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Derivations satisfying certain
algebraic identities on Lie ideals

Gurninder S. Sandhu∗, Deepak Kumar

Abstract. Let d be a derivation of a semiprime ring R and L a nonzero
Lie ideal of R. In this note, it is proved that every noncentral square-
closed Lie ideal of R contains a nonzero ideal of R. Further, we use
this result to characterize the conditions: d(xy) = d(x)d(y), d(xy) =
d(y)d(x) on L. With this, a theorem of Ali et al. [14] can be deduced.

1. Introduction

This article deals with the derivations acting as homomorphisms or anti-
homomorphisms on Lie ideals of semiprime rings, directly motivated by a
work of Ali et al. [14]. These types of studies were initiated by Bell and
Kappe [11]. Throughout this paper, R will denote an associative ring with
at least two elements and Z(R) denotes the center of R. For any x, y ∈ R,
the symbol [x, y] stands for the commutator xy−yx. For any positive integer
n, ring R is said to be n-torsion free if nx = 0 implies x = 0 for all x ∈ R.
For any a, b ∈ R, if aRb = (0) implies either a = 0 or b = 0 then R is said to
be a prime ring and if aRa = (0) implies a = 0 then R is called a semiprime
ring. An additive subgroup L of R is called a Lie ideal of R if [L,R] ⊆ L.
A Lie ideal L of R is said to be square-closed if x2 ∈ L for all x ∈ L. It is
well-known that if L is square-closed, then 2xy ∈ L for all x, y ∈ L. Recall
that an additive map d : R → R is said to be a derivation if d(r1r2) =
d(r1)r2 + r1d(r2) for all r1, r2 ∈ R. A familiar example of a derivation is an
inner derivation, which is a mapping φα : R→ R given by φα(r) = [α, r] for
all r ∈ R and α be a fixed element of R. Let K be a nonempty subset of R
and d a derivation of R. The derivation d is said to be a derivation acting
as homomorphism (resp. anti-homomorphism) on K if d(xy) = d(x)d(y)
(resp. d(xy) = d(y)d(x)) for all x, y ∈ K. Further, if [d(x), x] ∈ Z(R) (resp.
[d(x), x] = 0) for all x ∈ K then d is called a centralizing derivation (resp.
a commuting derivation) on K. By CR(K) we shall mean the centralizer of
K, defined by CR(K) = {x ∈ R : xk = kx ∀ k ∈ K}.
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80 Derivations satisfying certain algebraic identities

In [9], Posner gave a remarkable and pioneering result on centralizing
derivations of prime rings, which is stated as: If a prime ring R admits a
centralizing derivation, then d = 0 or R is commutative. After that a number
of generalizations of this result took place (see [1], [4], [5] and references
therein). In [10], Awtar proved that: Let R be a prime ring of characteristic
different from 2 and 3. Let d be a nonzero derivation of R, and U a Lie
ideal of R with [u, d(u)] ∈ Z(R) for all u ∈ U . Then U ⊆ Z(R). Lee and
Lee [5] improved this result by excluding the condition of 3-torsion freeness
of R.

In the literature, there are many papers investigating the derivations act-
ing as homomorphism or anti-homomorphism on prime rings, but very few
on semiprime rings. In 1989, Bell and Kappe [11] proved that: If d is
a derivation of a prime ring R which acts as homomorphism or as anti-
homomorphism on a nonzero right ideal I of R, then d = 0 on R. Yenigul
and Argaç [12], Ashraf et al. [13] generalized this result by proving it for
(σ, τ)-derivations of prime rings. In [14], Ali et al. extended this result to
Lie ideals of prime rings. Precisely, they proved the following theorem:

Theorem 1.1. Let R be a 2-torsion free prime ring and U a nonzero Lie
ideal of R such that u2 ∈ U for all u ∈ U . If d is a derivation of R which
acts as homomorphism or anti-homomorphism on U , then either d = 0 or
U ⊆ Z(R).

The following example demonstrates that one can not expect the above
result for semiprime rings.

Example 1.1. Let R1 be any noncommutative semiprime ring and S1 be
any commutative integral domain. Clearly, R = S1×R1 is a semiprime ring
and L = S1×{0} is a nonzero Lie ideal of R. Let δ : R1 → R1 be a derivation
of R1. We define a mapping d : R → R as (s, r) 7→ (0, δ(r)). Note that, d
is a derivation of R that acts as homomorphism and as anti-homomorphism
on L, but neither d = 0 nor L ⊆ Z(R).

2. Preliminary Results

The commutator identities: [x, yz] = y[x, z] + [x, y]z, [xy, z] = x[y, z] +
[x, z]y and the following results are extensively used in the main section:

Lemma 2.1 ([2], Corollary 2.1). Let R be a 2-torsion free semiprime ring, L
a Lie ideal of R such that L 6⊆ Z(R) and let a, b ∈ L. (i) If aLa = (0), then
a = 0. (ii) If aL = (0) (or La = (0)), then a = 0. (iii) If L is square-closed
and aLb = (0), then ab = 0 and ba = 0.

Lemma 2.2 ([3], Lemma 2.4). Let R be a 2-torsion free semiprime ring,
L a Lie ideal of R such that L 6⊆ Z(R) and let a ∈ L. If aLa = (0), then
a2 = 0 and there exists a nonzero ideal M = R[L,L]R of R generated by
[L,L] such that [M,R] ⊆ L and Ma = aM = 0.
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Lemma 2.3. Let R be a 2-torsion free semiprime ring and L be a noncentral
square-closed Lie ideal of R. Then there exists a nonzero idealM = R[L,L]R
of R such that 2M ⊆ L.

Proof. For the existence of such an ideal one must check Lemma 2.2. For any
x, y ∈ L and r ∈ R, [x, yr] ∈ L. And so we have y[x, r]+[x, y]r ∈ L. Since L
is an additive subgroup of R so 2y[x, r] + 2[x, y]r ∈ L. As L is square-closed
so 2y[x, r] ∈ L. The above expression yields that 2[x, y]r ∈ L. For any
s ∈ R, 2[x, y]rs− 2s[x, y]r ∈ L. Therefore, 2s[x, y]r ∈ L for all x, y ∈ L and
r, s ∈ R. Hence, 2R[L,L]R ⊆ L, i.e., 2M ⊆ L. If M = R[L,L]R = (0), it
implies that (R[L,L])2 = (0). Since R contains no non-zero nilpotent left-
ideal, it gives R[L,L] = (0) and so [L,L] = (0). With the aid of Lemma 1
of [7], L ⊆ Z(R), which is a contradiction. �

Remark 2.1. In [7], authors proved the following: Let R be a 2-torsion
free semiprime ring, d be a derivation of R. If an element a ∈ R satisfies
ad(L) = (0), then ad(M) = (0) where M = R[L,L]R. Note that, above
Lemma makes the proof of this result insignificant. Moreover, if d(L)a = 0
then d(M)a = 0.

Lemma 2.4 ([6], Remark 2.1). Let R be a ring, L a square-closed Lie ideal
of R. Then 2R[L,L] ⊆ L and 2[L,L]R ⊆ L.

Lemma 2.5 ([8], Corollary 1.4). Let R be a 2-torsion free semiprime ring
and L be a non-central Lie ideal of R. Suppose a ∈ R such that ax[x, y] = 0
for all x, y ∈ L, then a[L,R] = (0), [a, L] = (0) and aM = (0), where
M = R[L,L]R.

Lemma 2.6. Let R be a 2-torsion free semiprime ring and L be a nonzero
Lie ideal of R. Then CR(L) = Z(R).

Proof. Clearly, Z(R) ⊆ CR(L). It is easy to see that CR(L) is both a Lie
ideal and a subring of R. Since CR(L) can not contain a nonzero ideal
of R, in the light of Herstein [[15], Lemma 1.3] CR(L) ⊆ Z(R). Hence,
CR(L) = Z(R). �

3. Main Results

Now onwards R will denote a 2-torsion free semiprime ring and L a non-
central square-closed Lie ideal of R (unless otherwise mentioned).

Theorem 3.1. Let d is a derivation of R. If d is centralizing on L, then d
maps R into Z(R).

Proof. First we show that d is commuting on L. By hypothesis, we have
[d(x), x] ∈ Z(R) for all x ∈ L. Since L is square-closed, we may find
[d(x2), x2] ∈ Z(R). That means

[d(x)x+ xd(x), x2] = [[d(x), x], x2] + 2[xd(x), x2]
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= 2[xd(x), x2]

= 2x[xd(x), x] + 2[xd(x), x]x

= 4x2[d(x), x] ∈ Z(R).

It implies that [d(x), x2[d(x), x]] = [d(x), x2][d(x), x] = 0 for all x ∈
L. Again by using our hypothesis, we obtain 2x[d(x), x]2 = 0. That is,
[d(x), x]3 = 0 for any x ∈ L. But the center of a semiprime ring does not
contain nonzero nilpotent elements, so we must have [d(x), x] = 0 on L.

By Lemma 2.3, 2M ⊆ L, we find that d is commuting on M = R[L,L]R.
Therefore, R contains a central ideal generated by the set d(R)M (see the
proof of Theorem 3 in [4]). That means, 〈d(R)M〉 ⊆ Z(R). Thus for any
r, s, p, q ∈ R and x, y ∈ L, we have [d(r)s[x, y]p, q] = 0. Replacing p by pr1,
we get d(r)s[x, y]p[r1, q] = 0. In particular, we have d(r)s[x, y]Rd(r)s[x, y] =
(0) for all x, y ∈ L and r, s ∈ R. That yields, d(r)R[x, y] = (0).

Now, we choose a family {Pα : α ∈ Λ} of prime ideals of R such that⋂
Pα = (0). Let Pα be a typical member of that family, so we have R = R

Pα

is a prime ring. Therefore, our last expression gives d(R)R[L,L] = (0). The
fact that R is a prime ring implies that either [L,L] = (0) or d(R) = (0).
If [L,L] = (0), then L ⊆ Z(R) by [[7], Lemma 1], that means [L,R] ⊆ Pα.
Therefore, we have either d(R) ⊆ Pα or [L,R] ⊆ Pα.

Together with these both cases, we obtain d(R)[L,R] ⊆ Pα for any prime
ideal Pα of R. It yields d(R)[L,R] ⊆

⋂
Pα, i.e., d(R)[L,R] = (0).

Now for any r, s ∈ R and x ∈ L, we have d(r)[x, s] = 0. For some p ∈ R,
replace s by sp in the last relation, we find d(r)s[x, p] = 0, where r, s, p ∈ R
and x ∈ L. In particular, we obtain [d(r), x]R[d(r), x] = (0) for all x ∈ L
and r ∈ R. Hence, we obtain [d(R), L] = (0).

In the latter case, if L ⊆ Z(R), we clearly have the d(R)[L,R] = (0)
and hence [d(R), L] = (0). In each case we have d(R) ⊆ CR(L). In light of
Lemma 2.6, we get d(R) ⊆ Z(R). �

Immediately we have the following consequences of Theorem 3.1:

Corollary 3.1 ([5], Theorem 5). Let d 6= 0 is a derivation of a 2-torsion
free prime ring R. If d is centralizing on L, then L ⊆ Z(R). Further, d maps
R into Z(R).

Corollary 3.2. If d and g be derivations of R such that d(x)y = xg(y) for
all x, y ∈ L, then d and g both maps R into Z(R).

Proof. Let us assume that, L * Z(R). For any x, y ∈ L, we consider d(x)y =
xg(y). Replacing x by 2xz, where z ∈ L, we get 2d(x)zy + 2xd(z)y =
2xzg(y). Our hypothesis forces that,

(1) d(x)zy = 0,

where x, y, z ∈ L. Substitute [d(x), y] for y in (1), we find

(2) d(x)z[d(x), y] = 0.
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Replacing z by 2yz in (2), we obtain

(3) d(x)yz[d(x), y] = 0.

Multiplying (2) by y from the left hand side and subtracting from (3), we
get [d(x), y]z[d(x), y] = 0 for all x, y, z ∈ L. In light of Lemma 2.1, we have
[d(x), y] = 0 for any x, y ∈ L. In particular, we have [d(x), x] = 0 for all
x ∈ L. Analogously, we can obtain [g(x), x] = 0 for all x ∈ L. Hence by
Theorem 3.1, we get the conclusions. �

Now, we are well occupied to prove our main result:

Theorem 3.2. (i) Every derivation d of R that acts as homomorphism
on L maps R into Z(R).

(ii) Every derivation d of R that acts as anti-homomorphism on L maps
R into Z(R).

Proof. (i) By hypothesis, we have

(4) d(xy) = d(x)d(y) for all x, y ∈ L.
Replacing x by 2wx in (4), where w ∈ L, we get 2d(w)xy + 2wd(xy) =
2d(w)xd(y) + 2wd(x)d(y). Since R is 2-torsion free, (4) yields

(5) d(w)x(y − d(y)) = 0.

Replacing y by 2yz in (5), where z ∈ L, we get d(w)x(2yz − d(2yz)) = 0.
Using the condition of 2-torsion free and expanding it, we get d(w)x(y −
d(y))z − d(w)xyd(z) = 0 for all x, y, w, z ∈ L. By using (5), we obtain

(6) d(w)xyd(z) = 0.

Interchanging the role of x and y in (6), we find

(7) d(w)yxd(z) = 0.

On subtracting (7) from (6), we obtain

(8) d(w)[x, y]d(z) = 0

where x, y, w, z ∈ L. Replace w by 2tw in (8), where t ∈ L, we have
2d(t)w[x, y]d(z) + 2td(w)[x, y]d(z) = d(t)w2[x, y]d(z) = 0. In particular, we
have (2[x, y]d(z))L(2[x, y]d(z)) = (0). By Lemma 2.1 and Lemma 2.4, we
have 2[x, y]d(z) = 0, and so [x, y]d(z) = 0 for all x, y, z ∈ L. Analogously, we
have d(x)[y, z] = 0 for any x, y, z ∈ L. Now, using Lemma 2.3, we replace y
and z by 2m and 2m1 in order to obtain, d(x)[m,m1] = 0 for all x ∈ L and
m,m1 ∈M = R[L,L]R. Substituting m1d(x) for m1 and expanding, we get
d(x)[m,m1]d(x) + d(x)m1[m, d(x)] = 0. It reduces to d(x)m1[m, d(x)] = 0
for all x ∈ L and m,m1 ∈M . It implies that [d(x),m]M [d(x),m] = (0) for
all x ∈ L and m ∈ M . We know that every nonzero ideal of a semiprime
ring is a semiprime ring in itself. Therefore, we obtain [d(x),m] = 0 for
all x ∈ L and m ∈ M . Now, as R[L,L] ⊆ M so we put m = r[y, z] in
the last expression, where r ∈ R and y, z ∈ L, we find [d(x), r[y, z]] = 0.
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Expanding last expression and using the fact that [L,L] ⊆ M we obtain
[d(x), r][y, z] = 0. Since L is square closed, substituting y2 for y, we get
[d(x), r]y[y, z] = 0 for each x, y, z ∈ L and r ∈ R. Now, by Lemma 2.5, we
get

(9) [d(x), r][y, s] = 0 for all x, y ∈ L and r, s ∈ R.
For any p ∈ R, replacing s by sp in (9), we get [d(x), r]s[y, p] = 0. In par-
ticular, we have [d(x), x]R[d(x), x] = (0) for all x ∈ L. Since R is semiprime
ring, we find that [d(x), x] = 0 for all x ∈ L. Hence, Theorem 3.1 completes
the proof.

(ii) By hypothesis, we have

(10) d(xy) = d(y)d(x) for all x, y ∈ L.
Replacing x by 2xy in (10), we get d(xy2) = d(y)d(xy). By expanding it, we
get d(xy)y+xyd(y) = d(y)d(x)y+d(y)xd(y) for all x, y ∈ L. Our hypothesis
reduces it to

(11) xyd(y) = d(y)xd(y)

For any z ∈ L, we replace x by 2zx in (11) in order to get

(12) zxyd(y) = d(y)zxd(y)

Multiplying (11) by z from the left hand side and we have

(13) zxyd(y) = zd(y)xd(y)

Combining (12) and (13) and we find [d(y), z]xd(y) = 0. By easy sub-
stitutions, we obtain [d(y), z]x[d(y), z] = 0 for any x, y, z ∈ L. That is,
[d(y), z]L[d(y), z] = (0) where y, z ∈ L. By Lemma 2.1, [d(y), z] = 0 for all
y, z ∈ L. In particular, for y = z, we have [d(y), y] = 0 for all y ∈ L. Again
by Theorem 3.1, we obtain the desired results. �

In the following example, we show that the hypothesis of semiprimeness
in our Theorem 3.2 is essential.

Example 3.1. Let Z be a ring of integers and

R =

{(
a b
0 c

)
: a, b, c ∈ Z

}
, L =

{(
0 b
0 0

)
: b ∈ Z

}
.

It is easy to verify that L is a noncentral Lie ideal of R and R not a semiprime
ring. Let us define a mapping d : R→ R such that(

a b
0 c

)
7→
(

0 −b
0 0

)
.

We see that d is a derivation of R that satisfies F (XY ) = F (X)F (Y ) and
F (XY ) = F (Y )F (X) for all X,Y ∈ L. But d(R) 6⊆ Z(R).

Corollary 3.3. Every derivation d of R that acts as homomorphism or
anti-homomorphism on L, is a commutativity preserving mapping.
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Corollary 3.4. If d be a derivation of R that acts as homomorphism or
anti-homomorphism on R, then there exists α ∈ C and an additive mapping
ψ : R→ C such that d(x) = αx+ ψ(x) for all x ∈ R.

Proof. By Theorem 3.2, we get [d(R), R] = (0), i.e., d is commuting on R.
In the view of Brešar [[16], Corollary 4.2], we get the desired conclusion. �

Corollary 3.5 ([14], Theorem 3.1). Let R be a 2-torsion free prime ring
and L be a square-closed Lie ideal of R. If d is a derivation of R, which
acts as homomorphism or anti-homomorphism on L, then either d = 0 or
L ⊆ Z(R).

Proof. Suppose that L * Z(R). By Theorem 3.2, we obtain d(R)[L,R] =
(0), i.e., d(r)[x, s] = 0 for any r, s ∈ R and x ∈ L. Replacing r by r1r,
where r1 ∈ R, we get d(r1)R[x, r] = (0). By primeness of R we have either
d(r1) = 0 or [x, r] = 0. In view of our assumption, we get d = 0. �
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