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Well-posedness and asymptotic stability for the
Lamé system with internal distributed delay

Noureddine Taouaf, Noureddine Amroun, Abbes Benaissa
and Abderrahmane Beniani

Abstract. In this work, we consider the Lamé system in 3-dimension
bounded domain with distributed delay term. We prove, under some
appropriate assumptions, that this system is well-posed and stable.
Furthermore, the asymptotic stability is given by using an appropri-
ate Lyapunov functional.

1. Introduction

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω. Let us
consider the following Lamé system with a distributed delay term:

(1.1)


u′′(x, t)−∆eu(x, t)

+

∫ τ2

τ1

µ2(s)u′(x, t− s)ds+ µ1u
′(x, t) = 0, in Ω× R+,

u = 0, on ∂Ω× R+,

with initial conditions

(1.2)
{
u(x) = u0(x), u′(x, 0) = u1(x), in Ω,
u′(x,−t) = f0(x,−t), in Ω× (0, τ2),

where (u0, u1, f0) are given history and initial data. Here ∆ denotes the
Laplacian operator and ∆e denotes the elasticity operator, which is the 3×3
matrix-valued differential operator defined by

∆eu = µ∆u+ (λ+ µ)∇(div u), u = (u1, u2, u3)T

and µ and λ are the Lamé constants which satisfy the conditions

(1.3) µ > 0, λ+ µ ≥ 0.

Moreover, µ2 : [τ1, τ2] → R is a bounded function and τ1 < τ2 are two
positive constants.
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In the particular case λ+ µ = 0, ∆e = µ∆ gives a vector Laplacian, that
is, (1.1) describes the vector wave equation.

In recent years, the control of partial differential equations with time delay
effects has become an active and attractive area of research see ([1, 7, 9, 14,
15, 16] and [21]), and the references therein. Recently, S. A. Messaoudi et al.
[21] considered the following problem with a strong damping and a strong
distributed delay:

(1.4)



utt −∆xu(x, t)− µ1∆ut(x, t)

−
∫ τ2

τ1

µ2(s)∆ut(x, t− s)ds = 0, in Ω× (0,+∞),

u = 0, on Γ× [0,+∞),
u(x, 0) = u0(x), u′(x, 0) = u1(x), on Ω,
ut(x,−t) = f0(x,−t), 0 < t ≤ τ2,

and under the assumption

(1.5) µ1 >

∫ τ2

τ1

µ2(s)ds.

The authors proved that the solution is exponentially stable.
In [3], the authors considered the Bresse system in bounded domain with

internal distributed delay

(1.6)



ρ1ϕtt −Gh(ϕx + lw + ψ)x − Ehl(wx − lϕ)

+ µ1ϕt + µ2ϕt(x, t− τ1) = 0,

ρ2ψtt − Elψxx −Gh(ϕx − lw + ψ)

+

∫ τ2

τ1

µ(s)ψt(x, t− s)ds = 0,

ρ1wtt − Eh(wx − lϕ)x + lGh(ϕx + lw + ψ)

+ µ̃1wt + µ̃2wt(x, t− τ2) = 0,

where (x, t) ∈]0, L[×R+, the authors proved, under suitable conditions, that
the system is well-posed and its energy converges to zero when time goes
to infinity. For Timoshenko-type system with thermoelasticity of second
sound, in the presence of a distributed delay Apalara [1] considered the
following system:

(1.7)



ρ1ϕtt − k(ϕx + ψ)x + µϕt

+

∫ τ2

τ1

µ2(s)ϕt(x, t− s)ds = 0, in (0, 1)× (0,+∞),

ρ2ψtt − bψxx+ k(ϕx + ψ) + γθx = 0, in (0, 1)× (0,∞),
ρ3θt + qx + δψtx = 0, in (0, 1)× (0,∞),
τqt +Bq + θx = 0, in (0, 1)× (0,∞),
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and proved an exponential decay result under the assumption

(1.8) µ >

∫ τ2

τ1

µ2(s)ds.

In [4], Beniani and al. considered the following Lamé system with time
varing delay term:

(1.9)

 u′′(x, t)−∆eu(x, t) + µ1g1(u′(x, t))
+µ2g2(u′(x, t− τ(s)) = 0, in Ω× R+,

u = 0, on ∂Ω× R+,

the authors proved, under suitable conditions, that energy converges to zero
when time goes to infinity.

The paper is organized as follows. In Section 2, we prove the global
existence and uniqueness of solutions of (1.1)-(1.2). In Section 3, we prove
the stability results.

2. Well-posedness

In this section, we prove the existence and uniqueness of solutions of
(1.1)-(1.2) using semigroup theory.

As in [20], we introduce the variable

z(x, ρ, t, s) = u′(x, t− ρs), (x, ρ, t, s) ∈ Ω× (0, 1)× (0,∞)× (τ1, τ2).

Then, it is easy to check that
(2.1)
szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0, (x, ρ, t, s) ∈ Ω× (0, 1)× (0,∞)× (τ1, τ2).

Thus, system (1.1) becomes
(2.2)

u′′(x, t)−∆eu(x, t) + µ1u
′(x, t)

+

∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds = 0, in Ω× R+,

szt(x, ρ, t, s) + zρ(x, ρ, t, s) = 0, in Ω× (0, 1)× (0,∞)× (τ1, τ2)
u = 0, on ∂Ω× R+,
u(x, 0) = u0(x), u′(x, 0) = u1(x), in Ω× (0, 1)× (τ1, τ2),
z(x, ρ, 0, s) = f0(x,−ρs), in Ω× (0, 1)× (τ1, τ2),

Next, we will formulate the system (1.1)-(1.2) in the following abstract
linear first-order system:

(2.3)
{
Ut(t) = AU(t), for t > 0,
U(0) = U0,

where U = (u, ut, z)
T , U0 = (u0, u1, f0)T ∈ H

H = H1
0 (Ω)3 × (L2(Ω))3 × L2((0, 1), H)
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We define the inner product in H,

〈V, V̄ 〉H =

∫
Ω
vv̄dx+ µ

∫
Ω
∇u∇ūdx+ (λ+ µ)

∫
Ω

div u · div ūdx

+

∫
Ω

∫ τ2

τ1

sµ2(s)

∫ 1

0
z(x, ρ, t, s)z̄(x, ρ, t, s)dρdsdx.

The operators A is linear and given by

(2.4) A

uv
z

 =


v

∆eu(x, t)− µ1v(x, t)−
∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds

−1

s
zρ(x, ρ, t, s)


The domain D(A) of A is given by

D(A) =
{
V = (u, v, z)T ∈ H,AV ∈ H, z(, 0) = v

}
.

The well-posedness of problem (2.3) is ensured by the following theorem.

Theorem 2.1. Assume that

(2.5) µ1 >

∫ τ2

τ1

µ2(s)ds.

Then, for any U0 ∈ H , the system (2.3) has a unique weak solution

U ∈ C(R+,H).

Moreover, if U ∈ D(A), then the solution of (2.3) satisfies (classical solution)

U ∈ C1(R+,H) ∩ C(R+, D(A)).

Proof. We prove that A : D(A)→ H is a maximal monotone operator, that
is, A is dissipative and Id − A is surjective. Indeed, a simple calculation
implies that, for any V = (u, v, z)T ∈ D(A),
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(2.6)

〈AV, V 〉H = µ

∫
Ω
∇v(x, t)∇u(x, t)dx

+ (λ+ µ)

∫
Ω

dv(x, t) ·du(x, t)dx

+

∫
Ω

{
∆eu(x, t)− µ1v(x, t)

−
∫ τ2

τ1

µ2(s)z(x, 1, t, s) ds
}
v(x, t)dx

−
∫

Ω

∫ τ2

τ1

µ2(s)

∫ 1

0
z(x, ρ, t, s)zρ(x, ρ, t, s)dρdsdx

= −µ1

∫
Ω
v2(x, t)dx

−
∫

Ω
v(x, t)

(∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds
)

dx

− 1

2

∫
Ω

∫ τ2

τ1

µ2(s)

∫ 1

0

∂

∂ρ
|z(x, ρ, t, s)|2dρdsdx

Using Young’s inequality and taking into account that z(., 0, ., .) = v, we get

(2.7) 〈AV, V 〉H = −
(
µ1 −

∫ τ2

τ1

µ2(s)ds
)∫

Ω
v2(x, t)dx

by virtue of (2.5). Therefore, A is dissipative. On the other hand, we prove
that Id−A is surjective. Indeed, let F = (f, g, h)T ∈ H we show that there
exists V = (u, v, z)T ∈ D(A) satisfying

(2.8) (Id−A)V = F

which is equivalent to

(2.9)


u− v = f,

v −∆eu+ µ1v +

∫ τ2

τ1

µ2(s)z(x, 1, t, s)ds = g,

sz(x, ρ, t, s) + zρ(x, ρ, t, s) = hs,

Using the equation in (2.9), we obtain

z(x, t, ρ, s) = (u− f)e−ρs + e−ρs
∫ ρ

0
sh(x, σ)eσsdσ.

Replacing v by u− f in the second equation of (2.9), we get

(2.10) Ku−∆eu = G.

where

(2.11) K = 1 + µ1 +

∫ τ2

τ1

e−sµ2(s)ds > 0
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and

G = g +
(

1− µ1 −
∫ τ2

τ1

e−sµ2(s)ds
)
f

+

∫ τ2

τ1

se−sµ2(s)

∫ 1

0
h(x, σ) · eσsdσds.

So, we multiply (2.10) by a test function ϕ ∈ (H1
0 (Ω))3 and we integrate

by using Green’s equality , obtaining the following variational formulation
of (2.10):

(2.12) a(u, ϕ) = L(ϕ) for ϕ ∈ (H1
0 (Ω))3,

where

(2.13) a(u, ϕ) =

∫
Ω

(Ku · ϕ+ µ∇u · ∇ϕ+ (λ+ µ) div u · divϕ)dx

and

(2.14) L(ϕ) =

∫
Ω
Gϕdx.

It is clear that a is a bilinear and continuous form on (H1
0 (Ω))3×(H1

0 (Ω))3,
and L is a linear and continuous form on (H1

0 (Ω))3. On the other hand, (1.3)
and (2.11) imply that there exists a positive constant a0 such that

a(u, u) ≥ a0‖u‖(H1
0 (Ω))3 , for each v1 ∈ (H1

0 (Ω))3,

which implies that a is coercive. Therefore, using the Lax-Milgram Theorem,
we conclude that (2.12) has a unique solution u ∈ (H1

0 (Ω))3. By classical
regularity arguments, we conclude that the solution u of (2.12) belongs into
(H2(Ω)∩H1

0 (Ω))3. Consequently, we deduce that (2.8) has a unique solution
V ∈ D(A). This proves that Id − A is surjective. Finally, (2.6) and (2.8)
mean that −A is maximal monotone operator. Then, using Lummer-Phillips
theorem (see [23]), we deduce that A is an infinitesimal generator of a linear
C0-semigroup on H. �

3. Stability

In this section, we investigate the asymptotic behaviour of the solution
of problem (2.3). In fact, using the energy method to produce a suitable
Lyapunov functional, we define the energy associated with the solution of
(1.1)-(1.2) by

(3.1)
Eu(t) =

1

2

∫
Ω

(
µ|∇u|2 + (λ+ µ)| div u|2 + |u′|2

)
dx

+
1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z2(x, t, ρ, s)dsdρdx.
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Theorem 3.1. Assume that (1.3) and (2.5) hold. Then, for any U0 ∈
H, there exist positive constants δ1 and δ2, such that the solution of (2.3)
satisfies

(3.2) E(t) ≤ δ2e
−δ1t, for t ∈ R+.

We carry out the proof of Theorem 3.1. Firstly, we will estimate several
Lemmas.

Lemma 3.2. Suppose that µ1, µ2 satisfy (2.5). Then energy functional sa-
tisfies, along the solution u of (1.1)-(1.2),

(3.3) E′(t) ≤ −
(
µ1 −

∫ τ2

τ1

µ2(s)ds
)∫

Ω
u′2(x, t)dx ≤ 0

Proof. A differentiation of E(t) gives

(3.4)
E′(t) =

∫
Ω

(
µ∇u∇u′ + (λ+ µ) div u div u′ + u′u′′

)
dx

+

∫
Ω

∫ 1

0

∫ τ2

τ1

s|µ2(s)|z′(x, t, ρ, s)z(x, t, ρ, s)dsdρdx.

Using (2.2) and integrating by parts, we get

(3.5)

E′(t) = −µ1

∫
Ω
u′2(x, t)dx−

∫
Ω

∫ τ2

τ1

|µ2(s)|z(x, t, 1, s)u′(x, t)dsdx

− 1

2

∫
Ω

∫ 1

0

∫ τ2

τ1

|µ2(s)| ∂
∂ρ

(
z2(x, t, ρ, s)

)
dsdρdx

= −µ1

∫
Ω
u′2(x, t)dx−

∫
Ω

∫ τ2

τ1

|µ2(s)|z(x, t, 1, s)u′(x, t)dsdx

− 1

2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, t, 1, s)dsdx

+
1

2

(∫ τ2

τ1

|µ2(s)ds
)∫

Ω
u′2(x, t)dx.

Young’s inequality leads to the desired estimate. �

Lemma 3.3. The functional

(3.6) φ(t) =

∫
Ω
u · u′dx, for t ∈ R+

satisfies, along the solution u of (1.1)-(1.2)

(3.7)
φ′(t) ≤ c

∫
Ω
|u′|2dx− (µ− c)

∫
Ω
|∇u|2dx− (λ+ µ)

∫
Ω
| div u|2dx

+ c

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, t, 1, s)dsdx,

for a positive constant c.
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Proof. By differentiating (3.6) and using (2.2), yields

(3.8)
φ′(t) =

∫
Ω
|u′|2dx− µ

∫
Ω
|∇u|2dx− (λ+ µ)

∫
Ω
| div u|2dx

− µ1

∫
Ω
uu′dx−

∫
Ω

∫ τ2

τ1

|µ2(s)|uz(x, t, 1, s)dsdx.

By using Young’s inequality, we obtain

(3.9)

φ′(t) ≤
(µ2

1

2
+ 1
)∫

Ω
|u′|2dx− µ

∫
Ω
|∇u|2dx

− (λ+ µ)

∫
Ω
|div u|2dx+

1

2

∫
Ω
u2(x, t)dx

+
1

2

(∫ τ2

τ1

|µ2(s)|ds
)∫

Ω
u2(x, t)dx

+
1

2

∫
Ω

∫ τ2

τ1

|µ2(s)|z2(x, t, 1, s)dsdx.

Then, Poincaré’s inequality leads to the desired estimate. �

Lemma 3.4. The functional

(3.10) I(t) =

∫
Ω

∫ 1

0

∫ τ2

τ1

se−sρ|µ2(s)|z2(x, t, ρ, s)dsdρdx, for t ∈ R+

satisfy

(3.11)

I ′(t) ≤ −e−τ2
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, t, 1, s)dsdx

+
(∫ τ2

τ1

|µ2(s)|ds
)∫

Ω
u′2(x, t)dx

− e−τ2
∫

Ω

∫ τ2

τ1

s|µ2(s)|z2(x, t, ρ, s) ddsdρdx.

Proof. Using (2.1), the derivative of I entails

(3.12)

I ′(t) = 2

∫
Ω

∫ τ2

τ1

se−sρ|µ2(s)|z′(x, t, ρ, s)z(x, t, ρ, s)dsdρdx

= −
∫

Ω

∫ 1

0

∫ τ2

τ1

|µ2(s)|e−sρ ∂
∂ρ

(
z2(x, t, ρ, s)

)
dsdρdx

= −
∫

Ω

∫ τ2

τ1

se−s|µ2(s)|z2(x, t, 1, s)dsdx

+
(∫ τ2

τ1

|µ2(s)| ds
)∫

Ω
u′2(x, t)dx

−
∫

Ω

∫ τ2

τ1

s|µ2(s)|
∫ 1

0
e−sρz2(x, t, ρ, s)dρdsdx,
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and the desired estimate follows immediately. �

Now, we prove our main stability results (3.2).

Proof of Theorem 3.1. Let

(3.13) L(t) = NE(t) + εφ(t) + I(t),

where N and ε are positive constants that will be fixed later. Taking the
derivative of L(t) with respect to t and making use of (3.3), (3.6) and (3.11),
we obtain

(3.14)

L′(t) ≤ −
{(
µ1 −

∫ τ2

τ1

µ2(s)ds
)
N − cε−

∫ τ2

τ1

µ2(s)ds
}∫

Ω
|u′|2dx

− (λ+ µ)

∫
Ω
|div u|2dx− (µ− c)ε

∫
Ω
|∇u|2dx

− (e−τ2 − cε)
∫

Ω

∫ τ2

τ1

|µ2(s)|z2(x, t, 1, s)dsdx

− e−τ2
∫

Ω

∫ τ2

τ1

s|µ2(s)|z2(x, t, ρ, s)dsdρdx.

At this point, we choose our constants in (3.14), carefully, such that all the
coefficients in (3.14) will be negative. It suffices to choose ε so small such
that

e−τ2 − cε > 0,

then pick N large enough such that(
µ1 −

∫ τ2

τ1

µ2(s)ds
)
N − cε−

∫ τ2

τ1

µ2(s)ds > 0.

Consequently, recalling (3.1), we deduce that there exist also η2 > 0, such
that

(3.15)
dL(t)

dt
≤ −η2E(t), for t ≥ 0.

On the other hand, it is not hard to see that from (3.13) and for N large
enough, there exist two positive constants β1 and β2 such that

(3.16) β1 E(t) ≤ L(t) ≤ β2E(t), for t ≥ 0.

Combining (3.15) and (3.15), we deduce that there exists Λ > 0 for which
the estimate

(3.17)
dL(t)

dt
≤ −ΛL(t), ∀t ≥ 0,

holds. Integrating (3.15) over (0, t) and using (3.15) once again, then (3.2)
holds. Then, the proof is complete. �
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