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A note on q-analogue of Hermite-poly-Bernoulli
numbers and polynomials

Waseem A. Khan, Idrees A. Khan, Musharraf Ali

Abstract. In this paper, we introduce the Hermite-based poly-Bernoulli
numbers and polynomials with q-parameter and give some of their ba-
sic properties including not only addition property, but also derivative
properties and integral representations. We also define the Hermite-
based λ-Stirling polynomials of the second kind and then provide some
relations, identities of these polynomials related to the Stirling num-
bers of the second kind. We derive some symmetric identities for these
families of special functions by applying the generating functions.

1. Introduction

Throughout this paper, we use the following notations, N = {1, 2, 3, . . .}
denotes the set of natural numbers, N0 = {1, 2, 3, . . .} denotes the set of
non negative integer, Z denotes the set of integers and C denotes the set of
complex numbers respectively.

The 2-variable Kampé de Fériet generalization of the Hermite polynomials
[3] and [8] are defined by

Hn(x, y) = n!

[n
2
]∑

r=0

yrxn−2r

r!(n− 2r)!
.

These polynomials are usually defined by the generating function:

ext+yt
2
=

∞∑
n=0

Hn(x, y)
tn

n!
, (1.1)

and reduce to the ordinary Hermite polynomials Hn(x) (see [1]), when y =
−1 and x is replaced by 2x.

2010 Mathematics Subject Classification. Primary: 11B68, 11B73, 11B75, 33C45.
Key words and phrases. Hermite polynomials, q-analogue of poly-Bernoulli polynomi-

als, q-analogue of Hermite poly-Bernoulli polynomials, Stirling numbers of the second
kind, q-polylogarithm function, Symmetric identities.

Full paper. Received 4 October 2018, revised 9 May 2019, accepted 24 June 2019,
available online 1 October 2019.

c©2019 Mathematica Moravica
1



2 A note on q-analogue of Hermite-poly-Bernoulli numbers . . .

As is well known, the Bernoulli polynomials are defined by the generating
function as (

t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
, (see [1-27]). (1.2)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers.
From (1.2), we have

Bn(x) =

n∑
m=0

(
n

m

)
Bn−mx

m.

The classical polylogarithm function Lik(z) is

Lik(z) =

∞∑
m=1

zm

mk
, (k ∈ Z), (see [10, 11, 12]).

So, for k ≤ 1,

Lik(z) = − ln(1− z), Li0(z) =
z

1− z
, Li−1(z) =

z

(1− z)2
, . . .

The poly-Bernoulli polynomials are given by

Lik(1− e−t)
et − 1

ext =
∞∑
n=0

B(k)
n (x)

tn

n!
, (see [10, 15-19]).

For k = 1, we have

Li1(1− e−t)
et − 1

ext =
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1.3)

From (1.2) and (1.3), we obtain

B(1)
n (x) = Bn(x), (n ≥ 0).

Very recently, Khan et al. [14] introduced the Hermite poly-Bernoulli
polynomials of two variables HB

(k)
n (x, y) defined by(

Lik(1− e−t)
et − 1

)
ext+yt

2
=

∞∑
n=0

HB
(k)
n (x, y)

tn

n!
,

which is essentially a generalization of Bernoulli numbers, Bernoulli polyno-
mials, Hermite polynomials and Hermite-Bernoulli polynomials HBn(x, y)
introduced by Dattoli et al. [8, p.386(1.6)] in the form:(

t

et − 1

)
ext+yt

2
=

∞∑
n=0

HBn(x, y)
tn

n!
.

The Stirling number of the first kind is given by

(x)n = x(x− 1) · · · (x− n+ 1) =

n∑
l=0

S1(n, l)x
l, (n ≥ 0), (see [4, 9, 26])
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and the Stirling number of the second kind is defined by generating function

(et − 1)n = n!
∞∑
l=n

S2(l, n)
tl

l!
.

This paper organized as follows. In Section 2, we introduce a new class
of Hermite poly-Bernoulli numbers and polynomials with q-parameter. In
Section 3, we establish some identities of these polynomials. In Section 4,
we derive some properties of the Stirling numbers of the second kind. In
Section 5, we derive symmetric identities for these generalized polynomials
by using different analytical means on their respective generating functions.

2. A note on q-analogue of Hermite-poly-Bernoulli numbers
and polynomials

In this section, we define a q-analogue of Hermite-poly-Bernoulli numbers
and polynomials and its properties.
Definition 2.1. For n ≥ 0, n, k ∈ Z, 0 ≤ q < 1, we introduce a q-analogue
of Hermite-poly-Bernoulli polynomials by means of the following generating
function:

Lik,q(1− e−t)
et − 1

ext+yt
2
=
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!
, (2.1)

where Lik,q(t) =
∞∑
n=0

tn

[n]kq !
is the k-th q-polylogarithm function (see [4, 6, 23]).

When x = y = 0, B(k)
n,q = HB

(k)
n,q(0, 0) are called a q-analogue poly-

Bernoulli numbers.
Remark 2.1. For y = 0 in (2.1), the result reduces to the known result of
Hwang et al. [9] as follows:

Lik,q(1− e−t)
et − 1

ext =
∞∑
n=0

B(k)
n,q(x, y)

tn

n!
. (2.2)

From (2.1), we have

lim
q−→1

Li1(1− e−t)
et − 1

ext+yt
2
=

∞∑
n=0

HBn(x, y)
tn

n!
.

Thus by (2.1) and (2.2), we get

HB
(k)
n (x, y) = HBn(x, y) (n ≥ 0), (see [21, 22]).

Theorem 2.1. (Addition Property), we have

HB
(k)
n,q(x1 + x2, y1 + y2) =

n∑
m=0

binomnmHB
(k)
n−m,q(x1, y1)Hm(x2, y2). (2.3)
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Proof. Consider (2.1), we have
∞∑
n=0

HB
(k)
n,q(x1 + x2, y1 + y2)

tn

n!
=

Lik,q(1− e−t)
et − 1

e(x1+x2)t+(y1+y2)t2

=
∞∑
n=0

HB
(k)
n,q(x1, y1)

tn

n!

∞∑
m=0

Hm(x2, y2)
tm

m!

=
∞∑
n=0

(
n∑

m=0

(
n

m

)
HB

(k)
n−m,q(x1, y1)Hm(x2, y2)

)
tn

n!
.

Equating the coefficients of t
n

n! in both sides, we get (2.3). �

Theorem 2.2. (Derivative Properties) Each of the following formula holds
true:

δHB
(k)
n,q(x, y)

δx
= nHB

(k)
n−1,q(x, y)

and
δHB

(k)
n,q(x, y)

δy
= n(n− 1)HB

(k)
n−2,q(x, y).

Proof. The proof follows from (2.1). So we omit them. �

Theorem 2.3. (Integral Representation) The following formula holds true:∫ s

r
HB

(k)
n,q(x, y)dx =

HB
(k)
n+1,q(s, y)− HB

(k)
n+1,q(r, y)

n+ 1

and ∫ µ

λ
HB

(k)
n,q(x, y)dy =

HB
(k)
n+2,q(x, µ)− HB

(k)
n+2,q(x, λ)

(n+ 1)2
.

Proof. Using the derivative properties of HB
(k)
n,q(x, y) given in Theorem 2.2,

we easily get the asserted results. So we omit them. �

Theorem 2.4. The following formula holds true:

HB
(k)
n,q(x, y) =

[n
2
]∑

m=0

B
(k)
n−m,q(x)y

m n!

m!(n− 2m)!
. (2.4)

Proof. By (2.1), we have
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!
=

Lik,q(1− e−t)
et − 1

ext+yt
2

=
∞∑
n=0

B(k)
n,q(x)

tn

n!

∞∑
m=0

ymt2m

m!
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=
∞∑
n=0

 [n
2
]∑

m=0

B
(k)
n−m,q(x)y

m

 tn

m!(n− 2m)!
,

which implies the desired result (2.4). �

3. Main Results

In this section, we establish some properties of q-analogue of Hermite-
poly-Bernoulli polynomials by using generating function.

Theorem 3.1. For n ≥ 0, n, k ∈ Z, 0 ≤ q < 1, we have

HB
(k)
n,q(x, y) =

n∑
m=0

(
n

m

)
B

(k)
n−m,qHm(x, y). (3.1)

Proof. By using (2.1) and (1.1), we arrive at the desired result (3.1). �

Theorem 3.2. For n ≥ 0, we have

HB
(2)
n,1(x, y) =

n∑
m=0

(
n

m

)
Bmm!

m+ 1
HBn−m(x, y). (3.2)

Proof. Consider (2.1), we have
∞∑
n=0

HB
(k)
n,1(x, y)

tn

n!
=

Lik,1(1− e−t)
et − 1

ext+yt
2

=
ext+yt

2

et − 1

∫ t

0

1

ez − 1

∫ t

0

1

ez − 1
· · · 1

ez − 1︸ ︷︷ ︸
(k−1)−times

∫ t

0

z

ez − 1
dz · · · dz.

In particular for k = 2, we have
∞∑
n=0

HB
(2)
n (x, y)

tn

n!
=
ext+yt

2

et − 1

∫ t

0

z

ez − 1
dz

=

( ∞∑
m=0

tmBm
m+ 1

)
t

et − 1
ext+yt

2

=

( ∞∑
m=0

Bmm!

m+ 1

tm

m!

)( ∞∑
n=0

HBn(x, y)
tn

n!

)
.

Replacing n by n−m in R.H.S. of above equation, we have

=
∞∑
n=0

n∑
m=0

(
n

m

)
Bmm!

m+ 1
HBn−m(x, y)

tn

n!
.

On comparing the coefficients of t
n

n! on both sides of the above equation, we
get the result (3.2). �
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Theorem 3.3. For n ≥ 0, n, k ∈ Z, 0 ≤ q < 1, we have

HB
(k)
n,q(x, y) =

∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(
l + 1

a

)
(−1)aHBn+1(x− a, y)

n+ 1
. (3.3)

Proof. From equation (2.1), we have
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!
=

Lik,q(1− e−t)
et − 1

ext+yt
2
.

Now
Lik,q(1− e−t)

et − 1
ext+yt

2
=

∞∑
l=1

(1− e−t)l

[l]kq

ext+yt
2

et − 1

=
∞∑
n=0

1

[l]kq

l+1∑
a=0

(
l + 1

a

)
(−1)a e

(x−a)t+yt2

et − 1

=
∞∑
n=0

( ∞∑
l=0

1

[l + 1]kq

l+1∑
a=0

(
l + 1

a

)
(−1)aHBn+1(x− a, y)

n+ 1

)
tn

n!
.

Comparing the coefficients of t
n

n! on both sides, we get the result (3.3). �

Theorem 3.4. For n ≥ 0, n, k ∈ Z, 0 ≤ q < 1, we have

HB
(k)
n,q(x, y) =

∞∑
l=0

l∑
m=0

m+1∑
a=0

(
m+ 1

a

)
(−1)aHn(l −m− a+ x, y)

[m+ 1]kq
. (3.4)

Proof. From equation (2.1), we have
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!
=

Lik,q(1− e−t)
et − 1

ext+yt
2

=

( ∞∑
m=0

emt

)( ∞∑
l=0

(1− e−t)l+1

[l + 1]kq

)
ext+yt

2

=

( ∞∑
l=0

l∑
m=0

e(l−m)t

[m+ 1]kq

)(
m+1∑
a=0

(
m+ 1

a

)
(−1)ae(x−a)t+yt2

)

=

∞∑
l=0

l∑
m=0

m+1∑
a=0

(
m+ 1

a

)
(−1)a e

(l−m−1+x)t+yt2

[m+ 1]kq
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!

=

∞∑
n=0

∞∑
l=0

l∑
m=0

m+1∑
a=0

(
m+ 1

a

)
(−1)aHn(l −m− a+ x, y)

[m+ 1]kq

tn

n!
.

Equating the coefficients of t
n

n! in both sides, we get (3.4). �
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Theorem 3.5. The following implicit summation formulae for Hermite
poly-Bernoulli polynomials HB

(k)
n,q(x, y) holds true:

HB
(k)
l+p,q(z, y) =

l,p∑
m,n=0

(
l

m

)(
p

n

)
(z − x)m+n

HB
(k)
l+p−m−n,q(x, y).

Proof. We replace t by t+ u and rewrite the generating function (2.1) as

Lik,q(1− (e)−(t+u))

et+u − 1
ey(t+u)

2
= e−x(t+u)

∞∑
l,p=0

HB
(k)
l+p,q(x, y)

tl

l!

up

p!
.

Replacing x by z in the above equation and equating the resulting equa-
tion to the above equation, we get

e(z−x)(t+u)
∞∑

m,l=0

HB
(k)
l+p,q(x, y)

tl

l!

up

p!
=

∞∑
l,p=0

HB
(k)
l+p,q(z, y)

tl

l!

up

p!
.

On expanding exponential function, (3.3) gives
∞∑
N=0

[(z − x)(t+ u)]N

N !

∞∑
l,p=0

HB
(k)
l+p,q(x, y)

tl

l!

up

p!
=

∞∑
l,p=0

HB
(k)
l+p,q(z, y)

tl

l!

up

p!
,

which on using formula [27, p.52(2)]
∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
,

in the left hand side becomes
∞∑

m,n=0

(z − x)m+ntmun

m!n!

∞∑
l,p=0

HB
(k)
l+p,q(x, y)

tl

l!

up

p!
=

=

∞∑
l,p=0

HB
(k)
l+p,q(z, y)

tl

l!

up

p!
.

(3.5)

Now replacing l by l −m, p by p− n and using the lemma [27, p.100(1)] in
the left hand side of (3.5), we get

∞∑
m,n=0

∞∑
l,p=0

(z − x)m+n

m!n!
HB

(k)
l+p−m−n,q(x, y)

tl

(l −m)!

up

(p− n)!
=

=

∞∑
l,p=0

HB
(k)
l+p,q(z, y)

tl

l!

up

p!
.

Finally on equating the coefficients of the like powers of t and u in the above
equation, we get the required result. �
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Remark 3.1. By taking l = 0 in Equation (3.1), we immediately deduce
the following result.

Corollary 3.1. The following implicit summation formula for Hermite poly-
Bernoulli polynomials HB

(k)
n,q(z, y) holds true:

HB
(k)
p,q (z, y) =

p∑
n=0

(
p

n

)
(z − x)nHB(k)

p−n,q(x, y).

Remark 3.2. On replacing z by z+x and setting y = 0 in Theorem 3.1, we
get the following result involving poly-Bernoulli polynomials of one variable.

HB
(k)
l+p,q(z + x) =

l,p∑
m,n=0

(
l

m

)(
p

n

)
zm+nB

(k)
l+p−m−n,q(x),

where as, by setting z = 0 in Theorem 3.1, we get another result involving
q-poly-Bernoulli polynomials of one and two variables.

B
(k)
l+p,q(y) =

l,p∑
m,n=0

(
l

m

)(
p

n

)
(−x)m+n

HB
(k)
l+p−m−n,q(x, y).

Remark 3.3. Along with the above results we will exploit extended forms
of q-poly-Bernoulli polynomials B(k)

l+p,q(z) by setting y = 0 in Theorem 3.1
to get

B
(k)
l+p,q(z) =

l,p∑
m,n=0

(
l

m

)(
p

n

)
(z − x)n+mB(k)

l+p−m−n,q(x).

4. The q-analogue of Hermite-based Stirling
polynomials of the second kind

In this section, we introduce q-analogue of Hermite-based Stirling poly-
nomials of the second kind is defined by

(et − 1)m

m!
ext+yt

2
=
∞∑
n=0

S2(n,m;x, y)
tn

n!
. (4.1)

For x = y = 0 in (4.1), S2(n,m) = S2(n,m; 0, 0) are called the Stirling
numbers of the second kind (see [4, 9, 26]).

We give some relations and properties belonging to the Hermite-based
Stirling polynomials of the second kind by the following consecutive Theo-
rems.

Theorem 4.1. We have

S2(n,m;x, y) =

n∑
l=0

(
n

l

)
S2(l,m)Hn−l(x, y),
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S2(n,m;x, y) =
n∑
l=0

(
n

l

)
S2(l,m; 0, y)xn−l,

S2(n,m;x, y) =

[n
2
]∑

l=0

(
n

l

)
S2(l,m;x, 0)

n!yl

(n− 2)!
.

Theorem 4.2. (Derivative Properties) Each of the following formula hold
true:

δ

δx
S2(n,m;x, y) = nS2(n− 1,m;x, y)

and
δ

δy
S2(n,m;x, y) = n(n− 1)S2(n− 2,m;x, y).

Theorem 4.3. (Integral Representations) The following equalities holds
true: ∫ s

r
S2(n,m;x, y)dx =

S2(n+ 1,m; s, y)− S2(n+ 1,m; r, y)

n+ 1

and ∫ µ

v
S2(n,m;x, y)dy =

S2(n+ 1,m;x, µ)− S2(n+ 1,m;x, v)

(n+ 1)2
.

Theorem 4.4. For n, k ∈ Z, n ≥ 0, 0 ≤ q < 1, we have

HB
(k)
n,q(x, y) =

n∑
a=0

a+1∑
l=1

(−1)l+a+1 l!

[l]kq

S2(a+ 1, l)

(a+ 1)
HBn−a(x, y). (4.2)

Proof. From (2.1), we have
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!
=

Lik,q(1− e−t)
et − 1

ext+yt
2

=
∞∑
n=0

(1− e−t)l

[l]kq

ext+yt
2

et − 1
=

∞∑
n=1

(e−t−1)l

[l]kq

ext+yt
2

et − 1

=

∞∑
n=1

n∑
l=1

(−1)l+n

[l]kq
l!S2(n, l)

tn

n!

ext+yt
2

et − 1

=
∞∑
a=0

(
a+1∑
l=1

(−1)l+a+1 l!

[l]kq

S2(a+ 1, l)

(a+ 1)

)
ta

a!

( ∞∑
n=0

HBn(x, y)
tn

n!

)
.

Replacing n by n− a in above equation, we get

=
∞∑
n=0

(
n∑
a=0

a+1∑
l=1

(−1)l+a+1 l!

[l]kq

S2(a+ 1, l)

(a+ 1)
HBn−a(x, y)

)
tn

n!
.

Comparing the coefficients of t
n

n! in above equation, we get (4.2). �
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Theorem 4.5. For n, k ∈ Z, n ≥ 0, 0 ≤ q < 1, we have

HB
(k)
n,q(x+ u, y) =

∞∑
l=0

n∑
a=l

(
n

a

)
(u)lS2(a, l)HB

(k)
n−a,q(x, y). (4.3)

Proof. Replacing x by x+ u in (2.1), we have

Lik,q(1− e−t)
et − 1

e(x+u)t+yt
2
=

∞∑
n=0

HB
(k)
n,q(x+ u, y)

tn

n!

=
Lik,q(1− e−t)

et − 1
ext+yt

2
∞∑
l=0

(u)l
(et − 1)l

l!

=

∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!

∞∑
l=0

(u)l

∞∑
a=0

S2(a, l)
ta

a!

=
∞∑
n=0

( ∞∑
l=0

n∑
a=l

(
n

a

)
(u)lS2(a, l)HB

(k)
n−a,q(x, y)

)
tn

n!
.

On comparing the coefficients of t
n

n! in both sides, we get at the desired result
(4.3). �

Theorem 4.6. For n ≥ 1, n, k ∈ Z and 0 ≤ q < 1, we have

HB
(k)
n,q(x+ 1, y)− HB

(k)
n,q(x, y) =

=

n∑
r=1

(
n

r

)
×

(
r−1∑
l=0

(−1)r+l+1(l + 1)!

[l + 1]kq
S2(r, l + 1)Hn−r(x, y)

)
.

(4.4)

Proof. Using the definition (2.1), we have
∞∑
n=0

HB
(k)
n,q(x+ 1, y)

tn

n!
−
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!

=
Lik,q(1− e−t)

et − 1
e(x+1)t+yt2 −

Lik,q(1− e−t)
et − 1

ext+yt
2
,

= Lik,q(1− e−t)ext+yt
2
,

=

∞∑
r=0

(
r−1∑
l=0

(−1)r+l+1(l + 1)!

[l + 1]kq
S2(r, l + 1)

)
tr

r!
ext+yt

2
,

=

∞∑
n=0

(
n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)r+l+1(l + 1)!

[l + 1]kq
S2(r, l + 1)Hn−r(x, y)

))
tn

n!
.

On comparing the coefficients of t
n

n! on either side, we get the result (4.4).
�
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Theorem 4.7. For d ∈ N with d ≡ 1(mod2), we have

HB
(k)
n,q(x, y) =

n∑
p=0

(
n

p

)
dn−p−1

p+1∑
l=0

d−1∑
a=0

(−1)l+p+1l!S2(p+ 1, l)

[l]kq
(−1)a

×HBn−p
(
a+ x

d
, y

)
. (4.5)

Proof. Equation (2.1) can be written as
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!
=

Lik,q(1− e−t)
et − 1

ext+yt
2

=

(
Lik,q(1− e−t)

t

)(
t

edt − 1

d−1∑
a=0

(−1)ae(a+x)t+yt2
)
,

=

 ∞∑
p=0

(
p+1∑
l=1

(−1)l+p+1

[l]kq
l!
S2(p+ 1, l)

p+ 1

)
tp

p!


×

( ∞∑
m=0

dm−1
d−1∑
a=0

(−1)aHBn
(
a+ x

d
, y

)
tn

n!

)
.

Replacing n by n − p in the R.H.S. of above equation and comparing the
coefficient of t

n

n! on either side, we get the result (4.5). �

Theorem 4.8. For n ≥ 1, n, k ∈ Z and 0 ≤ q < 1, we have

HB
(k)
n,q(x, y) =

n∑
m=0

(−1)m+nm!

[m+ 1]kq
S2(n,m;x, y). (4.6)

Proof. By using (2.1) and (4.1), we have
∞∑
n=0

HB
(k)
n,q(x, y)

tn

n!
=

Lik,q(1− e−t)
et − 1

ext+yt
2

=

∞∑
m=0

(1− e−t)m

[m+ 1]kq
ext+yt

2
=

∞∑
n=0

(−1)m+nm!

[m+ 1]kq

∞∑
n=m

S2(n,m;x, y)
tn

n!

=
∞∑
n=0

(
n∑

m=0

(−1)m+nm!

[m+ 1]kq
S2(n,m;x, y)

)
tn

n!
.

On comparing the coefficients of tn

n! in both sides, we arrive at the desired
result (4.6). �
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5. Symmetric identities

In this section, we give general symmetry identities for the q-poly-Bernoulli
polynomialsB(k)

n,q(x) and the Hermite poly-Bernoulli polynomials HB
(k)
n,q(x, y)

with q parameter by applying the generating function (2.1) and (2.2). The
results extend some known identities of Khan [11-14], Pathan and Khan [20-
25].

Theorem 5.1. Let a, b > 0 and a 6= b, the following identity holds true:
n∑

m=0

(
n

m

)
bman−mHB

(k)
n−m,q(bx, b

2y)HB
(k)
m,q(ax, a

2y)

=

n∑
m=0

(
n

m

)
ambn−mHB

(k)
n−m,q(ax, a

2y)HB
(k)
m,q(bx, b

2y). (5.1)

Proof. Start with

G(t) =

(
(Lik,q(1− e−at))(Lik,q(1− e−bt))

(eat − 1)(ebt − 1)

)
eabxt+a

2b2yt2 .

Then the expression for G(t) is symmetric in a and b and we can expand
G(t) into series in two ways to obtain:

G(t) =

∞∑
n=0

HB
(k)
n,q(bx, b

2y)
(at)n

n!

∞∑
m=0

HB
(k)
m,q(ax, a

2y)
(bt)m

m!

=

∞∑
n=0

(
n∑

m=0

(
n

m

)
)an−mbmHB

(k)
n−m,q(bx, b

2y)HB
(k)
m,q(ax, a

2y)

)
tn

n!
.

On the similar lines, we can show that

G(t) =

∞∑
n=0

HB
(k)
n,q(ax, a

2y)
(bt)n

n!

∞∑
m=0

HB
(k)
m,q(bx, b

2y)
(at)m

m!

=
∞∑
n=0

(
n∑

m=0

(
n

m

)
ambn−mHB

(k)
n−m,q(ax, a

2y)HB
(k)
m,q(bx, b

2y)

)
tn

n!
.

Comparing the coefficients of tn

n! on the right hand sides of the last two
equations, we arrive at the desired result (5.1). �

Remark 5.1. On setting b = 1 in Theorem 5.1, we get the following corol-
lary.

Corollary 5.1. For n, k ∈ Z and n ≥ 0, the following identity holds true:
n∑

m=0

(
n

m

)
an−mHB

(k)
n−m,q(x, y)HB

(k)
m,q(ax, a

2y)
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=
n∑

m=0

(
n

m

)
amHB

(k)
n−m,q(ax, a

2y)HB
(k)
m,q(x, y).

Theorem 5.2. Let a, b > 0 and a 6= b, the following identity holds true:
n∑

m=0

(
n

m

) a−1∑
i=0

b−1∑
j=0

HB
(k)
n−m,q

(
bx+

b

a
i+ j, b2z

)
B(k)
m,q(ay)b

man−m

=

n∑
m=0

(
n

m

) b−1∑
i=0

a−1∑
j=0

HB
(k)
n−m,q

(
ax+

a

b
i+ j, a2z

)
B(k)
m,q(by)a

mbn−m. (5.2)

Proof. Let

H(t) =

(
(Lik,q(1− e−at))(Lik,q(1− e−bt))(eabt − 1)2

(eat − 1)2(ebt − 1)2

)
eab(x+y)t+a

2b2zt2 .

H(t) =

(
Lik,q(1− e−at)

eat − 1

)
eabxt+a

2b2zt2
(
eabt − 1

ebt − 1

)(
Lik,q(1− e−bt)

ebt − 1

)
×eabyt

(
eabt − 1

eat − 1

)
=

(
Lik,q(1− e−at)

eat − 1

)
eabxt+a

2b2zt2
a−1∑
i=0

ebti
(
Lik,q(1− e−bt)

ebt − 1

)

×eabyt
b−1∑
j=0

eatj (5.3)

=

(
Lik,q(1− e−at)

eat − 1

)
ea

2b2zt2
a−1∑
i=0

b−1∑
j=0

e(bx+
b
a
i+j)at

∞∑
m=0

B(k)
m,q(ay)

(bt)m

m!

=

∞∑
n=0

a−1∑
i=0

b−1∑
j=0

HB
(k)
n,q

(
bx+

b

a
i+ j, b2z

)
(at)n

n!

∞∑
m=0

B(k)
m,q(ay)

(bt)m

m!

H(t) =
∞∑
n=0

n∑
m=0

(
n

m

) a−1∑
i=0

b−1∑
j=0

HB
(k)
n−m,q

(
bx+

b

a
i+ j, b2z

)
×B(k)

m,q(ay)b
man−m

tn

n!
.

In similar method, we can be written as

H(t) =
∞∑
n=0

n∑
m=0

(
n

m

) b−1∑
i=0

a−1∑
j=0

HB
(k)
n−m,q

(
ax+

a

b
i+ j, a2z

)
×B(k)

m,q(by)a
mbn−m

tn

n!
.
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By comparing the coefficients of tn

n! on the right hand sides of the last two
equations, we arrive at the desired result (5.2). �

Theorem 5.3. For each pair of integers a and b and all integers n ≥ 0, the
following identity holds true:

n∑
m=0

(
n

m

)
an−mbm

a−1∑
i=0

b−1∑
j=0

HB
(k)
n−m,q

(
bx+

b

a
i, b2z

)
B(k)
m,q(ay +

a

b
j)

=
n∑

m=0

(
n

m

)
bn−mam

b−1∑
i=0

a−1∑
j=0

HB
(k)
n−m,q

(
ax+

a

b
i, a2z

)
B(k)
m,q(by +

b

a
j). (5.4)

Proof. The proof is analogous to Theorem 5.2 but we need to write equation
(5.3) in the form

H(t) =

∞∑
n=0

a−1∑
i=0

b−1∑
j=0

HB
(k)
n,q

(
bx+

b

a
i, b2z

)
(at)n

n!

×
∞∑
m=0

B(k)
m,q(ay +

a

b
j)
(bt)m

m!
. (5.5)

On the other hand equation (5.3) can be shown equal to

H(t) =

∞∑
n=0

b−1∑
i=0

a−1∑
j=0

HB
(k)
n,q

(
ax+

a

b
i, a2z

) (bt)n

n!

×
∞∑
m=0

B(k)
m,q(by +

b

a
j)
(at)m

m!
. (5.6)

Next making change of index and by equating the coefficients of t to zero
in (5.5) and (5.6), we get the result (5.4). �

Remark 5.2. By setting y = 0 in Theorem 5.3, we get the following corol-
lary.

Corollary 5.2. Let a, b > 0 and a 6= b, the following identity holds true:

n∑
m=0

(
n

m

)
an−mbm

a−1∑
i=0

b−1∑
j=0

HB
(k)
n−m,q

(
bx+

b

a
i, b2z

)
B(k)
m,q

(a
b
j
)

=

n∑
m=0

(
n

m

)
bn−mam

b−1∑
i=0

a−1∑
j=0

HB
(k)
n−m,q

(
ax+

a

b
i, a2z

)
B(k)
m,q

(
b

a
j

)
.
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