Derivations satisfying certain algebraic identities on Lie ideals

GURNINDER S. SANDHU^{*}, DEEPAK KUMAR

ABSTRACT. Let d be a derivation of a semiprime ring R and L a nonzero Lie ideal of R. In this note, it is proved that every noncentral squareclosed Lie ideal of R contains a nonzero ideal of R. Further, we use this result to characterize the conditions: d(xy) = d(x)d(y), d(xy) =d(y)d(x) on L. With this, a theorem of Ali et al. [14] can be deduced.

1. INTRODUCTION

This article deals with the derivations acting as homomorphisms or antihomomorphisms on Lie ideals of semiprime rings, directly motivated by a work of Ali et al. [14]. These types of studies were initiated by Bell and Kappe [11]. Throughout this paper, R will denote an associative ring with at least two elements and Z(R) denotes the center of R. For any $x, y \in R$, the symbol [x, y] stands for the commutator xy - yx. For any positive integer n, ring R is said to be n-torsion free if nx = 0 implies x = 0 for all $x \in R$. For any $a, b \in R$, if aRb = (0) implies either a = 0 or b = 0 then R is said to be a prime ring and if aRa = (0) implies a = 0 then R is called a semiprime ring. An additive subgroup L of R is called a Lie ideal of R if $[L, R] \subset L$. A Lie ideal L of R is said to be square-closed if $x^2 \in L$ for all $x \in L$. It is well-known that if L is square-closed, then $2xy \in L$ for all $x, y \in L$. Recall that an additive map $d: R \to R$ is said to be a derivation if $d(r_1r_2) =$ $d(r_1)r_2 + r_1d(r_2)$ for all $r_1, r_2 \in R$. A familiar example of a derivation is an inner derivation, which is a mapping $\phi_{\alpha}: R \to R$ given by $\phi_{\alpha}(r) = [\alpha, r]$ for all $r \in R$ and α be a fixed element of R. Let K be a nonempty subset of R and d a derivation of R. The derivation d is said to be a derivation acting as homomorphism (resp. anti-homomorphism) on K if d(xy) = d(x)d(y)(resp. d(xy) = d(y)d(x)) for all $x, y \in K$. Further, if $[d(x), x] \in Z(R)$ (resp. [d(x), x] = 0 for all $x \in K$ then d is called a centralizing derivation (resp. a commuting derivation) on K. By $C_R(K)$ we shall mean the centralizer of K, defined by $C_R(K) = \{x \in R : xk = kx \ \forall \ k \in K\}.$

²⁰¹⁰ Mathematics Subject Classification. Primary: 16N60; Secondary: 13N15.

Key words and phrases. Semiprime ring, Lie ideals, Derivation.

Full paper. Received 19 February 2019, revised 7 October 2019, accepted 24 October 2019, available online 28 October 2019.

In [9], Posner gave a remarkable and pioneering result on centralizing derivations of prime rings, which is stated as: If a prime ring R admits a centralizing derivation, then d = 0 or R is commutative. After that a number of generalizations of this result took place (see [1], [4], [5] and references therein). In [10], Awtar proved that: Let R be a prime ring of characteristic different from 2 and 3. Let d be a nonzero derivation of R, and U a Lie ideal of R with $[u, d(u)] \in Z(R)$ for all $u \in U$. Then $U \subseteq Z(R)$. Lee and Lee [5] improved this result by excluding the condition of 3-torsion freeness of R.

In the literature, there are many papers investigating the derivations acting as homomorphism or anti-homomorphism on prime rings, but very few on semiprime rings. In 1989, Bell and Kappe [11] proved that: If d is a derivation of a prime ring R which acts as homomorphism or as antihomomorphism on a nonzero right ideal I of R, then d = 0 on R. Yenigul and Argaç [12], Ashraf et al. [13] generalized this result by proving it for (σ, τ) -derivations of prime rings. In [14], Ali et al. extended this result to Lie ideals of prime rings. Precisely, they proved the following theorem:

Theorem 1.1. Let R be a 2-torsion free prime ring and U a nonzero Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If d is a derivation of R which acts as homomorphism or anti-homomorphism on U, then either d = 0 or $U \subseteq Z(R)$.

The following example demonstrates that one can not expect the above result for semiprime rings.

Example 1.1. Let R^1 be any noncommutative semiprime ring and S^1 be any commutative integral domain. Clearly, $R = S^1 \times R^1$ is a semiprime ring and $L = S^1 \times \{0\}$ is a nonzero Lie ideal of R. Let $\delta : R^1 \to R^1$ be a derivation of R^1 . We define a mapping $d : R \to R$ as $(s, r) \mapsto (0, \delta(r))$. Note that, d is a derivation of R that acts as homomorphism and as anti-homomorphism on L, but neither d = 0 nor $L \subseteq Z(R)$.

2. Preliminary Results

The commutator identities: [x, yz] = y[x, z] + [x, y]z, [xy, z] = x[y, z] + [x, z]y and the following results are extensively used in the main section:

Lemma 2.1 ([2], Corollary 2.1). Let R be a 2-torsion free semiprime ring, L a Lie ideal of R such that $L \not\subseteq Z(R)$ and let $a, b \in L$. (i) If aLa = (0), then a = 0. (ii) If aL = (0) (or La = (0)), then a = 0. (iii) If L is square-closed and aLb = (0), then ab = 0 and ba = 0.

Lemma 2.2 ([3], Lemma 2.4). Let R be a 2-torsion free semiprime ring, L a Lie ideal of R such that $L \not\subseteq Z(R)$ and let $a \in L$. If aLa = (0), then $a^2 = 0$ and there exists a nonzero ideal M = R[L, L]R of R generated by [L, L] such that $[M, R] \subseteq L$ and Ma = aM = 0. **Lemma 2.3.** Let R be a 2-torsion free semiprime ring and L be a noncentral square-closed Lie ideal of R. Then there exists a nonzero ideal M = R[L, L]R of R such that $2M \subseteq L$.

Proof. For the existence of such an ideal one must check Lemma 2.2. For any $x, y \in L$ and $r \in R$, $[x, yr] \in L$. And so we have $y[x, r] + [x, y]r \in L$. Since L is an additive subgroup of R so $2y[x, r] + 2[x, y]r \in L$. As L is square-closed so $2y[x, r] \in L$. The above expression yields that $2[x, y]r \in L$. For any $s \in R$, $2[x, y]rs - 2s[x, y]r \in L$. Therefore, $2s[x, y]r \in L$ for all $x, y \in L$ and $r, s \in R$. Hence, $2R[L, L]R \subseteq L$, i.e., $2M \subseteq L$. If M = R[L, L]R = (0), it implies that $(R[L, L])^2 = (0)$. Since R contains no non-zero nilpotent leftideal, it gives R[L, L] = (0) and so [L, L] = (0). With the aid of Lemma 1 of $[7], L \subseteq Z(R)$, which is a contradiction.

Remark 2.1. In [7], authors proved the following: Let R be a 2-torsion free semiprime ring, d be a derivation of R. If an element $a \in R$ satisfies ad(L) = (0), then ad(M) = (0) where M = R[L, L]R. Note that, above Lemma makes the proof of this result insignificant. Moreover, if d(L)a = 0 then d(M)a = 0.

Lemma 2.4 ([6], Remark 2.1). Let R be a ring, L a square-closed Lie ideal of R. Then $2R[L, L] \subseteq L$ and $2[L, L]R \subseteq L$.

Lemma 2.5 ([8], Corollary 1.4). Let R be a 2-torsion free semiprime ring and L be a non-central Lie ideal of R. Suppose $a \in R$ such that ax[x, y] = 0for all $x, y \in L$, then a[L, R] = (0), [a, L] = (0) and aM = (0), where M = R[L, L]R.

Lemma 2.6. Let R be a 2-torsion free semiprime ring and L be a nonzero Lie ideal of R. Then $C_R(L) = Z(R)$.

Proof. Clearly, $Z(R) \subseteq C_R(L)$. It is easy to see that $C_R(L)$ is both a Lie ideal and a subring of R. Since $C_R(L)$ can not contain a nonzero ideal of R, in the light of Herstein [[15], Lemma 1.3] $C_R(L) \subseteq Z(R)$. Hence, $C_R(L) = Z(R)$.

3. MAIN RESULTS

Now onwards R will denote a 2-torsion free semiprime ring and L a noncentral square-closed Lie ideal of R (unless otherwise mentioned).

Theorem 3.1. Let d is a derivation of R. If d is centralizing on L, then d maps R into Z(R).

Proof. First we show that d is commuting on L. By hypothesis, we have $[d(x), x] \in Z(R)$ for all $x \in L$. Since L is square-closed, we may find $[d(x^2), x^2] \in Z(R)$. That means

$$d(x)x + xd(x), x^{2}] = [[d(x), x], x^{2}] + 2[xd(x), x^{2}]$$

$$= 2[xd(x), x^{2}]$$

= 2x[xd(x), x] + 2[xd(x), x]x
= 4x^{2}[d(x), x] \in Z(R).

It implies that $[d(x), x^2[d(x), x]] = [d(x), x^2][d(x), x] = 0$ for all $x \in L$. Again by using our hypothesis, we obtain $2x[d(x), x]^2 = 0$. That is, $[d(x), x]^3 = 0$ for any $x \in L$. But the center of a semiprime ring does not contain nonzero nilpotent elements, so we must have [d(x), x] = 0 on L.

By Lemma 2.3, $2M \subseteq L$, we find that d is commuting on M = R[L, L]R. Therefore, R contains a central ideal generated by the set d(R)M (see the proof of Theorem 3 in [4]). That means, $\langle d(R)M \rangle \subseteq Z(R)$. Thus for any $r, s, p, q \in R$ and $x, y \in L$, we have [d(r)s[x, y]p, q] = 0. Replacing p by pr_1 , we get $d(r)s[x, y]p[r_1, q] = 0$. In particular, we have d(r)s[x, y]Rd(r)s[x, y] = (0) for all $x, y \in L$ and $r, s \in R$. That yields, d(r)R[x, y] = (0).

Now, we choose a family $\{P_{\alpha} : \alpha \in \Lambda\}$ of prime ideals of R such that $\bigcap P_{\alpha} = (0)$. Let P_{α} be a typical member of that family, so we have $\overline{R} = \frac{R}{P_{\alpha}}$ is a prime ring. Therefore, our last expression gives $\overline{d(R)R[\overline{L},\overline{L}]} = (\overline{0})$. The fact that \overline{R} is a prime ring implies that either $[\overline{L},\overline{L}] = (\overline{0})$ or $\overline{d(R)} = (\overline{0})$. If $[\overline{L},\overline{L}] = (\overline{0})$, then $\overline{L} \subseteq Z(\overline{R})$ by [[7], Lemma 1], that means $[L,R] \subseteq P_{\alpha}$. Therefore, we have either $d(R) \subseteq P_{\alpha}$ or $[L,R] \subseteq P_{\alpha}$.

Together with these both cases, we obtain $d(R)[L, R] \subseteq P_{\alpha}$ for any prime ideal P_{α} of R. It yields $d(R)[L, R] \subseteq \bigcap P_{\alpha}$, i.e., d(R)[L, R] = (0).

Now for any $r, s \in R$ and $x \in L$, we have d(r)[x, s] = 0. For some $p \in R$, replace s by sp in the last relation, we find d(r)s[x, p] = 0, where $r, s, p \in R$ and $x \in L$. In particular, we obtain [d(r), x]R[d(r), x] = (0) for all $x \in L$ and $r \in R$. Hence, we obtain [d(R), L] = (0).

In the latter case, if $L \subseteq Z(R)$, we clearly have the d(R)[L, R] = (0)and hence [d(R), L] = (0). In each case we have $d(R) \subseteq C_R(L)$. In light of Lemma 2.6, we get $d(R) \subseteq Z(R)$.

Immediately we have the following consequences of Theorem 3.1:

Corollary 3.1 ([5], Theorem 5). Let $d \neq 0$ is a derivation of a 2-torsion free prime ring R. If d is centralizing on L, then $L \subseteq Z(R)$. Further, d maps R into Z(R).

Corollary 3.2. If d and g be derivations of R such that d(x)y = xg(y) for all $x, y \in L$, then d and g both maps R into Z(R).

Proof. Let us assume that, $L \nsubseteq Z(R)$. For any $x, y \in L$, we consider d(x)y = xg(y). Replacing x by 2xz, where $z \in L$, we get 2d(x)zy + 2xd(z)y = 2xzg(y). Our hypothesis forces that,

(1)
$$d(x)zy = 0,$$

where $x, y, z \in L$. Substitute [d(x), y] for y in (1), we find

(2)
$$d(x)z[d(x),y] = 0.$$

Replacing z by 2yz in (2), we obtain

(3)
$$d(x)yz[d(x),y] = 0.$$

Multiplying (2) by y from the left hand side and subtracting from (3), we get [d(x), y]z[d(x), y] = 0 for all $x, y, z \in L$. In light of Lemma 2.1, we have [d(x), y] = 0 for any $x, y \in L$. In particular, we have [d(x), x] = 0 for all $x \in L$. Analogously, we can obtain [g(x), x] = 0 for all $x \in L$. Hence by Theorem 3.1, we get the conclusions.

Now, we are well occupied to prove our main result:

- **Theorem 3.2.** (i) Every derivation d of R that acts as homomorphism on L maps R into Z(R).
 - (ii) Every derivation d of R that acts as anti-homomorphism on L maps R into Z(R).

Proof. (i) By hypothesis, we have

(4)
$$d(xy) = d(x)d(y)$$
 for all $x, y \in L$.

Replacing x by 2wx in (4), where $w \in L$, we get 2d(w)xy + 2wd(xy) = 2d(w)xd(y) + 2wd(x)d(y). Since R is 2-torsion free, (4) yields

(5)
$$d(w)x(y - d(y)) = 0.$$

Replacing y by 2yz in (5), where $z \in L$, we get d(w)x(2yz - d(2yz)) = 0. Using the condition of 2-torsion free and expanding it, we get d(w)x(y - d(y))z - d(w)xyd(z) = 0 for all $x, y, w, z \in L$. By using (5), we obtain

(6)
$$d(w)xyd(z) = 0.$$

Interchanging the role of x and y in (6), we find

(7)
$$d(w)yxd(z) = 0.$$

On subtracting (7) from (6), we obtain

(8)
$$d(w)[x,y]d(z) = 0$$

where $x, y, w, z \in L$. Replace w by 2tw in (8), where $t \in L$, we have 2d(t)w[x, y]d(z) + 2td(w)[x, y]d(z) = d(t)w2[x, y]d(z) = 0. In particular, we have (2[x, y]d(z))L(2[x, y]d(z)) = (0). By Lemma 2.1 and Lemma 2.4, we have 2[x, y]d(z) = 0, and so [x, y]d(z) = 0 for all $x, y, z \in L$. Analogously, we have d(x)[y, z] = 0 for any $x, y, z \in L$. Now, using Lemma 2.3, we replace y and z by 2m and $2m_1$ in order to obtain, $d(x)[m, m_1] = 0$ for all $x \in L$ and $m, m_1 \in M = R[L, L]R$. Substituting $m_1d(x)$ for m_1 and expanding, we get $d(x)[m, m_1]d(x) + d(x)m_1[m, d(x)] = 0$. It reduces to $d(x)m_1[m, d(x)] = 0$ for all $x \in L$ and $m, m_1 \in M$. It implies that [d(x), m]M[d(x), m] = (0) for all $x \in L$ and $m \in M$. We know that every nonzero ideal of a semiprime ring is a semiprime ring in itself. Therefore, we obtain [d(x), m] = 0 for all $x \in L$ and $m \in M$. Now, as $R[L, L] \subseteq M$ so we put m = r[y, z] in the last expression, where $r \in R$ and $y, z \in L$, we find [d(x), r[y, z]] = 0.

Expanding last expression and using the fact that $[L, L] \subseteq M$ we obtain [d(x), r][y, z] = 0. Since L is square closed, substituting y^2 for y, we get [d(x), r]y[y, z] = 0 for each $x, y, z \in L$ and $r \in R$. Now, by Lemma 2.5, we get

(9)
$$[d(x), r][y, s] = 0 \text{ for all } x, y \in L \text{ and } r, s \in R.$$

For any $p \in R$, replacing s by sp in (9), we get [d(x), r]s[y, p] = 0. In particular, we have [d(x), x]R[d(x), x] = (0) for all $x \in L$. Since R is semiprime ring, we find that [d(x), x] = 0 for all $x \in L$. Hence, Theorem 3.1 completes the proof.

(ii) By hypothesis, we have

(10)
$$d(xy) = d(y)d(x) \text{ for all } x, y \in L.$$

Replacing x by 2xy in (10), we get $d(xy^2) = d(y)d(xy)$. By expanding it, we get d(xy)y + xyd(y) = d(y)d(x)y + d(y)xd(y) for all $x, y \in L$. Our hypothesis reduces it to

(11)
$$xyd(y) = d(y)xd(y)$$

For any $z \in L$, we replace x by 2zx in (11) in order to get

(12)
$$zxyd(y) = d(y)zxd(y)$$

Multiplying (11) by z from the left hand side and we have

(13)
$$zxyd(y) = zd(y)xd(y)$$

Combining (12) and (13) and we find [d(y), z]xd(y) = 0. By easy substitutions, we obtain [d(y), z]x[d(y), z] = 0 for any $x, y, z \in L$. That is, [d(y), z]L[d(y), z] = (0) where $y, z \in L$. By Lemma 2.1, [d(y), z] = 0 for all $y, z \in L$. In particular, for y = z, we have [d(y), y] = 0 for all $y \in L$. Again by Theorem 3.1, we obtain the desired results.

In the following example, we show that the hypothesis of semiprimeness in our Theorem 3.2 is essential.

Example 3.1. Let \mathbb{Z} be a ring of integers and

$$R = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) : a, b, c \in \mathbb{Z} \right\}, \qquad L = \left\{ \left(\begin{array}{cc} 0 & b \\ 0 & 0 \end{array} \right) : b \in \mathbb{Z} \right\}.$$

It is easy to verify that L is a noncentral Lie ideal of R and R not a semiprime ring. Let us define a mapping $d: R \to R$ such that

$$\left(\begin{array}{cc}a&b\\0&c\end{array}\right)\mapsto \left(\begin{array}{cc}0&-b\\0&0\end{array}\right).$$

We see that d is a derivation of R that satisfies F(XY) = F(X)F(Y) and F(XY) = F(Y)F(X) for all $X, Y \in L$. But $d(R) \not\subseteq Z(R)$.

Corollary 3.3. Every derivation d of R that acts as homomorphism or anti-homomorphism on L, is a commutativity preserving mapping.

Corollary 3.4. If d be a derivation of R that acts as homomorphism or anti-homomorphism on R, then there exists $\alpha \in C$ and an additive mapping $\psi: R \to C$ such that $d(x) = \alpha x + \psi(x)$ for all $x \in R$.

Proof. By Theorem 3.2, we get [d(R), R] = (0), i.e., d is commuting on R. In the view of Brešar [[16], Corollary 4.2], we get the desired conclusion. \Box

Corollary 3.5 ([14], Theorem 3.1). Let R be a 2-torsion free prime ring and L be a square-closed Lie ideal of R. If d is a derivation of R, which acts as homomorphism or anti-homomorphism on L, then either d = 0 or $L \subseteq Z(R)$.

Proof. Suppose that $L \not\subseteq Z(R)$. By Theorem 3.2, we obtain d(R)[L, R] = (0), i.e., d(r)[x, s] = 0 for any $r, s \in R$ and $x \in L$. Replacing r by $r_1 r$, where $r_1 \in R$, we get $d(r_1)R[x, r] = (0)$. By primeness of R we have either $d(r_1) = 0$ or [x, r] = 0. In view of our assumption, we get d = 0.

Acknowledgement

The authors would like to thank the anonymous referee for his/her comments that improved the readability of the paper.

References

- N. Argaç, On prime and semiprime rings with derivations, Algebra Colloquium, 13 (3) (2006), 371–380.
- [2] M. Hongan, N. Rehman, R. M. AL-Omary, *Lie ideals and Jordan triple derivations in rings*, Rendiconti del Seminario Matematico della Università di Padova, 125 (2011), 1–10.
- [3] N. Rehman, M. Hongan, Generalized Jordan derivation on Lie ideals associate with Hochschild 2-cocycles of rings, Rendiconti del Circolo Matematico di Palermo, 60 (2011), 437–444.
- [4] H. E. Bell, W. S. Martindale III, Centralizing mappings of semiprime rings, Canadian Mathematical Bulletin, 30 (1) (1987), 92–101.
- [5] P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bulletin of the Institute of Mathematics Academia Sinica, 11 (1983), 75–79.
- [6] N. Rehman, A. Z. Ansari, Generalized left derivations acting as homomorphisms and anti-homomorphisms on Lie ideals of rings, Journal of the Egyptian Mathematical Society, 22 (2014), 327–329.
- [7] L. Oukhtite, S. Salhi, L. Taoufiq, Strong commutativity preserving maps on Lie ideals of semiprime rings, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometyr, 49 (2) (2008), 441–447.
- [8] V. De Filippies, N. Rehman, A. Z. Ansari, *Lie ideals and generalized derivations in semiprime rings*, Iranian Journal Mathematical Sciences and Informatics, 10 (2) (2015), 45–54.
- [9] E. C. Posner, *Derivations in prime rings*, Proceedings of the American Mathematical Society, 8 (1957), 1093–1100.

- [10] R. Awtar, Lie and Jordan structures of prime rings with derivations, Proceedings of the American Mathematical Society, 41 (1973), 67–74.
- [11] H. E. Bell, L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Mathematica Hungarica, 53 (1989), 339–346.
- [12] M. Yenigul, N. Argaç, On prime and semiprime rings with α-derivations, Turkish Journal Mathematics, 18 (1994), 280–284.
- [13] M. Ashraf, N. Rehman, M.A. Quadri, On (σ, τ)-derivations in certain classes of rings, Radovi Matematički, 9 (2) (1999), 187–192.
- [14] A. Ali, N. Rehman, A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Mathematica Hungarica, 101 (1-2) (2003), 79–82.
- [15] I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, 1969.
- [16] M. Brešar, On certain pairs of functions of semiprime rings, Proceedings of the American Mathematical Society, 120 (2) (1994), 709–713.

GURNINDER S. SANDHU

DEPARTMENT OF MATHEMATICS PATEL MEMORIAL NATIONAL COLLEGE RAJPURA-140401 PUNJAB INDIA *E-mail address*: gurninder_rs@pbi.ac.in

DEEPAK KUMAR

DEPARTMENT OF MATHEMATICS PUNJABI UNIVERSITY PATIALA-147002 PUNJAB INDIA *E-mail address*: deep_math1@yahoo.com