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Effect of correlation on bond prices
in short rate models of interest rates

Zuzana Girová, Beáta Stehíková

Abstract. Short rate models of interest rates are formulated in terms
of stochastic differential equations which describe the evoution of an
instantaneous interest rate, called short rate. Bonds and other inter-
est rate derivatives are then priced by a parabolic partial differential
equation. We consider two-factor models, in which also correlation be-
tween the factors enters the bond-pricing differential equation. Firstly,
we study the dependence of the bond prices on the correlation in three
particular short rate models. The differences and common features of
the results motivate us to investigate the dependence of the solution to
the bond-pricing partial differential equation on the parameter repre-
senting correlation between the factors in a general case.

1. Introduction

Short rate models of interest rates are formulated in terms of stochastic
differential equations for the short rate. In this paper we consider two-
factor models, in which there are two sources of uncertainity, modelled by
two correlated Wiener processes. In particular, there are two random factors
x and y, which satisfy a system of stochastic differential equations

dx = µx(x, y)dt+ σx(x, y)dw1,(1)
dy = µy(x, y)dt+ σy(x, y)dw2,(2)

cor(dw1,dw2) = ρ,(3)

where we assume that µx, µy, σx, σy do not depend explicitly on time and
they satisfy condition to ensure the existence of stochastic processes x and
y, see [10] . The correlation ρ ∈ (−1, 1) is a constant. The short rate r is a
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smooth function of the factors, i.e., r = g(x, y). This framework nests many
well known models; here we present some typical examples:

• In stochastic volatility models the short rate is one of the factors (i.e.,
g(x, y) = x) and the other factor defines the instantaneouts volatility
of the short rate (which translates into the choice σx(x, y) =

√
y). A

particular stochastic volatility model proposed by Fong and Vasicek
in [6] will be studied later in this paper; the reader is referred to [7]
and [8] for a treatment of stochastic volatility models in finance and
interest rate modelling in particular.
• Not only volatility, but also other variable influencing the short rate,
which is again directly one of the factors, can be made stochastic
and taken as the second factor. Examples include mean-reversion
models with a stochastic mean and their special kind, a class of
convergence models (see [4] for a basic model) where the short rate
in the domestic country reverts to a short rate in a monetary union
(that is itself stochastic and modelled as the second factor) which
the country is going to join.
• Interest rate can be a sum of the two factors, i.e. g(x, y) = x + y.
The factors might have a direct interpretation, for example in [11] the
two factors correspond to the long rate and the spread (difference
between thet short and long rates). In other cases, they may not
correspond to a specific quantities; in [1] the are described as an
influence of various economic news. The processes can have a form
known from simpler one-factor models, such as [14] and [5], see for
example [3].

We note that all of these cases, the correlation between the factors is one
of the model parameters. Besides modelling the instantaneous interest rate,
the model are used also to price the derivatives, i.e., financial instruments
that have a value dependent on the interest rate. It follows that their prices
depend on the correlation between the factors as well. In this paper we
study the effect of the correlation on the prices of bonds. In particular, we
derive the order of the difference between the logarithms of the bond prices
for a zero correlation case and a case with a general value of the correlation.
There are two reasons for choosing the logarithms. Firstly, it enables us to
estimate the relative difference in the bond prices and secondly, it directly
gives the difference in the implied interest rates, which are linked to bond
prices by the formula P = exp(−R× τ), where P is the bond price, R is the
corresponding interest rate and τ is time remaining to maturity of the bond.
At the time of maturity (i.e., τ = 0), the bond prices are equal; however,
it turns out that also higher order terms can be equal. We are therefore
looking for such an α that the order of difference of the logarithms is O(τα)
as τ → 0+.
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The paper is organized as follows: In Section 2 we describe the partial
differential equations approach to pricing interest rate derivatives; in par-
ticular to pricing bonds. In Section 3 we present three specific examples of
short rate models which differ by the form in which the solution to the bond-
pricing equation is known. We use appropriate techniques to determine in
each case the order of difference of logarithms of the bond prices when com-
puted for a general model and the for the case with zero correlation. The
differences and similar features obtained in this way are a motivation for
studying this question for a general two-factor model, which we do in Sec-
tion 4. We conclude the paper in Section 5 where we summarize and discuss
the results as well as their usefulness.

2. Partial differential equations approach
to pricing bonds in two-factor short rate models

A derivative is a financial instrument whose value depends on an underly-
ing asset or a financial quantity. In this paper we study bonds; they can be
viewed as derivatives of the short rate (see for example [9] and [3] for more
interest rate derivates). A zero-coupon discount bond is a security that pays
a unit amount of money at a specified time T called maturity of the bond.
It is important in order to derive implied interest rates and also to discount
future cash flows.

Suppose that the factors x and y evolve according to the system (1),
(2), (3) and the short rate r is given by a smooth function of the factors,
r = g(x, y). Then the price P of a financial derivative depending on the
short rate is a function P (x, y, t) where t is the current time. The two
main approaches for computing P are the partial differential equations ap-
proach which we will use here and risk-neutral approach where the prices
are computed as discounted expected values under an equivalent (so called
risk-neutral) probability measure. In the remaining part of this section we
provide the basic result of partial differential equations pricing and we refer
the reader to [9] for more details on both methods.

After a substitution τ = T−t, where τ denotes time remaining to its matu-
rity, the function P (x, y, τ) satisfies a parabolic partial differential equation

(4)

− ∂P

∂τ
+ (µx(x, y)− σx(x, y)λx(x, y))

∂P

∂x

+ (µy(x, y)− σy(x, y)λy(x, y))
∂P

∂y

+
1

2
σx(x, y)

2∂
2P

∂x2
+

1

2
σy(x, y)

2∂
2P

∂y2

+ ρσx(x, y)σy(x, y)
∂2P

∂x∂y
− g(x, y) = 0
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for all admissible values of x, y and for all τ ∈ (0, T ). The functions λx(x, y)
and λy(x, y) are so called market prices of risk and need to be specified in
order to price derivatives, besides the stochastic differential formulation of
the short rate evolution (1)-(3). In general they can depend also on time
t but have to be independent on maturity of the bond T . See [9] for a
derivation of the partial differential equation in a two-factor interest rate
model.

The initial condition P (x, y, 0) is equal to the payoff of the derivative,
therefore in case of a bond we have

(5) P (x, y, 0) = 1

for all x and y, whose range depends on the specification of the processes.

3. Dependence of the bond prices
on the correlation in specific models

In this section we consider three models which differ by the form in which
the solution to the bond-pricing equation can be expressed. In two-factor
Vasicek model the solution is simaple and it can be written in a closed form.
In the case of Fong-Vasicek model we will work with the system of ordinary
differential equations which characterizes functions arising in the separable
form of the bond price. Finally, two-factor Cox-Ingersoll-Ross model has a
closed form solution in the case of zero correlation, but in general it does
not even have a separable solution and we only have the partial differential
equation available. The first two cases were already presented at the Student
Science Conference 2018 organized by Comenius University, Bratislava, and
here we outline the results for reader’s convenience.

3.1. Two-factor Vasicek model. In the two-factor Vasicek model (see [3])
the short rate is given as a sum of two factors r1 and r2, each of which is gov-
erned by an Ornestein-Uhlenbeck process, i.e., a mean-reverting stochastic
differential equation with a constant volatility:

dr1 = κ1(θ1 − r1)dt+ σ1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2dw2,

where κ1, κ2, σ1, σ2 > 0 and θ1, θ2 ∈ R are parameters. We also denote
the correlation between dw1 and dw2 by ρ. Considering constant market
prices of risk λ1 and λ2, we can solve the corresponding bond-pricing partial
differential equation (4) in a closed form. The solution is known to have a
separable form

(6) P (r1, r2, τ) = exp(A(τ)−B1(τ)r1 −B2(τ)r2),
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where

Ȧ = −(κ1θ1 − λ1σ1)B1 − (κ2θ2 − λ2σ2)B2

+
1

2
σ21B

2
1 +

1

2
σ22B

2
2 + ρσ1σ2B1B2,

Ḃ1 = 1− κ1B1,

Ċ2 = 1− κ2B2

and A(0) = B(0) = C(0).
This system of equations can be easily solved and using its closed form

solution the difference between the logarithms of bond prices with correlation
ρ = 0 and a general correlation ρ ∈ (−1, 1) can be expressed and expanded
into a Taylor serie around τ = 0:

logP (r1, r2, τ ; 0)− logP (r1, r2, τ ; ρ)

= −ρσ1σ2
κ1κ2

(
τ − 1− e−κ1τ

κ1
− 1− e−κ2τ

κ2
+

1− e−(κ1+κ2)τ

κ1 + κ2

)

= −1

3
ρσ1σ2τ

3 +O(τ4).

3.2. Fong-Vasicek model with stochastic volatility. The Fong-Vasicek
model [6] assumes that the short rate r follows a mean-reverting process
similar to one-factor Vasicek case [14], but instead of a constant volatility,
its second power (i.e., the instanteneous variance) is modelled by a Bessel
square root process:

dr = κ1(θ1 − r1)dt+
√
ydw1,

dy = κ2(θ2 − y)dt+ v
√
ydw2,

where κ1, κ2, θ1, θ2, σ1, σ2 > 0 are parameters. Again, we denote the corre-
lation between dw1 and dw2 by ρ. Market prices of risk are assumed to be
proportional to √y, we denote then by λ1

√
y and λ2

√
y respectively.

In this setting, the bond price has again a separable solution in the form

P (r, y, τ) = exp(A(τ)−B(τ)r − C(τ)y),

where the functions A,B,C are characterized by a system of ordinary dif-
ferential equations (see, for example [13])

Ȧ = −κ1θ1B − κ2θ2C(7)

Ḃ = −κ1B + 1(8)

Ċ = −λ1B − κ2C − λ2vC −
1

2
B2 − 1

2
v2C2 − vρBC(9)

with initial conditions A(0) = B(0) = C(0) = 0. We remark that the solu-
tion can be expressed in a serie form (see [12]), but the system of equations
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will be a convenient tool for our derivation of the dependence of bond prices
on the correlation ρ. In particular, we have

logP (r, y, τ ; 0)− logP (r, y, τ ; ρ) =− κ2θ2
∫ τ

0
[C(s)− C0(s)]ds

− [C(τ)− C0(τ)]y,

where we denoted by C0 the function C for the case of ρ = 0. Now, we
can compute the Taylor expansion of the function C using the system of
equations (7)-(9) and we obtain

logP (r, y, τ ; 0)− logP (r, y, τ ; ρ) =
1

8
ρvλ1yτ

4 +O(τ5).

At this place we note that for the Fong-Vasicek model, the difference is one
order higher compared to the two-factor Vasicek model considered in the
previous subsection.

3.3. Two-factor Cox-Ingersoll-Ross model. In an analogous manner as
the two-factor Vasicek model, the two-factor Cox-Ingersoll-Ross model (see
[3], CIR hereafter) is formulated. The short rate r is a sum of two processes,
each of which follows a stochastic differential equation known from the one-
factor CIR model [5], which is a Bessel square root process:

dr1 = κ1(θ1 − r1)dt+ σ1dw1,

dr2 = κ2(θ2 − r2)dt+ σ2dw2,

where κ1, κ2, θ1, θ2, σ1, σ2 > 0 are parameters. Again, we denote the corre-
lation between dw1 and dw2 by ρ. Market prices of risk are assumed to be
proportional to each of the factors and we denote then by λ1

√
r1 and λ2

√
r2

respectively.
For this model a separable solution of the form (6) exists only in the case

of ρ = 0 , when it can be expressed in closed form. For a convenience we
write the system of ordinary differential equations, from which the solution
arises:

Ȧ = −κ1θ1B1 − κ2θ2B2,

Ḃ1 = 1− (κ1 + λ1σ1)B1 −
σ21
2
B2

1 ,(10)

Ḃ2 = 1− (κ2 + λ2σ2)B2 −
σ22
2
B2

2 ,(11)

with initial conditions A(0) = B1(0) = B2(0) = 0. However, to evaluate the
bond prices when ρ 6= 0 we need to solve the partial differential equation
for P (r1, r2, τ) numerically (or employ another approximation technique,
such as a Monte Carlo simulation). If the effect of correlation is small, we
can approximate (maybe as a first approximation for example in the first
stage of a calibration) this price by the closed form solution obtained in the
uncorrelated case ρ = 0.
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In order to obtain the estimates similar to previous section, we refer to the
bond-pricing partial differential equation satisfied by the exact bond prices.
Since we are interested in difference of logarithms, we firstly transform the
bond-pricing equation into an equation for the logarithm of the bond price.
If we denote f(r1, r2, τ) = logP (r1, r2, τ ; ρ), then we have

− ∂f

∂τ
+ (κ1(θ1 − r1)− λ1σ1r1)

∂f

∂r1
+ (κ2(θ2 − r2)− λ2σ2r2)

∂f

∂r2

+
1

2
σ21r1

[(
∂f

∂r1

)2

+
∂2f

∂r21

]
+

1

2
σ22r2

[(
∂f

∂r2

)2

+
∂2f

∂r22

]

+ ρσ1σ2
√
r1r2

[
∂2f

∂r1∂r2
+
∂f

∂r1

∂f

∂r2

]
− (r1 + r2) = 0

If, instead of the exact solution f , we substitute

f0(r1, r2, τ) = logP (r1, r2, τ ; 0)

into the left hand side, we obtain a nontrivial right hand side, which we
denote by h(r1, r2, τ). In particular, we have

h(r1, r2, τ) = ρσ1σ2
√
r1r2B1(τ)B2(τ),

where B1 and B2 are components of the separable solution in the uncorre-
lated case given by (10)-(11). Therefore B1(τ)B2(τ) = τ2 +O(τ2) and

h(r1, r2, τ) = ρσ1σ2
√
r1r2τ

2 +O(τ3).

Next, we define

g(r1, r2, τ) = logP (r1, r2, τ ; 0)− logP (r1, r2, τ ; ρ)

and write the partial differential equation which the function g satisfies:

(12)

− ∂g

∂τ
+ (κ1(θ1 − r1)− λ1σ1r1)

∂g

∂r1
+ (κ2(θ2 − r2)− λ2σ2r2)

∂g

∂r2

+
1

2
σ21r1

[(
∂g

∂r1

)2

+
∂2g

∂r21

]
+

1

2
σ22r2

[(
∂g

∂r2

)2

+
∂2g

∂r22

]

+ ρσ1σ2
√
r1r2

[
∂2g

∂r1∂r2
+
∂g

∂r1

∂g

∂r2

]
= h(r1, r2, τ) +

1

2
σ21r1

[(
∂f

∂r1

)2

− ∂f0
∂r1

∂f

∂r1

]

+
1

2
σ22r2

[(
∂f

∂r2

)2

− ∂f0
∂r2

∂f

∂r2

]

· ρσ1σ2
√
r1r2

[
2
∂f

∂r1

∂f

∂r2
− ∂f0
∂r1

∂f

∂r2
− ∂f

∂r1

∂f0
∂r2

]
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If we write the function g in its Taylor serie form

g(r1, r2, τ) =

∞∑
k=0

ck(r1, r2)τ
k =

∞∑
k=k0

ck(r1, r2)τ
k,

then we know that k0 > 0 because both f and f0 are zero for τ = 0 as a
consequence of the terminal condition (5) for the bond price in the general
bond-pricing partial differential equation (4). Therefore, the left hand side
of (12) is of order O(τk0−1). Using the fact that f and f0 are both O(τ) and
h is O(τ2) we conclude that the right hand side of (12) is O(τ2). Therefore
k0 ≥ 3 and we able to make more precise estimates of the terms on the right
hand side of (12):(

∂f

∂r1

)2

− ∂f0
∂r1

∂f

∂r1
=

∂f

∂r1

(
∂f

∂r1
− ∂f0
∂r1

)
= O(τ)×O(τ3) = O(τ4)

and similarly for r2. Also,

2
∂f

∂r1

∂f

∂r2
− ∂f0
∂r1

∂f

∂r2
− ∂f

∂r1

∂f0
∂r2

=
∂f

∂r1

(
∂f

∂r2
− ∂f0
∂r2

)
+
∂f

∂r2

(
∂f

∂r1
− ∂f0
∂r1

)
= O(τ)×O(τ3) +O(τ)×O(τ3) = O(τ4)

and therefore the only O(τ2) term from the right hand side of (12) comes
from the function h and it is equal to ρσ1σ2

√
r1r2τ

2. Finally, we are able to
conclude that k0 = 3 and

g(r1, r2, τ) = logP (r1, r2, τ ; 0)− logP (r1, r2, τ ; ρ)

= −1

3
σ1σ2

√
r1r2τ

3 +O(τ3).

This order of accuracy is the same as in the two-factor Vasicek model. More-
over, the leading term has a similar form; instead of constant volatilities in
the Vasicek model it has instantaneous volatilities from the CIR model for-
mulation.

4. Dependence on correlation in a general two-factor model

The three examples from the previous section were a motivation for study-
ing the effect of correlation in a general two-factor short rate model. There-
fore, in this section we consider a general model described in the introduc-
tion, when the short rate r is given as a certain smooth function of the auxil-
iary processes x and y governed by (1) and (2) respectively, i.e. r = g(x, y).
We derive the order of difference in logarithms of the bond prices computed
for ρ = 0 and a general nonzero value of the correlation ρ. In particular, we
distinguish the cases g(x, y) = x and g(x, y) = x + y and remark on some
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other illustrative choices of g, but the analysis can be performed for any
function g.

To simplify the notation, in what follows we denote µ̃i(x, y) = µi(x, y)−
λi(x, y)σi(x, y) for i ∈ {x, y}. Then, the partial differential equation for
f(x, y, τ) = logP (x, y, τ) reads as

− ∂f

∂τ
+ µ̃x(x, y)

∂f

∂x
+ µ̃y(x, y)

∂f

∂y

+
1

2
σx(x, y)

2

[(
∂f

∂x

)2

+
∂2f

∂x2

]
+

1

2
σy(x, y)

2

[(
∂f

∂y

)2

+
∂2f

∂y2

]

+ ρσx(x, y)σy(x, y)

[
∂2f

∂x∂y
+
∂f

∂x

∂f

∂y

]
− g(x, y) = 0

We write f in its Taylor expansion form

f(x, y, τ) =
∞∑
k=0

ck(x, y)τ
k

and note that c0(x, y) is identically equal to zero because of the terminal con-
dition (5) for the bond price in the general bond-pricing partial differential
equation (4). To find the order of the difference f(x, y, τ ; 0)−f(x, y, τ, ρ) we
need to find the first term ck which depends on ρ. Substituting the Taylor
expansion in the partial differential equation for f we get

c1(x, y) = −g(x, y)

and

c2(x, y) =
1

2

[
µ̃x(x, y)

∂c1
∂x

+ µ̃y(x, y)
∂c1
∂y

+
1

2
σx(x, y)

2∂
2c1
∂x2

+
1

2
σy(x, y)

2∂
2c1
∂y2

+ ρσx(x, y)σy(x, y)
∂2c1
∂x∂y

]
.

This term depends on ρ if the second partial derivative ∂2g/∂x∂y is nonzero.
We can recall a one-factor Black-Karasinski model [2] where the short rate is
defined as r = exp(x) where x is an Ornstein-Uhlenbeck process. If we define
the short rate in an analogous way in a two-factor model as r = exp(x+ y)
for some processes x and y, then the difference f(x, y, τ ; 0)− f(x, y, τ, ρ) is
only O(τ2); in particular we can write in terms of the function g that

f(x, y, τ ; 0)− f(x, y, τ, ρ) = 1

2
ρσx(x, y)σy(x, y)

∂2g

∂x∂y
τ2 +O(τ2)

If this is not the case and the derivative ∂2g/∂x∂y is zero, it means that
the function g has a separable form g(x, y) = g1(x)+g2(y) for some functions
of one variable g1 and g2. In this case we compute the next term of the Taylor
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expansion:

c3(x, y) =
1

3

[
µ̃x(x, y)

∂c2
∂x

+ µ̃y(x, y)
∂c2
∂y

+
1

2
σx(x, y)

2

(
∂2c2
∂x2

+

(
∂c1
∂x

)2
)

+
1

2
σy(x, y)

2

(
∂2c2
∂y2

+

(
∂c1
∂y

)2
)

+ρσx(x, y)σy(x, y)

(
∂2c2
∂x∂y

+
∂c1
∂x

∂c1
∂y

)]
.

By taking derivatives of c1 and c2, this expression can be written in terms
of the function g, risk neutral drifts and volatilities only, but we omit this
expression for the sake of brevity. If the dependence of c3 on ρ does not
vanish, then the difference f(x, y, τ ; 0)− f(x, y, τ, ρ) is O(τ3); in particular

f(x, y, τ ; 0)− f(x, y, τ, ρ)

= −1

3
σx(x, y)σy(x, y

(
∂2c2
∂x∂y

+
∂c1
∂x

∂c1
∂y

)
τ3 +O(τ3).

Remark 4.1. Since both models from the previous section which had g
given by g(x, y) = x + y fell into this cathegory, we find out now, if it is
possible to achieve a higher order for this choice of g with different processes
x and y.

Firstly we note that in this case the term c2 simplifies to

c2(x, y) = −
1

2
(µ̃x(x, y) + µ̃y(x, y))

and therefore
∂2c2
∂x∂y

+
∂c1
∂x

∂c1
∂y

= −1

2

∂

∂x∂y
(µ̃x(x, y) + µ̃y(x, y)) + 1.

This term vanishes only if the sum of risk-neutral drifts of the processes x
and y has the form

µ̃x(x, y) + µ̃y(x, y) = 2xy + F (x) +G(y),

where F and G are some functions of one variable. Although we could
theoretically construct such processes, the term 2xy (which is the only one
that "combines" variables x and y) does not leave any space for choosing
parameters that could be fit into real data and therefore it would be only a
theoretical example.

Remark 4.2. In the previous section we encountered one model for which
the studied order was higher than O(τ3). It was the Fong-Vasicek model
with g(x, y) = x, i.e., the short rate is directly one of the factors, for which
the stochastic differential equations are formulated. Now we investigate the
question, what additional conditions need to be added so that we obtain a
higher order than O(τ3).
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If g(x, y) = x, then the term c2 has a simple form

c2(x, y) = −
1

2
µ̃x(x, y)

and therefore
∂2c2
∂x∂y

+
∂c1
∂x

∂c1
∂y

= −1

2

∂µ̃x(x, y)

∂x∂y
.

Therefore the risk neutral drift of the short rate needs to have the separated
form

µ̃x(x, y) = F (x) +G(y)

where F and G are functions of one variable. Note that this was the case
also of the Fong-Vasicek model, where (we write x instead of r to keep up
with the notation of our derivation)

µ̃x(x, y) = κ1(θ1 − x)−
√
y × λ1

√
y = κ1θ1 − κ1x− λ1y

has indeed a separable form.

Returning to our analysis of the general case, we finally evaluate the term
c4 as

c4(x, y) =
1

4

[
µ̃x(x, y)

∂c3
∂x

+ µ̃y(x, y)
∂c3
∂y

+
1

2
σx(x, y)

2

(
∂2c3
∂x2

+ 2
∂c1
∂x

∂c2
∂x

)
+
1

2
σy(x, y)

2

(
∂2c3
∂y2

+ 2
∂c1
∂y

∂c2
∂y

)
+ρσx(x, y)σy(x, y)

(
∂2c3
∂x∂y

+
∂c1
∂x

∂c2
∂y

+
∂c2
∂x

∂c1
∂y

)]
.

and obtain the difference f(x, y, τ ; 0)−f(x, y, τ, ρ) of order O(τ4) with lead-
ing term

f(x, y, τ ; 0)− f(x, y, τ, ρ)

= −1

4
ρσx(x, y)σy(x, y)

(
∂2c3
∂x∂y

+
∂c1
∂x

∂c2
∂y

+
∂c2
∂x

∂c1
∂y

)
τ4 +O(τ4),

which encompasses also the case of the Fong-Vasicek model from the previous
section, for which this term does not vanish.

5. Conclusion

Motivated by three particular models (two factor Vasicek model, Fong-
Vasicek model with stochastic volatility, two factor Cox-Ingersoll-Ross model)
we studied the dependence of bond prices on the correlation ρ between the
factors defining the short rate. In a general two factor model considered we
have the short rater as a function of two factors x and y, i.e., r = g(x, y).
We derived order of the difference between logarithms of the bond prices
computed with ρ = 0 and general ρ as τ → 0+ and observed conditions on
the model which lead to different orders of difference.
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We can highlight several interesting points: If the function g(x, y) does
not have a separable form g(x, y) = g1(x)+g2(y), then the difference is only
O(τ2). In the separable form, the order of at least O(τ3) is guaranteed. If
the short rate is a sum of the factors, in a generic case the order O(τ3) is
attained (a condition for a higher order has been derived, but it does not
lead to any well known short rate model). If the short rate is directly one
of the factors, then a condition which guarantees a higher order than O(τ3)
(in a generic case the O(τ4) order is obtained) is linearity of the risk neutral
drift of the short rate process.

In some cases, the bond price with a zero correlation may be easier to
compute or it might have a form leading to easier calibration. Our results
show that if the maturity of the bond is not large, we can approximate the
bond price with its countepart computed for a zero correlation. They also
show, in which cases we can expect to obtain a better approximation in this
way.
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