the research grant RG117/10AFR (University of Malaya, Kuala Lumpur, Malaysia).
where ∇ is the Levi-Civita connection on M. Let $M = N_1 \times f N_2$ be a warped product manifold, this means that N_1 is totally geodesic and N_2 is totally umbilical submanifold of M, respectively.

The notion of CR-submanifolds of Kaehler manifolds was introduced by A. Bejancu [2] as a generalization of totally real and holomorphic submanifolds of a Kaehler manifold. Later, the concept of CR-submanifold has been also considered in various manifolds. In [6] and [1], as analogous of submanifolds of Lorentzian paracontact and Lorentzian manifolds, respectively. Furthermore H. Gill and K.K. Dube have recently introduced generalized CR-submanifolds of a trans Lorentzian Sasakian manifold [7].

Recently, B.Y. Chen has introduced the notion of CR-warped product in Kaehler manifolds and showed that there exist no proper warped product CR-submanifolds in the form $M = N_{\perp} \times f N_T$ in a Kaehler manifold. He considered only the warped product of the type $M = N_T \times f N_{\perp}$ and called it a CR-warped product submanifold [4, 5]. Later on, Hasegawa and Mihai proved that warped product CR-submanifolds $N_{\perp} \times f N_T$ in Sasakian manifolds are trivial i.e. simply contact CR-product submanifolds, where N_T and N_{\perp} are ϕ–invariant and anti-invariant submanifolds of a Sasakian manifold respectively [8].

In this paper, we study warped product CR-submanifolds of a Lorentzian Sasakian manifold. We, show that the warped product in the form $M = N_{\perp} \times f N_T$ does not exist except for the trivial case, where N_T and N_{\perp} are invariant and anti-invariant submanifolds of a Lorentzian Sasakian manifold \bar{M}, respectively. Also, we obtain a characterization result of the warped product CR-submanifold of the type $M = N_T \times f N_{\perp}$.

2. Preliminaries

A $(2m+1)$–dimensional manifold \bar{M} is said to be a Lorentzian almost contact manifold with an almost contact structure and compatible Lorentzian metric, $(\bar{M}, \phi, \xi, \eta, g)$, that is, ϕ is a $(1, 1)$ tensor field, ξ is a structure vector field, η is a 1–form and g is Lorentzian metric on \bar{M}, satisfying [1]:

\begin{align}
\phi^2 &= -X + \eta(X)\xi, \eta(\xi) = 1, \phi \xi = 0, \eta \circ \phi = 0, \\
g(\phi X, \phi Y) &= g(X, Y) + \eta(X)\eta(Y), \eta(X) = -g(X, \xi)
\end{align}

for all $X, Y \in T\bar{M}$. It is Lorentzian Sasakian if

\begin{align}
(\bar{\nabla}_X \phi)Y &= -g(X, Y)\xi - \eta(Y)X, \\
\bar{\nabla}_X \xi &= -\phi X,
\end{align}

for any vector fields X, Y on \bar{M}, where $\bar{\nabla}$ denotes the Levi-Civita connection with respect to g.

Let M be a n–dimensional submanifold of a Lorentzian almost contact manifold \bar{M} with Lorentzian almost contact structure (ϕ, ξ, η, g). Let the
induced connection on M be denoted by ∇. Then the Gauss and Weingarten Formulae are respectively given by

$$\nabla_X Y = \nabla_X Y + h(X, Y)$$

(2.4)

$$\nabla_X N = -A_N X + \nabla^\perp_X N,$$

(2.5)

for any $X, Y \in TM$ and $N \in T^\perp M$, where TM is the Lie algebra of vector fields in M and $T^\perp M$ is the set of all vector fields normal to M. ∇^\perp is the connection in the normal bundle, h the second fundamental form and A_N is the Weingarten endomorphism associated with N. It is easy to see that

$$g(A_N X, Y) = g(h(X, Y), N).$$

(2.6)

For any $X \in TM$, we write

$$\phi X = PX + FX,$$

(2.7)

where PX is the tangential component and FX is the normal component of ϕX. Similarly for $N \in T^\perp M$, we write

$$\phi N = tN + fN,$$

(2.8)

where tN is the tangential component and fN is the normal component of ϕN.

The covariant derivatives of the tensor fields ϕ, P and F are defined as

$$(\nabla_X \phi)Y = \nabla_X \phi Y - \phi \nabla_X Y, \forall X, Y \in T\bar{M}$$

(2.9)

$$(\nabla_X P)Y = \nabla_X PY - P\nabla_X Y, \forall X, Y \in TM$$

(2.10)

$$(\nabla_X F)Y = \nabla^\perp_X FY - F\nabla_X Y, \forall X, Y \in TM.$$

(2.11)

Moreover, for a Lorentzian Sasakian manifold we have

$$(\nabla_X P)Y = A_{FY} X + th(X, Y) - g(X, Y)\xi - \eta(Y)X,$$

(2.12)

$$(\nabla_X F)Y = fh(X, Y) - h(X, PY).$$

(2.13)

A submanifold M of a Lorentzian almost contact manifold, $(\bar{M}^{2m+1}, \phi, \eta, \xi, g)$ is called \textit{CR-submanifold} if it admits an invariant distribution \mathcal{D} whose orthogonal complementary distribution \mathcal{D}^\perp is anti-invariant i.e., $TM = \mathcal{D} \oplus \mathcal{D}^\perp \oplus \langle \xi \rangle$ with $\phi(\mathcal{D}_x) \subseteq \mathcal{D}_x$ and $\phi(\mathcal{D}^\perp_x) \subseteq T^\perp_x M$, for every $x \in M$.

Note that ξ is a timelike vector field and all vector field in $\mathcal{D} \oplus \mathcal{D}^\perp$ are space like. Denoting orthogonal complementary subbundle to $\phi\mathcal{D}^\perp$ in $T^\perp M$ by μ, then we have

$$T^\perp M = \phi\mathcal{D}^\perp \oplus \mu.$$

Invariant and anti-invariant submanifolds are the special cases of CR-submanifolds. A submanifold M called an \textit{invariant} submanifold if $\mathcal{D}^\perp = \{0\}$ and M is said to be an \textit{anti-invariant} submanifold if $\mathcal{D} = \{0\}$. A CR-submanifold is \textit{proper} if neither $\mathcal{D} = \{0\}$ nor $\mathcal{D}^\perp = \{0\}$.

In the following section we shall investigate the warped products of the type $M = N_T \times f N_\perp$ and $M = N_\perp \times f N_T$, where N_T and N_\perp are invariant and anti-invariant submanifolds of a Lorentzian Sasakian manifold \bar{M}. A
warped product CR-submanifold is simply *CR-product* with the integrable distributions \mathcal{D} and \mathcal{D}^\perp if the warping function f is constant.

3. Warped Product CR-submanifolds

Throughout the section structure vector field ξ is either tangent to the invariant submanifold N_T or tangent to the anti-invariant submanifold N_\perp. There are two types of warped product CR-submanifolds of a Lorentzian Sasakian manifold \bar{M}, namely $N_\perp \times fN_T$ and $N_T \times fN_\perp$. In the following theorem we deal the warped product CR-submanifold of the type $N_\perp \times fN_T$.

Theorem 3.1. Let $M = N_\perp \times fN_T$ be a warped product CR-submanifold of a Lorentzian Sasakian manifold \bar{M}, where N_T and N_\perp are invariant and anti-invariant submanifolds of \bar{M}, respectively. Then M is CR-product.

Proof. For any $X \in TN_T$ and $Z \in TN_\perp$, by (1.1) we deduced that
\[\nabla_X Z = \nabla_Z X = (Z \ln f)X. \]

There are two cases arise:

1. When $\xi \in TN_T$, then $\bar{\nabla}_Z \xi = -\phi Z$, i.e., $h(Z, \xi) = -\phi Z$ and $\nabla_Z \xi = 0$. On using (3.1) we get
 \[(Z \ln f)\xi = 0, \ \forall \ Z \in TN_\perp. \]
2. When $\xi \in TN_\perp$, then for any $X \in TN_T$ we have $\bar{\nabla}_X \xi = -\phi X = -PX$. This means that $h(X, \xi) = 0$ and $\nabla_X \xi = -\phi X$. Using (3.1) we get
 \[(\xi \ln f)X = -\phi X, \ \forall \ X \in TN_T. \]

Taking product in (3.3) with $X \in TN_T$ thus, we obtain
\[(\xi \ln f)\|X\|^2 = 0, \ \forall \ X \in TN_T. \]

Now for any $X \in TN_T$ and $Z \in TN_\perp$, we have
\[g(h(X, \phi X), \phi Z) = g(\bar{\nabla}_X \phi X, \phi Z) = g(\phi \bar{\nabla}_X X + (\bar{\nabla}_X \phi) X, \phi Z). \]

Then from (2.2), (2.3) and the fact that $\xi \in TN_\perp$, we obtain
\[g(h(X, \phi X), \phi Z) = g(\bar{\nabla}_X X, Z) = -g(\bar{\nabla}_X Z, X). \]

Thus by (2.4) and (3.1), we get
\[g(h(X, \phi X), \phi Z) = -(Z \ln f)\|X\|^2. \]

Interchanging X by ϕX in (3.5) and using the fact that ξ is tangent to N_\perp, we get
\[g(h(X, \phi X), \phi Z) = (Z \ln f)\|X\|^2. \]

Thus (3.5) and (3.6) imply
\[(Z \ln f)\|X\|^2 = 0, \ \forall Z \in TN_\perp \ \& \ X \in TN_T. \]
Thus, from (3.2), (3.4) and (3.7) we conclude that \(f \) is constant i.e., \(M \) is CR-product. This completes the proof. \(\square \)

Now, the other case i.e., \(N_T \times fN_{\perp} \) with \(\xi \) tangential to \(N_T \) is dealt with the following. To prove the main theorem first we obtain some useful formulae for later use.

Lemma 3.1. Let \(M = N_T \times fN_{\perp} \) be a warped product CR-submanifold of a Lorentzian Sasakian manifold \(\bar{M} \), such that \(\xi \) is tangent to \(N_T \), where \(N_T \) and \(N_{\perp} \) are invariant and anti-invariant submanifolds of \(\bar{M} \), respectively. Then

1. \(\xi \ln f = 0 \),
2. \(g(h(X, Y), FZ) = 0 \),
3. \(g(h(X, Z), FW) = g(h(X, W), FZ) \),
4. \(g(h(\phi X, Z), FW) = (X \ln f)g(Z, W) = g(h(\phi X, W), FZ) \)

for any \(X, Y \in TN_T \) and \(Z, W \in TN_{\perp} \).

Proof. The first part is obtained from (1.1), (2.3) and (2.4). Now for any \(X \in TN_T \) and \(Z \in TN_{\perp} \), we have

\[\nabla_X Z = \nabla_Z X = (X \ln f)Z. \]

On the other hand for any \(X, Y \in TN_T \) and \(Z \in TN_{\perp} \), by formula (2.4) we have

\[g(h(X, Y), \phi Z) = g(\bar{\nabla}_X Y, \phi Z). \]

On using (2.3) and (2.9), we get

\[g(h(X, Y), \phi Z) = -g(\bar{\nabla}_X \phi Y, Z) = g(\phi Y, \bar{\nabla}_X Z) = g(\phi Y, \nabla_X Z). \]

Taking account of the formula (3.8), the above equation yields

\[g(h(X, Y), \phi Z) = (X \ln f)g(\phi Y, Z) = 0. \]

That proves \(g(h(X, Y), FZ) = 0 \). For (iii), for any \(X \in TN_T \) and \(Z, W \in TN_{\perp} \) we have

\[g(h(X, Z), \phi W) = g(\bar{\nabla}_X Z, \phi W) \]
\[= -g(\bar{\nabla}_X \phi Z, W) \]
\[= g(A_{\phi Z} X, W) \]
\[= g(h(X, W), \phi Z), \]

or equivalently, \(g(h(X, Z), FW) = g(h(X, W), FZ) \). This proves (iii). Now, for any \(X \in TN_T \) and \(Z, W \in TN_{\perp} \) and using (2.2), (2.3), (2.4), (2.9) and the fact that \(\xi \) is tangent to \(N_T \), formula (3.8) gives

\[g(\nabla_X Z, W) = g(\nabla_Z X, W) = g(\bar{\nabla}_Z X, W) \]
\[= g(\phi \bar{\nabla}_Z X, \phi W) - \eta(\nabla_Z X)\eta(W). \]
That is
\[(X \ln f)g(Z, W) = g(\nabla Z \phi X, \phi W) - g((\nabla Z \phi)X, \phi W)\]
\[= g(\nabla Z \phi X + h(Z, \phi X), \phi W).\]

The above equation becomes
\[(X \ln f)g(Z, W) = g(h(Z, \phi X), \phi W) + (\phi X \ln f)g(Z, FW)\]
\[= g(h(Z, \phi X), \phi W).\]

This means that \((X \ln f)g(Z, W) = g(h(Z, \phi X), FW)\). This proves the first equality of (iv). For the second equality, by Gauss formula we may write
\[g(h(\phi X, Z), \phi W) = g(\nabla_{\phi X} Z, \phi W)\]
\[= -g(\phi \nabla_{\phi X} Z, W)\]
\[= g((\nabla_{\phi X} \phi)Z, W) - g(\nabla_{\phi X} \phi Z, W)\]
\[= g(A_{\phi X} X, W)\]
\[= g(h(\phi X, W), \phi Z),\]
i.e., \(g(h(\phi X, Z), FW) = g(h(\phi X, W), FZ)\). This proves the lemma completely. \(\square\)

Theorem 3.2. Let \(M\) be a proper CR-submanifold of a Lorentzian Sasakian manifold \(\bar{M}\) with integrable distribution \(\mathcal{D}^\perp\). Then \(M\) is locally a CR-warped product if and only if

\[(3.9) \quad A_{\phi Z} X = -(\phi X \mu)Z\]

for each \(X \in \mathcal{D} \oplus \langle \xi \rangle, \ Z \in \mathcal{D}^\perp\) and \(\mu\), a \(C^\infty\)-function on \(M\) such that \(V \mu = 0\), for each \(W \in \mathcal{D}^\perp\).

Proof. If \(M\) is CR-warped product submanifold \(N_T \times f N_\perp\), then on applying Lemma 3.1, we obtain (3.9). In this case \(\mu = \ln f\).

Conversely, suppose \(M\) is a proper CR-submanifold of a Lorentzian Sasakian manifold \(\bar{M}\) satisfying (3.9), then for any \(X, Y \in \mathcal{D} \oplus \langle \xi \rangle\)
\[g(h(X, Y), \phi Z) = g(A_{\phi Z} X, Y) = g(-(\phi X \mu)Z, Y) = 0\]
\[\Rightarrow g(\nabla_X \phi Y, Z) = 0,\]
which implies
\[g(\nabla_X Y, Z) = 0.\]

This means \(\mathcal{D} \oplus \langle \xi \rangle\) is integrable and its leaves are totally geodesic in \(M\). So far as anti-invariant distribution \(\mathcal{D}^\perp\) is concerned, it is involutive on \(M\)
Moreover, for any \(X \in D \oplus \langle \xi \rangle \) and \(Z, W \in D^\perp \), we have
\[
g(\nabla_Z W, X) = g(\bar{\nabla}_Z W, X)
= g(\phi \bar{\nabla}_Z W, \phi X) - \eta(\bar{\nabla}_Z W) \eta(X)
= g(\bar{\nabla}_Z \phi W, \phi X) - g((\bar{\nabla}_Z \phi) W, \phi X)
= -g(A_{\phi W} Z, \phi X) - g((\bar{\nabla}_Z \phi) W, \phi X).
\]
The second term in the right hand side of the above equation vanishes in view (2.3) and the fact that \(\xi \) tangential to \(N_T \) and the first term will be
\[
- g(A_{\phi W} Z, \phi X) = - g(h(Z, \phi X), \phi W) = - g(A_{\phi W} \phi X, Z).
\]
Making use of (2.1), (3.9) and Lemma 3.1 (i), the above equation takes the form
\[
(3.10) \quad g(\nabla_Z W, X) = - g(A_{\phi W} Z, \phi X) = X \mu \ g(Z, W).
\]
Now, by Gauss formula
\[
g(h'(Z, W), X) = g(\nabla_Z W, X)
\]
where \(h' \) denotes the second fundamental form of the immersion of \(N_\perp \) into \(M \). On using (3.10), the last equation gives
\[
g(h'(Z, W), X) = X \mu \ g(Z, W).
\]
The above relation shows that the leaves of \(D^\perp \) are totally umbilical in \(M \). Moreover, the fact that \(V \mu = 0 \), for each \(V \in D^\perp \), implies that the mean curvature vector on \(N_\perp \) is parallel along \(N_\perp \) i.e., each leaf of \(D^\perp \) is an extrinsic sphere in \(M \). Hence by virtue of a result in [9] we obtain that \(M \) is locally a CR-warped product submanifold \(N_T \times \mu N_\perp \) of \(\bar{M} \). This proves the theorem completely. \(\square \)

Acknowledgement. The authors are thankful to the anonymous referees and Professor Viqar Azam Khan (AMU, Aligarh) for their valuable suggestion and comments.

References

Siraj Uddin

Institute of Mathematical Sciences
Faculty of Science
University of Malaya
50603 Kuala Lumpur
Malaysia

E-mail address: siraj.ch@gmail.com