A generalization of modules with the property (P^*)

BURCU NİŞANCI TÜRKMEN

ABSTRACT. I.A- Khazzi and P.F. Smith called a module M have the property (P^*) if every submodule N of M there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \subseteq Rad(\frac{M}{K})$. Motivated by this, it is natural to introduce another notion that we called modules that have the properties (GP^*) and $(N - GP^*)$ as proper generalizations of modules that have the property (P^*) . In this paper we obtain various properties of modules that have properties (GP^*) and $(N - GP^*)$ and $(N - GP^*)$. We show that the class of modules for which every direct summand is a fully invariant submodule that have the property (GP^*) is closed under finite direct sums. We completely determine the structure of these modules over generalized f-semiperfect rings.

1. INTRODUCTION

Throughout this paper, all rings are associative with identity element and all modules are unital right R-modules. Let R be a ring and let M be an *R*-module. The notation $N \leq M$ means that N is a submodule of M. A module M is called *extending* if every submodule of M is essential in a direct summand of M [4]. Here a submodule $L \leq M$ is said to be essential in M, denoted as $L \triangleleft M$, if $L \cap N \neq 0$ for every nonzero submodule $N \leq M$. Dually, a submodule S of M is called *small (in M)*, denoted as $S \ll M$, if $M \neq S + L$ for every proper submodule L of M. By Rad(M), we denote the intersection of all maximal submodules of M. An R-module M is called supplemented if every submodule N of M has a supplement, that is a submodule K minimal with respect to M = N + K. Equivalently, M = N + K and $N \cap K \ll K$ [11]. M is called (f-) supplemented if every (finitely generated) submodule of M has a supplement in M (see [11]). On the other hand, Mis called *amply supplemented* if, for any submodules N and K of M with M = N + K, K contains a supplement of N in M. Accordingly a module M is called *amply f-supplemented* if every finitely generated submodule of M satisfies same condition. It is clear that (amply) f-supplemented modules are a proper generalization of (amply) supplemented modules.

²⁰¹⁰ Mathematics Subject Classification. 16D10, 16N80.

Key words and phrases. Generalized f-semiperfect ring, the properties (P^*) , (GP^*) and $(N-GP^*)$.

A module M is called *lifting* if for every submodule N of M there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \ll \frac{M}{K}$ (i.e. K is a *coessential submodule* of N in M) as a dual notion of extending modules. Mohamed and Müller has generalized the concept of lifting modules to \oplus supplemented modules. M is called \oplus -supplemented if every submodule of M has a supplement that is a direct summand of M [6].

Let M be an R-module and let N and K be any submodules of M. If M = N + K and $N \cap K \subseteq Rad(K)$, then K is called a *Rad-supplement* of N in M [12](according to [10], generalized supplement). It is clear that every supplement is *Rad*-supplement. M is called *Rad-supplemented* (according to [10], generalized supplemented) if every submodule of M has a *Rad*-supplement in M, and M is called *amply Rad-supplemented* if, for any submodules N and K of M with M = N + K, K contains a *Rad*-supplement of N in M. An R-module M is called *f*-*Rad-supplemented* if every finitely generated submodule of M has a *Rad*-supplement in M, and K as a *Rad*-supplement in M, and a module of M has a *Rad*-supplement in M, and a module M is called *amply f-Rad-supplemented* if every finitely generated submodule of M has a *Rad*-supplement in M, and a module of M has ample *Rad-supplemented* if every finitely generated submodule of M has a *Rad*-supplement in M, and a module M is called *amply f-Rad-supplemented* if every finitely generated submodule of M has a *Rad-supplemented* if a submodule of M has ample *Rad-supplemented* if every finitely generated submodule of M has ample *Rad-supplemented* if every finitely generated submodule of M has a module has a *Rad-supplemented* if a submodule of M has ample *Rad-supplemented* if every finitely generated submodule of M has ample *Rad-supplemented* if every submodule has a *Rad-supplemented* is called *Rad-* \oplus -supplemented if every submodule has a *Rad-supplement* that is a direct summand of M [3] and [5].

Recall from Al-Khazzi and Smith [1] that a module M is said to have the property (P^*) if for every submodule N of M there exists a direct summand K of M such that $K \leq N$ and $\frac{N}{K} \subseteq Rad(\frac{M}{K})$. The authors have obtained in the same paper the various properties of modules with the property (P^*) . Radical modules have the property (P^*) . It is clear that every lifting module has the property (P^*) and every module with the property (P^*) is Rad- \oplus -supplemented.

Let $f: P \longrightarrow M$ be an epimorphism. If Ker(f) << P, then f is called *cover*, and if P is a projective module, then a cover f is called a *projective cover* [11]. Xue [12] calls f a *generalized cover* if $Ker(f) \leq Rad(P)$, and calls a generalized cover f a *generalized projective cover* if P is a projective module. In the spirit of [12], a module M is said to be *(generalized) semiperfect* if every factor module of M has a (generalized) projective cover. A module M is said to be *f-semiperfect* if, for every finitely generated submodule $U \leq M$, the factor module $\frac{M}{U}$ has a projective cover in M [11]. Let M be an R-module. M is called *generalized f-semiperfect module* if, for every finitely generated submodule $U \leq M$, the factor module $U \leq M$, the factor module M has a generalized f-semiperfect module if, for every finitely generated submodule $U \leq M$, the factor module $M \leq M$, the factor module $M \leq M$, the factor module $M \leq M$.

In this study, we obtain some elementary facts about the properties (GP^*) and $(N - GP^*)$ which are a proper generalizations of the property (P^*) . Especially, we give a relation for G^* -supplemented modules. We prove that every direct summand of a module that have the property (GP^*) has the property (GP^*) . We show that a module M has the property $(N - GP^*)$ if and only if, for all direct summands M' and a coclosed submodule N' of N, M' has the property $(N' - GP^*)$ for right *R*-modules *M* and *N*. We obtain that Let $M = \bigoplus_{i=1}^{n} M_i$ be a module and M_i is a fully invariant submodule of *M* for all $i \in \{1, 2, ..., n\}$. Then *M* has the property (GP^*) if and only if M_i has the property (GP^*) for all $i \in \{1, 2, ..., n\}$. We illustrate a module with the property (GP^*) which doesn't have the property (P^*) . We give a characterization of generalized f-semiperfect rings via the property (GP^*) .

2. Modules with the Properties of (GP^*) and $(N - GP^*)$

Definition 2.1. A module M has the property (GP^*) if, for every $\gamma \in End_R(M)$ there exists a direct summand N of M such that $N \subseteq Im(\gamma)$ and $\frac{Im\gamma}{N} \subseteq Rad(\frac{M}{N})$.

Proposition 2.1. The following conditions are equivalent for a module M.

- (1) M has the property (GP^*) .
- (2) For every $\gamma \in End_R(M)$, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq Im(\gamma)$ and $M_2 \cap Im(\gamma) \subseteq Rad(M_2)$.
- (3) For every $\gamma \in End_R(M)$, $Im(\gamma)$ can be represented as $Im\gamma = N \oplus N'$, where N is a direct summand of M and $N' \subseteq Rad(M)$.

Proof. (1) \Rightarrow (2) By the hypothesis, there exist direct summands M_1 , M_2 of M such that $M_1 \subseteq Im(\gamma)$, $M = M_1 \oplus M_2$ and $\frac{Im(\gamma)}{M_1} \subseteq Rad(\frac{M}{M_1})$. Since M_2 is a Rad-supplement of M_1 in M, $Rad(\frac{M}{M_1}) = \frac{Rad(M)+M_1}{M_1}$ (See [13, Lemma 1.1]). Then $\frac{Im(\gamma)}{M_1} \subseteq \frac{Rad(M)+M_1}{M_1}$. So we have $Im(\gamma) \subseteq Rad(M_2) + M_1$. By the modular law, $M_2 \cap Im(\gamma) \subseteq Rad(M_2)$.

 $(2) \Rightarrow (3)$ For every $\gamma \in End_R(M)$, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq Im(\gamma)$ and $M_2 \cap Im(\gamma) \subseteq Rad(M_2)$. So $Im(\gamma) = M_1 \oplus (Im(\gamma) \cap M_2)$ by the modular law. Say $N = M_1$ and $N' = Im(\gamma) \cap M_2$. Therefore $Im(\gamma) = N \oplus N'$, where N is a direct summand of M and $N' \subseteq Rad(M)$.

(3) \Rightarrow (1) By the hypothesis, for every $\gamma \in End_R(M)$, $Im(\gamma) = N \oplus N'$ where N is a direct summand of M and $N' \subseteq Rad(M)$. Thus there exists a direct summand N of M such that $N \subseteq Im(\gamma)$. We have $\frac{Im(\gamma)}{N} = \frac{N \oplus N'}{N} \subseteq \frac{N + Rad(M)}{N} \subseteq Rad(\frac{M}{N})$.

Definition 2.2. A module M has the property $(N - GP^*)$ if, for every homomorphism $\gamma: M \longrightarrow N$, there exists a direct summand L of N such that $L \subseteq Im(\gamma)$ and $\frac{Im\gamma}{L} \subseteq Rad(\frac{N}{L})$.

It is clear that a right module M has the property (GP^*) if and only if M has the property $(M - GP^*)$.

Recall from [4, 3.6] that a submodule N of M is called *coclosed* in M if, N has no proper submodule K for which $K \subset N$ is cosmall in M, that is, $\frac{N}{K} \ll \frac{M}{K}$. Obviously any direct summand N of M is coclosed in M. **Theorem 2.1.** Let M and N be right R-modules. Then M has the property $(N - GP^*)$ if and only if, for all direct summands M' and a coclosed submodule N' of N, M' has the property $(N' - GP^*)$.

Proof. (\Longrightarrow) Let M' = eM for some $e^2 = e \in End_R(M)$ and let N' be a coclosed submodule of N. Assume that $\alpha \in Hom(M', N')$. Since $\alpha(eM) =$ $\alpha(M') \subseteq N' \subseteq N$ and M has the property $(N - GP^*)$, there exists a decomposition $N = N_1 \oplus N_2$ such that $N_1 \subseteq Im(\alpha(e))$ and $N_2 \cap Im(\alpha(e)) \subseteq$ $Rad(M_2) \subseteq Rad(N)$. Then we have $N' = N_1 \oplus (N_2 \cap N')$ by the modular law. Since N' is a coclosed submodule of N, then $Rad(N') = Rad(N) \cap N'$ by [4, 3.7(3)]. So $N_2 \cap N' \cap Im(\alpha) \subset Rad(N')$. By using [4, 3.7(3)] once again, we get $N_2 \cap N' \cap Im(\alpha) \subseteq Rad(N_2 \cap N')$. Therefore M' has the property $(N' - GP^*)$. (\Leftarrow) Clear. \square

Corollary 2.1. The following conditions are equivalent for a module M.

- (1) M has the property (GP^*) .
- (2) For any coclosed submodule N of M, every direct summand L of M has the property $(N - GP^*)$.

Corollary 2.2. Every direct summand of a module that have the property (GP^*) has the property (GP^*) .

Proposition 2.2. Let M be an indecomposable module. Assume that, for $\delta \in End_R(M), Im(\delta) \subseteq Rad(M)$ implies $\delta = 0$. Then, M has the property (GP^*) if and only if every nonzero endomorphism $\delta \in End_R(M)$ is an epimorphism.

Proof. Assume that $0 \neq \delta \in End_R(M)$. Since M has the property (GP^*) , there exists a decomposition $M = M_1 \oplus M_2$ with $M_1 \subseteq Im(\delta)$ and $M_2 \cap$ $Im(\delta) \subseteq Rad(M_2)$. Since M is indecomposable, $M_1 = 0$ or $M_1 = M$. If $M_1 = 0$, then $Im(\delta) \subseteq Rad(M)$. By the hypothesis $\delta = 0$; a contradiction. Thus, $M_1 = M$ and hence, δ is epimorphism. The converse is clear.

Recall from [4, 4.27] that a module M is said to be *Hopfian* if every surjective endomorphism of M is an isomorphism.

Proposition 2.3. Let M be a noetherian module that has the property (GP^*) . If every endomorphism γ of M, $Im(\gamma) \subseteq Rad(M)$ implies that $\gamma = 0$. Then there exists a decomposition $M = M_1 \oplus M_2 \oplus \ldots \oplus M_n$, where M_i is an indecomposable noetherian modules that has the property (GP^*) for which $End_R(M_i)$ is a division ring.

Proof. Since M is noetherian, it has a finite decomposition noetherian direct summands. By Corollary 2.2, every direct summand has the property (GP^*) . By Proposition 2.2, in view of the fact that every noetherian module is Hopfian, each indecomposable direct summand has a division ring.

Definition 2.3. A module M is called G^* -supplemented if, for every $\gamma \in End_R(M)$, $Im(\gamma)$ has a *Rad*-supplement in M, and a module M is called amply G^* -supplemented if, for every $\gamma \in End_R(M)$, $Im(\gamma)$ has ample *Rad*-supplements in M.

It is clear that every module that has the property (GP^*) is G^* -supplemented by the Definition 2.3.

Proposition 2.4. Let M be an amply G^* -supplemented R-module. Then every direct summand of M is amply G^* -supplemented.

Proof. Let N be a direct summand of M. Then $M = N \oplus N'$ for some $N' \subseteq M$. Suppose that $f \in End_R(N)$ and N = Im(f) + K. Thus, M = Im(f) + K + N'. Note that $Im(f) = Im(\iota f\pi)$, where ι is the injection map from N to M and π is the projection map from M onto N. Since M is amply G^* -supplemented, there exists a Rad-supplement L of N' + K with $L \subseteq Im(f)$. We get $K \cap L \subseteq (N' + K) \cap L \subseteq Rad(L)$ and M = L + N' + K. Thus N = K + L by the modular law. So K + L = N and $K \cap L \subseteq Rad(L)$. Therefore N is amply G^* -supplemented.

Proposition 2.5. Let M be an amply G^* -supplemented distributive module and let N be a direct summand of M for every Rad-supplement submodule N of M. Then M is a G^* -supplemented module.

Proof. Let $f \in End_R(M)$, let K be a Rad-supplement of Im(f) in M, and let N a Rad-supplement of K in M with $N \subseteq Im(f)$. By the hypothesis, $M = N \oplus N'$ for some $N' \leq M$. $Im(f) = Im(f) \cap (N + K) = N + (Im(f) \cap K)$. Since $Im(f) \cap K \subseteq Rad(K)$, then we have $Im(f) \cap K \cap N' \subseteq Rad(K)$. As M is distributive, $Im(f) + K \cap N' = N + K = M$ and $K = K \cap (N \oplus N') = (K \cap N) \oplus (K \cap N')$. So $K \cap N'$ is a direct summand of K. Since $Im(f) \cap K \cap N' \subseteq K \cap N'$, $Im(f) \cap K \cap N' \subseteq Rad(K \cap N')$. Therefore M is G^* -supplemented.

Definition 2.4. A module M is called $N - G^*$ -supplemented if, for every homomorphism $\phi : M \longrightarrow N$, there exists $L \leq N$ such that $Im(\phi) + L = N$ and $Im(\phi) \cap L \subseteq Rad(L)$. It is clear that the right module M is G^* -supplemented if and only if M is $M - G^*$ -supplemented.

Recall from [11] that a submodule U of an R-module M is called *fully* invariant if f(U) is contained in U for every R-endomorphism f of M. A module M is called *duo*, if for every submodule of M is fully invariant [9].

Theorem 2.2. Let M_1, M_2 and N be modules. If N is M_i-G^* -supplemented for i = 1, 2, then N is $M_1 \oplus M_2 - G^*$ -supplemented. The converse is true if $M_1 \oplus M_2$ is a duo module.

Proof. Suppose that N is $M_i - G^*$ -supplemented for i = 1, 2. We prove that N is $M_1 \oplus M_2 - G^*$ -supplemented. Let $\phi = (\pi_1 \phi, \pi_2 \phi)$ be any homomorphism from N to $M_1 \oplus M_2$, where π_i is the projection map from $M_1 \oplus M_2$

into M_i for i = 1, 2. Since N is $M_i - G^*$ -supplemented, there exists a submodule K_i of M_i such that $\pi_i \phi N + K_i = M_i$ and $\pi_i \phi N \cap K_i \subseteq Rad(K_i)$ for i = 1, 2. Let $K = K_1 \oplus K_2$. Then $M_1 \oplus M_2 = \pi_1 \phi N + \pi_2 \phi N + K_1 + K_2 = \phi N + K$. Since $\phi N \cap (K_1 + K_2) \subseteq (\phi N + K_1) \cap K_2 + (\phi N + K_2) \cap K_1$, we get $\phi N \cap (K_1 + K_2) \subseteq (\phi N + M_1) \cap K_2 + (\phi N + M_2) \cap K_1$. Since $\phi N + M_1 = \pi_2 \phi N \oplus M_1$ and $\phi N + M_2 = \pi_1 \phi N \oplus M_2$, we conclude that $\phi N \cap K \subseteq (\pi_2 \phi N \cap K_2) + (\pi_1 \phi N + K_1)$. Since $\pi_i \phi N \cap K_i \subseteq Rad(K_i)$ for i = 1, 2, we get $\phi N \cap K \subseteq Rad(K)$. Hence, N is $M_1 \oplus M_2 - G^*$ -supplemented.

Conversely, let N be $M_1 \oplus M_2 - G^*$ -supplemented. Let ϕ be a homomorphism from N to M_1 . Then $Im(\iota\phi) = Im(\phi)$, where ι is the canonical inclusion from M_1 to $M_1 \oplus M_2$. Since N is $M_1 \oplus M_2 - G^*$ -supplemented, there exists $K \subseteq M_1 \oplus M_2$ such that $M_1 \oplus M_2 = Im(\phi) + K$ and $Im(\phi) \cap K \subseteq Rad(K)$. Thus, $M_1 = Im(\phi) + (K \cap M_1)$ and $Im(\phi) \cap K \cap M_1 = Im(\phi) \cap K \subseteq Rad(K)$. As $M_1 \oplus M_2$ is a duo module and $K = K_1 \oplus K_2 \leq M_1 \oplus M_2$, $K \cap M_1$ is a direct summand of K. Hence $Im(\phi) \cap K \cap M \subseteq Rad(K \cap M_1)$. Therefore N is an $M_1 - G^*$ -supplemented.

Corollary 2.3. Suppose that $M = M_1 \oplus M_2$ and M is a G^* -supplemented module for i = 1, 2. Then M is G^* -supplemented and, for every $f \in End_R(M)$, Im(f) has a Rad-supplement of the form K_1+K_2 with $K_1 \subseteq M_1$ and $K_2 \subseteq M_2$.

Proof. Follows from the proof of Theorem 2.2.

Theorem 2.3. Let $M = \bigoplus_{i=1}^{n} M_i$ be a module and M_i be a fully invariant submodule of M for all $i \in \{1, 2, ..., n\}$. Then M has the property (GP^*) if and only if M_i has the property (GP^*) for all $i \in \{1, 2, ..., n\}$.

Proof. The necessity follows from Theorem 2.1. Conversely, let N_i be a module that have the property (GP^*) for all $i \in \{1, 2, ..., n\}$. Also let $\phi = (\phi_{ij})_{i,j \in \{1,2,...,n\}} \in End(M)$ be arbitrary, where $(\phi_{ij}) \in Hom(M_j, M_i)$. Since M_i is a fully invariant submodule of M for all $i \in \{1, 2, ..., n\}$, we get $Im(\phi) = \bigoplus_{i=1}^n Im(\phi_{ii})$. As M_i has the property (GP^*) , there exists a direct summand N_i of M_i and a submodule K_i of M_i with $N_i \subseteq Im(\phi_{ii})$, $Im(\phi_{ii}) = N_i + K_i$ and $K_i \subseteq Rad(M_i)$. We say $N = \bigoplus_{i=1}^n N_i$. Then N is a direct summand of M. Moreover, $Im(\phi) = \bigoplus_{i=1}^n Im(\phi_{ii}) = \sum_{i=1}^n N_i + \sum_{i=1}^n K_i$ and $\bigoplus_{i=1}^n K_i \subseteq Rad(\bigoplus_{i=1}^n M_i) = Rad(M)$. Therefore M has the property (GP^*) .

Theorem 2.4. The following assertions are equivalent for a ring R.

- (1) R is generalized f-semiperfect.
- (2) R_R is f-Rad-supplemented.
- (3) Every cyclic right ideal has a Rad-supplement in R_R .
- (4) R_R is a G^* -supplemented module.
- (5) R_R has the property (GP^*) .

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) By [8, Theorem 2.22].

 $(3) \Rightarrow (4)$ is clear because $Im(\gamma)$ is cyclic for every $\gamma \in End_R(R_R)$.

 $(4) \Rightarrow (3)$ Assume that I = aR is any cyclic right ideal of R. Consider the R-homomorphism $\phi : R_R \longrightarrow R_R$ defined by $\phi(r) = ar$; where $r \in R$. Then $Im(\phi) = I$. By (4), $Im(\phi) = I$ has a Rad-supplement in R_R .

 $(5) \Rightarrow (4)$ is clear.

 $(5) \Rightarrow (3)$ Suppose that R_R has the property (GP^*) . Let J = bR is any cyclic right ideal of R. Consider the R-homomorphism $\phi : R_R \longrightarrow R_R$ defined by $\phi(r) = br$; where $r \in R$. Then $Im(\phi) = J$. By (5), there exists submodules R_1, R_2 of R_R such that $R_R = R_1 \oplus R_2, R_1 \subseteq Im(\phi) = J$ and $R_2 \cap Im(\phi) \subseteq Rad(R_2)$. So $R_R = J + R_2$ and $J \cap R_2 \subseteq Rad(R_2)$. Thus R_2 is a *Rad*-supplement of J in R_R .

The equivalent condition for the property (P^*) if every submodule N of M there exist submodules K, K of M such that $K \leq N$, $M = K \oplus K'$ and $N \cap K' \subseteq Rad(K')$ (See [1]).

Proposition 2.6. Let M be a module which has the property (P^*) . Then M has the property (GP^*) .

Proof. Let $\phi: M \longrightarrow M$ be any homomorphism. Since M has the property (P^*) , there exist submodules K, K of M such that $K \leq Im(\phi), M = K \oplus K'$ and $Im(\phi) \cap K' \subseteq Rad(K')$. So M has the property (GP^*) .

Example 2.1. (See [2]) Let F be any field. Consider the commutative ring R which is the direct product $\prod_{i=0}^{\infty} F_i$, where $F_i = F$. So R_R is a regular ring which is not semisimple. The right R-module R is f-Rad-supplemented but not Rad-supplemented. Since R_R is f-Rad-supplemented, R_R has the property (GP^*) by Theorem 2.4. As R_R is not Rad-supplemented, R_R has not the property (P^*).

References

- I. Al-Khazzi, P. F. Smith, Modules with Chain Conditions on Superfluous Submodules, Algebra Discrete Math. J., Vol. 3 (2006), pp. 1–16.
- [2] F.W. Anderson, K. R. Fuller, *Rings and Categories of Modules*, Springer Verlag, Berlin-Heidelberg-New York, 1988.
- [3] E. Büyükaşık, E. Mermut, S. Özdemir, *Rad-supplemented Modules*, Rend. Sem. Mat. Univ. Padova, Vol. **124**, (2010), pp. 157–177.
- [4] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, 2006.
- [5] H. Çalışıcı, E. Türkmen, Generalized ⊕-supplemented modules, Algebra Discrete Math., Vol. 10, No.2 (2010), pp.10–18.
- [6] S. H. Mohamed, B. J. Müller, Continuous and discrete modules, London Math. Soc. LNS 147 Cambridge University, Cambridge, 1990.

- [7] B. Nişancı Türkmen, A. Pancar, A Generalization of Rad-supplemented Modules, International Journal of Pure and Applied Mathematics, Vol. 68, No. 4 (2011), pp. 477–485.
- [8] B. Nişancı Türkmen, A. Pancar, Generalized f-semiperfect Modules, Communications in Mathematics and Applications, Vol. 4, No. 1 (2013), pp. 85–92.
- [9] A. Ç. Özcan, A. Harmacı, P. F. Smith, *Duo modules*, Glasgow Math. J., Vol. 48 (2006), pp. 533–545.
- [10] Y. Wang, N. Ding, Generalized Supplemented Modules, Taiwanese J. Math., Vol. 6 (2006), pp. 1589–1601.
- [11] R. Wisbauer, Foundations of Modules and Rings, Gordon and Breach, 1991.
- [12] W. Xue, Characterizations of semiperfect and perfect modules, Publications Matematiques, Vol. 40, No. 1 (1996), pp. 115–125.
- [13] H. Zöschinger, Supplemented Modules Over Dedekind Rings, J. Algebra, Vol. 29 (1974), pp. 42–56.

BURCU NİŞANCI TÜRKMEN

Amasya University Faculty of Art and Science Deparment of Mathematics 05100 Amasya Turkey *E-mail address:* burcunisancie@hotmail.com