On relationships between q-product identities and combinatorial partition identities

M.P. CHAUDHARY, SANGEETA CHAUDHARY, SONAJHARIA MINZ

Abstract. Andrews et al. [2] discussed about the combinatorial partition identities. We aim to present some relationships between q-product identities and combinatorial partition identities, by using and combining known formulas.

1. Introduction and Preliminaries

Throughout this paper, \mathbb{N}, \mathbb{Z}, and \mathbb{C} denote the sets of positive integers, integers, and complex numbers, respectively, and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. The following q-notations are recalled (see, e.g., [15, Chapter 6]): The q-shifted factorial $(a; q)_n$ is defined by

$$
(a; q)_n := \begin{cases}
1, & n = 0, \\
\prod_{k=0}^{n-1} (1 - aq^k), & n \in \mathbb{N},
\end{cases}
$$

where $a, q \in \mathbb{C}$ and it is assumed that $a \neq q^{-m} (m \in \mathbb{N}_0)$. We also write

$$
(a; q)_\infty := \prod_{k=0}^{\infty} (1 - aq^k) = \prod_{k=1}^{\infty} (1 - aq^{k-1}), \quad (a, q \in \mathbb{C}; \ |q| < 1).
$$

It is noted that, when $a \neq 0$ and $|q| \geq 1$, the infinite product in (1) diverges. So, whenever $(a; q)_\infty$ is involved in a given formula, the constraint $|q| < 1$ will be tacitly assumed.

The following notations are also frequently used:

$$
(a_1, a_2, \ldots, a_m; q)_n := (a_1; q)_n(a_2; q)_n \cdots (a_m; q)_n
$$
On relationships between q-product identities and combinatorial...

and

$$(a_1, a_2, \ldots, a_m; q)_\infty := (a_1; q)_\infty (a_2; q)_\infty \cdots (a_m; q)_\infty.$$

Ramanujan defined the general theta function $f(a, b)$ as follows (see, for details, [3, p. 31, Eq. (18.1)] and [4], see also [13]):

\begin{equation}
\begin{aligned}
f(a, b) &= 1 + \sum_{n=1}^{\infty} (ab)^{\frac{n(n-1)}{2}} (a^n + b^n) \\
&= \sum_{n=\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} = f(b, a), \quad (|ab| < 1).
\end{aligned}
\end{equation}

We find from (2) that

$$f(a, b) = a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}} f(a(ab)^n, b(ab)^{-n}) = f(b, a), \quad (n \in \mathbb{Z}).$$

Ramanujan also rediscovered the Jacobi’s famous triple-product identity (see [3, p. 35, Entry 19]):

\begin{equation}
\begin{aligned}
f(a, b) &= (-a; ab)_\infty (-b; ab)_\infty (ab; ab)_\infty,
\end{aligned}
\end{equation}

which was first proved by Gauss.

Several q-series identities emerging from Jacobi’s triple-product identity (3) are worthy of note here (see [3, pp. 36-37, Entry 22]):

\begin{equation}
\begin{aligned}
\phi(q) := \sum_{n=-\infty}^{\infty} q^{n^2} &= 1 + 2 \sum_{n=1}^{\infty} q^{n^2} = \\
&= \{(-q; q^2)_\infty\}^2 (q^2; q^2)_\infty = \frac{(-q; q^2)_\infty (q^2; q^2)_\infty}{(q; q^2)_\infty (-q^2; q^2)_\infty},
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\psi(q) := f(q, q^3) &= \sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}} = \frac{(q^2; q^2)_\infty}{(q; q^2)_\infty},
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
f(-q) := f(-q, -q^2) &= \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{n(3n-1)}{2}} = \\
&= \sum_{n=0}^{\infty} (-1)^n q^{\frac{n(3n-1)}{2}} + \sum_{n=1}^{\infty} (-1)^n q^{\frac{n(3n+1)}{2}} = (q; q)_\infty.
\end{aligned}
\end{equation}

Equation (6) is known as Euler’s Pentagonal Number Theorem. The following q-series identity:

$$(-q; q)_\infty = \frac{1}{(q; q^2)_\infty} = \frac{1}{\chi(-q)}$$

provides the analytic equivalence of Euler’s famous theorem: The number of partitions of a positive integer n into distinct parts is equal to the number of partitions of n into odd parts.
We also recall the Rogers-Ramanujan continued fraction of $R(q)$:

$$R(q) := q^{\frac{1}{5}} \frac{H(q)}{G(q)} = q^{\frac{1}{5}} \frac{f(-q, -q^4)}{f(-q^2, -q^3)} = q^{\frac{1}{5}} \frac{(q; q^5)_{\infty}(q^4; q^5)_{\infty}}{(q^2; q^5)_{\infty}(q^3; q^5)_{\infty}} =$$

$$= \frac{q^{\frac{1}{5}}}{1 + \frac{q}{1} + \frac{q^2}{1 + \frac{q^3}{1 + \ldots}}}, \quad (|q| < 1).$$

(7)

Here $G(q)$ and $H(q)$ are widely investigated Roger-Ramanujan identities defined by

$$G(q) := \sum_{n=0}^{\infty} \frac{q^{n^2}}{(q; q)_n} = \frac{f(-q^5)}{f(-q, -q^4)} =$$

$$= \frac{1}{(q^2; q^5)_{\infty}(q^4; q^5)_{\infty}} = \frac{(q^2; q^5)_{\infty}(q^3; q^5)_{\infty}(q^5; q^5)_{\infty}}{(q; q)_{\infty}},$$

(8)

$$H(q) := \sum_{n=0}^{\infty} \frac{q^{n(n+1)}}{(q; q)_n} = \frac{f(-q^5)}{f(-q^2, -q^3)} =$$

$$= \frac{1}{(q^2; q^5)_{\infty}(q^3; q^5)_{\infty}} = \frac{(q; q^5)_{\infty}(q^4; q^5)_{\infty}(q^5; q^5)_{\infty}}{(q; q)_{\infty}},$$

(9)

and the functions $f(a, b)$ and $f(-q)$ are given in (2) and (6), respectively. For a detailed historical account of (and for various investigated developments stemming from) the Rogers-Ramanujan continued fraction (7) and identities (8) and (9), the interested reader may refer to the monumental work [3, p. 77 et seq.] (see also [13, 15]).

The following continued fraction was recalled in [14, p. 5, Eq. (2.8)] from an earlier work cited therein: For $|q| < 1$,

$$(q^2; q^2)_{\infty}(-q; q)_{\infty} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} =$$

$$= \frac{1}{1 - \frac{q}{q(1-q)} - \frac{q^3}{q^2(1-q^2)} - \frac{q^5}{q^3(1-q^3)} - \ldots},$$

(10)
Andrews et al. [2] investigated new double summation hypergeometric \(q\)-series representations for several families of partitions and further explored the role of double series in combinatorial partition identities by introducing the following general family:

\[
R(s,t,l,u,v,w) := \sum_{n=0}^{\infty} q^{s(\frac{n}{2})+tn} r(l, u, v, w; n),
\]

where

\[
r(l, u, v, w : n) := \sum_{j=0}^{\left[\frac{n}{2}\right]} (-1)^j \frac{q^{uv(\frac{j}{2})+(w-ul)j}}{(q;q)_{n-wj}(q^{uv};q^{uv})_j}.
\]

The following interesting special cases of (10) are recalled (see [2, p. 106, Theorem 3], see also [13]):

\[
(11) \quad R(2, 1, 1, 1, 2, 2) = (-q; q^2)_{\infty},
\]

\[
(12) \quad R(2, 2, 1, 1, 2, 2) = (-q^2; q^2)_{\infty},
\]

\[
(13) \quad R(m, m, 1, 1, 1, 2) = \frac{(q^{2m}; q^{2m})_{\infty}}{(q^m; q^{2m})_{\infty}}.
\]

Here, we aim to present certain interrelations between \(q\)-product identities and combinatorial partition identities associated with the identities (4)-(6) and (11)-(13).
2. Sets of Preliminary Results

Here we recall the following results for the verification of the main results in section 3 (see [1, Theorem 5.1; 3, Entry 51, p. 204; 12, Theorem 3.1]).

(14) If \(U = \frac{\phi^4(-q)}{\phi^4(-q^3)} \) and \(V = \frac{\psi^4(q)}{\psi^4(q^3)} \), then \(U - UV = 9 - V \).

(15) If \(M = \frac{f^2(-q)}{q^6 f^2(-q^3)} \) and \(N = \frac{f^2(-q^2)}{q^3 f^2(-q^6)} \),
then \(MN + \frac{9}{MN} = \left(\frac{N}{M} \right)^3 + \left(\frac{M}{N} \right)^3 \).

(16) If \(U = \frac{\phi^4(q)}{\phi^4(q^3)} \), then \(\frac{f^4(q)f^4(-q^2)}{q^4 f^4(q^3)f^4(-q^6)} = \frac{U(U - 9)}{1 - U}, \quad U \neq 1 \).

3. The Main Results

Here we state and prove certain interesting interrelations among \(q \)-product identities and combinatorial partition identities.

Theorem 3.1. Each of the following relations holds true:

(17) \[
\left(9 - \frac{1}{q} \left\{ \frac{R(1,1,1,1,1,2)}{R(3,3,1,1,1,2)} \right\}^4 \right) \times \left(1 - \frac{1}{q} \left\{ \frac{R(1,1,1,1,1,2)}{R(3,3,1,1,1,2)} \right\}^4 \right) \\
\times \frac{(q,q,q^2,q^2,q^2,q^2;q^2)_\infty}{(q^3,q^3,q^3,q^3,q^3,q^3;q^3)_\infty} = \\
\frac{q^{\frac{1}{2}}(q^3,q^3,q^6,q^6,q^6;q^6)_\infty}{(q,q,q^2,q^2,q^2,q^2;q^2)_\infty} + 9q^{\frac{1}{2}}(q^3,q^3,q^6,q^6,q^6,q^6;q^6)_\infty \\
\times \frac{1}{q^{\frac{1}{2}}} \left\{ \frac{\{ R(1,1,1,1,1,2) \}^4 \{ R(12,12,1,1,1,2) \}^4 \{ q^3;q^6 \}^4 \{ q^6;q^{12} \}^4 \{ q^{12};q^{24} \}^4}{(q^2; q^2)_\infty (q^6; q^{12})^4 (q^{24}; q^{24})^4} \right\}^6 \\
+ q^{\frac{1}{2}} \left\{ \frac{R(2,2,1,1,1,2) \{ R(3,3,1,1,1,2) \}^4 \{ q^3;q^4 \}^4 \{ q^4; q^4 \}^4 \{ q^6; q^6 \}^4}{(q^4; q^4)_\infty (q^6; q^6)_\infty} \right\}^6 \\
\times \frac{(-q,-q,-q,-q; -q)_\infty (q^2,q^2,q^2,q^2;q^2)_\infty (q^3,q^3,q^3,q^3;q^3)_\infty}{(q,q^2,q^2,q^2,q^2,q^2)_\infty} \times \\
\times \frac{(q^3,q^3,q^3,q^3,q^3,q^3;q^3)_\infty}{(q^3,q^3,q^3,q^3,q^3,q^3;q^3)_\infty} = \\
\times \frac{R(1,1,1,1,1,2) \{ R(1,1,1,1,1,2) \}^4 \{ q^3,q^6,q^6 \}^4 - 9 \{ R(2,2,1,1,1,2) \}^4 \{ q^3,q^6,q^6 \}^4 \times \\
\times \{ (-q^3,q^6,q^6) \}^4 - \{ R(1,1,1,1,1,2) \}^4 \{ q^3,q^6,q^6 \}^4}{(q^3,q^6,q^6)_\infty} \times \\
\times \frac{(q^3,q^6,q^6)_\infty}{(q^3,q^6,q^6)_\infty} \times \frac{(q^3,q^6,q^6)_\infty}{(q^3,q^6,q^6)_\infty} \\
\times \frac{(q^3,q^6,q^6)_\infty}{(q^3,q^6,q^6)_\infty} \times \frac{(q^3,q^6,q^6)_\infty}{(q^3,q^6,q^6)_\infty} \times \frac{(q^3,q^6,q^6)_\infty}{(q^3,q^6,q^6)_\infty} \times \frac{(q^3,q^6,q^6)_\infty}{(q^3,q^6,q^6)_\infty}
\right\}^4.
Proof. First of all we have to prove our first identity (17). Applying (4)-(5), and further using (11)-(13), we get

\[U = \frac{\phi^4(-q)}{\phi^4(-q^3)} = \frac{(q, q, q, q^2, q^2, q^2; q^2)_{\infty}}{\{R(2, 1, 1, 1, 2)R(2, 2, 1, 1, 2, 2)\}^4} \times \frac{(-q^3, -q^3, -q^3, -q^3, -q^6, -q^6; -q^6; -q^6; -q^6)_{\infty}}{(q^3, q^3, q^3, q^3, q^6, q^6, q^6, q^6; q^6)_{\infty}} \]

(20)

and

\[V = \frac{\psi^4(q)}{q^4 \psi^4(q^3)} = \frac{1}{q} \left\{ R(1, 1, 1, 1, 1, 2) \right\}^4 \]

(21)

\[UV = \frac{(q, q, q, q^2, q^2, q^2; q^2)_{\infty}}{\{R(2, 1, 1, 1, 1, 2)R(2, 2, 1, 1, 2, 2)\}^4} \times \frac{(-q^3, -q^3, -q^3, -q^3, -q^6, -q^6, -q^6; -q^6; -q^6)_{\infty}}{q(q^3, q^3, q^3, q^3, q^6, q^6, q^6, q^6; q^6)_{\infty} \{R(3, 3, 1, 1, 1, 2)\}^4} \]

(22)

\[U - UV = \left(1 - \frac{1}{q} \left\{ \frac{R(1, 1, 1, 1, 1, 2)}{R(3, 3, 1, 1, 1, 2)} \right\}^4 \right) \times \frac{(q, q, q, q^2, q^2, q^2; q^2)_{\infty}}{\{R(2, 1, 1, 1, 1, 2)R(2, 2, 1, 1, 2, 2)\}^4} \times \frac{(-q^3, -q^3, -q^3, -q^3, -q^6, -q^6, -q^6; -q^6; -q^6)_{\infty}}{(q^3, q^3, q^3, q^3, q^6, q^6, q^6, q^6; q^6)_{\infty}} \]

(23)

using (20)-(23) into (14), we obtain required identity (17).

Further, we have to attempt to establish our second identity (18). Applying (6), we obtain:

\[M = \frac{f^2(-q)}{q^\frac{1}{6} f^2(-q^3)} = \frac{(q; q)_{\infty}^2}{q^\frac{1}{6} ((q^3; q^3)_{\infty})^2} \]

(24)

and

\[N = \frac{f^2(-q^6)}{q^\frac{1}{6} f^2(-q^6)} = \frac{(q^2; q^2)_{\infty}^2}{q^\frac{1}{6} ((q^6; q^6)_{\infty})^2} \]

(25)

with (24)-(25), and using (11)-(13), we have following identities

\[MN = \frac{(q, q, q^2, q^2, q^2; q^2)_{\infty}}{q^{\frac{1}{2}} (q^3, q^3, q^6, q^6, q^6, q^6; q^6)_{\infty}} \]

(26)

and

\[\frac{9}{MN} = \frac{9q^{\frac{1}{2}} (q^3, q^3, q^6, q^6, q^6, q^6; q^6)_{\infty}}{(q, q, q^2, q^2, q^2, q^2; q^2)_{\infty}}. \]

(27)
Combining (26) and (27) we get

\[(28) \quad MN + \frac{9}{MN} = \frac{(q, q, q^2, q^2, q^2, q^2)_\infty}{q^2(q^3, q^3, q^6, q^6, q^6, q^6; q^6)_\infty} + \frac{9q^2(q^3, q^3, q^6, q^6, q^6, q^6, q^6; q^6)_\infty}{q^2(q, q, q^2, q^2, q^2, q^2; q^2)_\infty}.\]

Also, we have

\[(29) \quad \frac{M}{N} = q^\frac{1}{6} \left\{(q; q^2)_\infty(q^6; q^6)_\infty(q^2; q^2)_\infty \right\}^2 = q^\frac{1}{6} \left\{R(2, 2, 1, 1, 1, 2)R(3, 3, 1, 1, 1, 2)(q; q^2)_\infty(q^2; q^4)_\infty \right\}^2.

Similarly,

\[(30) \quad \frac{N}{M} = \frac{1}{q^\frac{1}{6}} \left\{R(1, 1, 1, 1, 1, 2)R(12, 12, 1, 1, 1, 2)(q; q^2)_\infty(q^6; q^{12})_\infty(q^{12}; q^{24})_\infty \right\}^2.

Combining (29) and (30), we get

\[(31) \quad \left(\frac{N}{M}\right)^3 + \left(\frac{M}{N}\right)^3 = \frac{1}{q^\frac{1}{2}} \left\{R(1, 1, 1, 1, 1, 2)R(12, 12, 1, 1, 1, 2)(q; q^2)_\infty(q^6; q^{12})_\infty(q^{12}; q^{24})_\infty \right\}^6 + q^\frac{1}{2} \left\{R(2, 2, 1, 1, 1, 2)R(3, 3, 1, 1, 1, 2)(q; q^2)_\infty(q^2; q^4)_\infty \right\}^6,

equating (28) and (31), as precondition given in (15), we obtain the required identity (18).

Finally, we have to prove our third identity (19). In order to establish this identity, using (4) and (6), and further applying (11)-(13), we get

\[U = \left\{R(2, 1, 1, 1, 2, 2)R(1, 1, 1, 1, 1, 2)(q^3, -q^6; q^6)_\infty \right\}^4,

from which it follows

\[\Rightarrow U^2 - 9U = \frac{\{R(2, 1, 1, 1, 2, 2)R(1, 1, 1, 1, 1, 2)(q^3, -q^6; q^6)_\infty \}^4}{\{(-q^3, q^6; q^6)_\infty \}^4} \times \left\{R(1, 1, 1, 1, 1, 2)R(2, 1, 1, 1, 2, 2)(q^3, -q^6; q^6)_\infty \right\}^4 - 9\{R(2, 2, 1, 1, 1, 2)(-q^3, q^6; q^6)_\infty \}^4 \times \left\{(-q^3, q^6; q^6)_\infty \right\}^4 \times \left\{R(2, 2, 1, 1, 1, 2)(-q^3, q^6; q^6)_\infty \right\}^4 - \left\{R(1, 1, 1, 1, 1, 2)R(2, 1, 1, 1, 2, 2)(q^3, -q^6; q^6)_\infty \right\}^4.

Similarly, holds

\[(33) \quad \frac{f^4(q)f^4(-q^2)}{qf^4(q^3)f^4(-q^6)} = \frac{(-q, -q, -q, -q; -q)_\infty(q^2, q^2, q^2, q^2; q^2)_\infty}{q(-q^3, -q^3, -q^3, -q^3; -q^3)_\infty(q^6, q^6, q^6, q^6; q^6)_\infty},

equating (32) and (33), using in (16), we obtain (19). Hence, we complete proof of our theorem. □
4. Concluding Remarks and Observations

The present investigation was motivated by several recent developments dealing essentially with q-product identities and combinatorial partition identities. Here, in this article, we have established three presumably new inter-relationships that exist among q-product identities and combinatorial partition identities. We have also considered several closely-related identities such as (for example) q-product identities and Jacobi’s triple-product identities. We have chosen to indicate rather briefly a number of recent developments on the subject-matter of this article.

The list of citations, which we have included in this article, is believed to be potentially useful for indicating some of the directions for further researches and related developments on the subject-matter which we have dealt with here, and in particular, the recent works by Chaudhary et al. (see [11, 5, 8, 9, 7, 6, 10]).

5. Conflicts of Interest

All three authors declare that they have no conflict of interest.

6. Acknowledgement

The research work of the second named author (Sangeeta Chaudhary) has been sponsored by the UGC Dr. D. S. Kothari Post Doctoral Fellowship Scheme by its letter ref No. F.4-2/2006 (BSR)/MA/18-19/0022.

REFERENCES

M.P. CHAUDHARY
DEPARTMENT OF MATHEMATICS
NETaji SUBHAS UNIVERSITY OF TECHNOLOGY
NEW DELHI 110078
INDIA
E-mail address: dr.m.p.chaudhary@gmail.com

SANGEETA CHAUDHARY
SCHOOL OF COMPUTATER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI 110067
INDIA

SONAJHARIA MINZ
SCHOOL OF COMPUTATER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI 110067
INDIA