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On coupled systems of fractional impulsive
differential equations by using a new
Caputo-Fabrizio fractional derivative

Ahmed Boudaoui, Abdeldjalil Slama

Abstract. In this paper, we investigate the existence and uniqueness
of solutions for coupled system of Caputo-Fabrizio fractional impul-
sive differential equations using the fixed point approach in generalized
metric spaces. The compactness of solution sets of the system is also
investigated. An example is provided to illustrate the developed theory.

1. Introduction

The fractional calculus is nowadays a very attractive subject to mathe-
maticians, and many different forms of fractional differential operators were
introduced. To increase the applicability of the fractional calculus, some
authors proposed a new type of fractional derivatives possessing different
kernels. The most used definitions proposed by Riemann-Liouville and the
first Caputo version has the weakness that their kernel had singularity [9]. A
recent new definition of fractional derivative without singular kernel has been
provided by Caputo and Fabrizio [15] and its properties were discussed in
[22]. A fractional order derivative is important for developing mathematical
models in many scientific and engineering disciplines (see [7]). Several quali-
tative results for different classes of differential equations with different types
of fractional integral and derivatives were obtained in [1, 3, 17, 23, 25, 27, 28].

Thereby, many evolution processes in physics, chemical technology, pop-
ulation dynamics, and natural sciences may change state abruptly or be
subject to short-term perturbations. These perturbations may be seen as
impulses, which led to define a class of differential equations known as im-
pulsive differential equations. We refer to [12, 21] for an introduction to
the theory of impulsive differential equations. Recently, several papers have
been devoted to study the solutions of differential equations with new types
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of fractional derivatives and their applications, see [8, 5, 10, 14] and the
references therein.

Coupled systems of fractional-order differential equations appear in the
mathematical formulation of several real areas like physics, engineering,
chemistry, biology, viscoelasticity etc. [11, 24]. Recently, the study of ex-
istence and uniqueness of solutions of coupled systems of fractional order
differential equations has also attracted some attention. Alsaedi et al. [5]
examined the existence of solutions for a coupled system of time-fractional
differential equations and inclusions by using the new Caputo-Fabrizio frac-
tional derivative. Recently, Berrezoug et al. [13] studied the existence and
uniqueness, continuous dependence on initial conditions and the bounded-
ness of solutions for a system of impulsive differential equations using the
fixed point approach in vector Banach spaces. Very recently, Chalishajar
and Kumar [16] investigated the existence and uniqueness of the solutions
to a fractional order nonlinear coupled system with integral boundary con-
ditions. Furthermore, Ulam’s type stability of the proposed coupled system
is studied. For more results on the study of coupled systems of fractional
differential equations, we refer to [2, 5, 4, 20, 13] and the references therein.

In this paper, we consider the following coupled system of fractional im-
pulsive differential equations involving the Caputo-Fabrizio fractional deriv-
ative:

(1)



(
Dα
t x
)

(t) = f1(t, x, y),(
Dβ
t y
)

(t) = f2(t, x, y),
t ∈ [0, T ], t 6= tk, k = 1, . . . ,m,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(tk), y(tk)),

∆y(tk) = y(t+k )− y(t−k ) = Ik(x(tk), y(tk)),
k = 1, . . . ,m,

x(0) = x0, y(0) = y0,

where Dα
t , D

β
t are the Caputo-Fabrizio fractional derivative of order α

and β, 0 < α, β < 1. Here 0 = t0 ≤ t1 ≤ · · · ≤ tm ≤ tm+1 = T ,
∆x(tk) = Ik(x(t−k )) = x(t+k )− x(t−k ), x(t+k ) = limh→0 x(tk + h) and x(t−k ) =
limh→0 x(tk − h) represent the right and left limits of x(t) at t = tk respec-
tively. x0, y0 ∈ R, f1, f2 : J × R× R→ R are continuous functions and Ik ,
Ik ∈ C(R× R,R) are given functions.

The rest of this paper is organized as follows. In Section 2, we introduce
all the background material used in this paper such as definition of Caputo-
Fabrizio derivatives of fractional order and some properties of generalized
Banach spaces and fixed point theory. In Sections 3 and 4, using Perov’s
and Schaefer fixed point type theorems in generalized Banach spaces, we
prove some existence and compactness results for problem (1). An example
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is given to demonstrate the application of our main results in section 4.
Finally, a conclusion is given in section 5.

2. Preliminaries

For completeness, in this section, we will give some notations, basic defini-
tions and some fundamental facts of Caputo-Fabrizio derivatives of fractional
order which can be found in [15] and [22].

Definition 1. The α order Caputo-Fabrizio time fractional differential de-
rivative of the function u is written as

(2)
(
CFDα

t u
)

(t) =
(2− α)M(α)

2(1− α)

∫ t

0
exp

[
−α(t− s)

1− α

]
u′(s)ds, t ≥ 0,

where M(α) represents a normalization function such that M(0) = M(1) =
1, 0 < α < 1, and u ∈ H1(0, b), b > 0.

Note that, according to the definition 1, the new definition of fractional
derivative is zero when u is constant, as in the usual Caputo fractional time
derivative, but contrary to the usual Caputo fractional time derivative, the
kernel does not have singularity for t = s [15, 22].

The notion of Caputo-Fabrizio time-fractional integral is,

Definition 2. Let 0 < α < 1. the fractional integral of order α of a function
f is defined by,

(3)
(
CF Iαt f

)
(t) =

2(1− α)

(2− α)M(α)
f(t) +

2α

(2− α)M(α)

∫ t

0
f(s)ds, t ≥ 0,

where M(α) represents a normalization function and 0 < α < 1.

Losada and Nieto [22] note that the fractional integral of Caputo-Fabrizio
type of a function of order 0 < α < 1 is an average between function f and
its integral of order one.

With imposing
2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
= 1,

we obtain an explicit formula for M(α),

M(α) =
2

2− α
, 0 < α < 1.

By substituting M(α) in (1), we obtain the definition of the fractional
Caputo-Fabrizio derivative of order 0 < α < 1 for a function u as follows:

Definition 3. Let 0 < α < 1. The fractional Caputo-Fabrizio derivative of
order α of a function u is given by

(4)
(
CFDα

t u
)

(t) =
1

1− α

∫ t

0
exp

(
− α

1− α
(t− s)

)
u′(s)ds, t ≥ 0.
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Lemma 1 ([22]). Let 0 < α < 1 and u be a solution of the following
fractional differential equation,

(5)
(
CFDα

t u
)

(t) = 0,

Then, u is a constant function. The converse, is also true.

Lemma 2 ([22]). Suppose that f ∈ L1([0, T ]) and 0 < α < 1. Then, the
unique solution of the following initial value problem

(6)

(
CFDα

t u
)

(t) = f(t),

u(0) = u0 ∈ R
is given by

(7) u(t) = u0 +Aα(f(t)− f(0)) +Bα
∫ t
0 f(s)ds,

where Aα =
2(1− α)

(2− α)M(α)
and Bα =

2α

(2− α)M(α)
.

Lemma 3. Let f : [0, T ] × R × R → R be a continuous function with
f(0, x) = 0, ∀x ∈ R, and 0 < α < 1. Then, a function x is a solution of the
following initial value problem

(8)


(Dα

t x) (t) = f(t, x), t ∈ [0, T ], t 6= tk,

∆x(t) = Ik(x(tk)), k = 1, . . . ,m,

x(0) = x0,

if and only if

(9) x(t) =



x0 +Aαf(t, x) +Bα
∫ t
0 f(s, x(s))ds, t ∈ [0, t1],

x0 +Aαf(t, x) +Bα
∫ t
0 f(s, x(s))ds +I1(x(t1)),

t ∈ (t1, t2],
...

...

x0 +Aαf(t, x) +Bα
∫ t
0 f(s, x(s))ds +

k∑
i=1

Ii(x(ti)),

t ∈ (tk, tk+1].

Proof. Assume x satisfies (8). If t ∈ [0, t1], then

(Dα
t x) (t) = f(t, x).

Lemma (2) implies

x(t) = x0 +Aαf(t, x) +Bα

∫ t

0
f(s, x(s))ds.

If t ∈ (t1, t2] then Lemma (2) implies

x(t) = x(t+1 ) +Aα
(
f(t, x)− f(t+1 , x(t+1 ))

)
+Bα

∫ t

t1

f(s, x(s))ds
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= I1(x(t1)) + x(t1) +Aα
(
f(t, x)− f(t+1 , x(t+1 ))

)
+Bα

∫ t

t1

f(s, x(s))ds

= I1(x(t1)) + x0 +Aα(f(t1, x(t1))− f(0, x0))

+Bα

∫ t1

0
f(s, x(s))ds

+Aα
(
f(t, x)− f(t+1 , x(t+1 ))

)
+Bα

∫ t

t1

f(s, x(s))ds

= I1(x(t1)) + x0 +Aα (f(t, x)− f(0, x0)))

+Bα

∫ t

0
f(s, x(s))ds

= I1(x(t1)) + x0 +Aαf(t, x) +Bα

∫ t

0
f(s, x(s))ds.

If t ∈ (t2, t3], then from Lemma (2) we get

x(t) = x(t+2 ) +Aα
(
f(t, x)− f(t+2 , x(t+2 ))

)
+Bα

∫ t

t2

f(s, x(s))ds

= I2(x(t2)) + x(t2) +Aα
(
f(t, x)− f(t+2 , x(t+2 ))

)
+Bα

∫ t

t2

f(s, x(s))ds

= I2(x(t2)) + I1(x(t1)) + x0 +Aα(f(t2, x(t2))− f(0, x0))

+Bα

∫ t2

0
f(s, x(s))ds

+Aα
(
f(t, x)− f(t+2 , x(t+2 ))

)
+Bα

∫ t

t2

f(s, x(s))ds

= I1(x(t1)) + I2(x(t2)) + x0 +Aα (f(t, x)− f(0, x0)))

+Bα

∫ t

0
f(s, x(s))ds

= I1(x(t1)) + I2(x(t2)) + x0 +Aαf(t, x) +Bα

∫ t

0
f(s, x(s))ds.

If t ∈ (tk, tk+1], then again from Lemma (2) we get

x(t) = x0 +

k∑
i=1

Ii(x(ti)) +Aαf(t, x) +Bα

∫ t

0
f(s, x(s))ds.

Conversely, assume that x satisfies the impulsive fractional integral equa-
tion (9). If t ∈ [0, t1] then x(0) = x0 and we can easily show that

∆x|t=tk = Ik(x(tk)), k = 1 . . . ,m,
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and using the fact that DαC = 0, where C is a constant and the definition
1 we get

(Dα
t x) (t) = f(t, x), t ∈ [0, t1] ∪ (tk, tk+1], k = 1, . . . ,m. �

In the following, we introduce some notations and definitions of general-
ized metric space.

If x, y ∈ Rm, with x = (x1, · · · , xm) and y = (y1, . . . , ym), then by x ≤ y
we mean xi ≤ yi for all i = 1, . . . ,m. Also we set |x| = (|x1|, . . . , |xm|),
max(x, y) = (max(x1, y1), . . . ,max(xm, ym)) and Rm+ = {x ∈ Rm : xi > 0}.
If c ∈ R, then x ≤ c means xi ≤ c for each i = 1, . . . ,m.

Definition 4. Let X be a nonempty set and consider space Rm+ endowed
with the usual component-wise partial order. The mapping d : X×X → Rm+
which satisfies all the usual axioms of the metric is called a generalized metric
in Perov’s sense and (X, d) is called a generalized metric space.

Let (X, d) be a generalized metric space in Perov’s sense with

d(x, y) :=

 d1(x, y)
...

dm(x, y)

 , (x, y) ∈ X ×X.

For r = (r1, . . . , rm) ∈ Rm+ , we will denote by

B(x0, r) = {x ∈ X : d(x0, x) < r} =

= {x ∈ X : di(x0, x) < ri, i = 1, . . . ,m},
the open ball centered in x0 with radius r and

B(x0, r) = {x ∈ X : d(x0, x) ≤ r} =

= {x ∈ X : di(x0, x) ≤ ri, i = 1, . . . ,m},
the closed ball centered in x0 with radius r.

We mention that for a generalized metric space, the notions of open sub-
set, closed set, convergence, Cauchy sequence, and completeness are similar
to those in the usual metric spaces.

Definition 5. A square matrix A of real numbers is said to be convergent
to zero if and only if An → 0 as n→∞.

Lemma 4 (see [18]). Let A ∈ Mm,m(R+). Then the following statements
are equivalent:

• A is a matrix convergent to zero;
• The eigenvalues of A are in the open unit disc, i.e., |λ| < 1, for
every λ ∈ C with det(A − λI) = 0; where I denote the unit matrix
ofMm,m(R+),
• The matrix I−A is non-singular and (I−A)−1 = I+A+· · ·+An+· · · ;
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• The matrix I − A is non-singular and (I − A)−1 has nonnegative
elements;
• Anq → 0 and qAn → 0 as n→∞, for any q ∈ Rm.

Some examples of matrices convergent to zero can be found in [18].

Definition 6. Let (X, d) be a generalized metric space. An operator N :
X → X is said to be contractive if there exists a convergent to zero matrix
A such that

d(N(x), N(y)) ≤ Ad(x, y), ∀x, y ∈ X.

Theorem 1 (Perov’s fixed point theorem, see [26]). . Let (X, d) be a com-
plete generalized metric space and N : X → X be a contractive operator
with Lipschitz matrix A. Then N has a unique fixed point x∗ and for each
x0 ∈ X we have

d(Nk(x0), x
∗) ≤ Ak(I −A)−1d(x0, N(x0)), ∀k ∈ N.

Now, we state Schaefer fixed point theorem type in generalized Banach
space.

Theorem 2 ([19]). . Let X be a generalized Banach space and let G : X →
X be completely continuous. Then, either

(1) the operator equation x = Tx has a solution, or
(2) the set

E = {x ∈ X : x = λN(x), λ ∈ (0, 1)}

is unbounded.

3. Existence and uniqueness of the solution

For a given T > 0, let Jk = (tk, tk+1], k = 1, 2, . . . ,m. In order to define a
solution for problem (1), consider the following space of picewise continuous
functions:

PC(J,R) =
{
y : [0, T ]→ R, yk ∈ C(Jk,R) for k = 0, . . .m,

and there exist y(t−k )andy(t+k )

with y(tk) = y(t−k ), k = 1, . . . ,m
}
,

endowed with the norm

‖y‖ = sup
t∈[0,T ]

(|y(t)|).

It is not difficult to check that PC(J,R) is a Banach space with norm ‖.‖.
Now, we first define the solution to our problem.
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Definition 7. A function (x, y) ∈ PC(J,R) × PC(J,R) is said to be a
solution of (1) if and only if

(10)



x(t) = x0 +Aαf1(t, x, y) +Bα

∫ t

0
f1(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk)),

y(t) = y0 +Aβf2(t, x, y) +Bβ

∫ t

0
f2(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk)).

First, we will list the following hypotheses which will be imposed in our
main theorem.
(H1) There exist constants li > 0, i = 1, . . . , 4, such that

‖f1(t, x, y)− f1(t, x, y)‖ ≤ l1‖x− x‖+ l2‖y − y‖,

and

‖f2(t, x, y)− f2(t, x, y)‖ ≤ l3‖x− x‖+ l4‖y − y‖,

for all x, x, y, y ∈ R;
(H2) There exist constants a1k, a2k, b1k, b2k ≥ 0 , k = 1, . . . ,m, such that

‖Ik(x, y)− Ik(x, y)‖ ≤ a1k‖x− x‖+ a2k‖y − y‖,

and

‖Ik(x, y)− Ik(x, y)‖ ≤ b1k‖x− x‖+ b2k‖y − y‖,

for all x, x, y, y ∈ R.
We will use the Perov fixed point theorem to prove the existence of a

solution to the problem (1).

Theorem 3. Assume that (H1) - (H2) are satisfied and the matrix

(11) M =

 Aαl1 +BαT l1 +
m∑
k=1

a1k Aαl2 +BαT l2 +
m∑
k=1

a2k

Aβl3 +BβT l3 +
m∑
k=1

b1k Aβl4 +BβT l4 +
m∑
k=1

b2k


converges to zero and f1(·, 0, 0) = f2(·, 0, 0) = Ik(0, 0) = Ik(0, 0) = 0. Then
the problem (1) has unique solution.

Proof. Consider the operator N : PC × PC → PC × PC defined by

N(x, y) = (N1(x, y), N2(x, y)),

where
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N1(x, y)(t) = x0 +Aαf1(t, x, y) +Bα

∫ t

0
f1(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk))

and

N2(x, y)(t) = y0 +Aβf2(t, x, y) +Bβ

∫ t

0
f2(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk)).

We show that N was well defined. Given (x, y) ∈ PC × PC, t ∈ [0, T ],
we have

‖N1(x, y)‖ ≤ ‖x0‖+Aα‖f1(t, x, y)‖+Bα

∫ t

0
‖f1(s, x(s), y(s))‖ds

+
∑

0≤tk≤t
‖Ik(x(tk), y(tk))‖

≤ ‖x0‖+Aα(l1‖x‖+ l2‖y‖) +BαT [l1‖x‖+ l2‖y‖]

+
m∑
k=1

[‖a1k‖x‖+ a2k‖y‖].

Similarly we have

‖N2(x, y)‖ ≤ ‖y0‖+Aβ(l3‖x‖+ l4‖y‖) +BβT [l3‖x‖+ l4‖y‖]

+
m∑
k=1

[‖b1k‖x‖+ b2k‖y‖].

Thus(
‖N1(x, y)‖
‖N2(x, y)‖

)
≤
(
‖x0‖
‖y0‖

)
+

+

 Aαl1 +BαT l1 +
m∑
k=1

a1k Aαl2 +BαT l2 +
m∑
k=1

a2k

Aβl3 +BβT l3 +
m∑
k=1

b1k Aβl4 +BβT l4 +
m∑
k=1

b2k

 · ( ‖x‖‖y‖
)
.

This implies that N is well defined.
Clearly, fixed points of N are solutions of problem (1). We show that N

is a contraction. Let (x, y), (x, y) ∈ PC ×PC. Then (H1 ) and (H2 ) imply

‖N1(x, y)−N1(x, y)‖ ≤ Aα‖f1(t, x, y)− f1(t, x, y)‖

+Bα

∫ t

0
‖f1(s, x, y)− f1(t, x, y)‖ds
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+
∑

0≤tk≤t
(‖Ik(x, y)− Ik(x, y)‖

≤ Aα[l1‖x− x‖+ l2‖y − y‖]
+BαT [l1‖x− x‖+ l2‖y − y‖]

+
m∑
k=1

[a1k‖x− x‖+ a2k‖y − y‖]

≤ (Aαl1 +BαT l1 +
m∑
k=1

a1k)‖x− x‖

+ (Aαl2 +BαT l2 +
m∑
k=1

a2k)‖y − y‖.

Similarly, we have

‖N2(x, y)−N2(x, y)‖ ≤ (Aβl3 +BβT l3 +
m∑
k=1

b1k)‖x− x‖

+ (Aβl4 +BβT l4 +
m∑
k=1

b2k)‖y − y‖.

It follows that

‖N(x, y)−N(x, y)‖ ≤M
(
‖x− x‖
‖y − y‖

)
, for all (x, y), (x, y) ∈ PC × PC.

Hence, by Theorem 1, the operator N has a unique fixed point which is a
solution of problem (1). �

4. Existence and compactness of solution sets

In this section we prove some existence and compactness results for prob-
lem (1) by application of Schaefer fixed point type theorem in generalized
Banach spaces. We consider the following hypotheses

(H3) There exist c1, c2 ≥ 0 such that

‖f1(t, x, y)‖ ≤ c1‖x‖+ c2‖y‖, for all x, y,∈ R.

(H4) There exist c3, c4 ≥ 0 such that

‖f2(t, x, y)‖ ≤ c3‖x‖+ c4‖y‖, for all x, y,∈ R.

(H5) There exist constants d1k, d2k, ≥ 0 , k = 1, . . . ,m, such that

‖Ik(x, y)‖ ≤ d1k‖x‖+ d2k‖y‖, for all x, y,∈ R.

(H6) There exist constants e1k, e2k ≥ 0 , k = 1, . . . ,m, such that

‖Ik(x, y)‖ ≤ e1k‖x‖+ e2k‖y‖, for all x, y,∈ R.
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Now, we give prove of the existence result of problem (1) by using nonlin-
ear alternative of Schaefer fixed point theorem type in generalized Banach
space.

Theorem 4. Assume that the hypotheses (H3)-(H6) hold. Then, the prob-
lem (1) has a solution defined on [0, T ]. Moreover, the solution set

(12) S = {(x, y) ∈ PC × PC, (x, y) is solution of (1)},
is compact.

Proof. Let N : PC(J,R)×PC(J,R)→ PC(J,R)×PC(J,R) be an operator
defined in the proof of Theorem 3.

In order to apply theorem 2, we first show that N is completely continu-
ous. The proof will be given in several steps.

Step 1. N(·, ·) is continuous. Let (xn, yn) be a sequence such that (xn, yn)→
(x, y) ∈ PC(J,R)× PC(J,R) as n→∞. Then

‖N1(xn, yn)−N1(x, y)‖ ≤ Aα‖f1(t, xn, yn)− f1(t, x, y)‖

+Bα

∫ t

0
‖f1(s, xn, yn)− f1(t, x, y)‖ds

+
∑

0≤tk≤t
(‖Ik(xn, yn)− Ik(x, y)‖.

Since f1 and Ik are a continuous functions. Thus

‖N1(xn, yn)−N1(x, y)‖ → 0 as n→∞.
Similarly, we can get,

‖N2(xn, yn)−N2(x, y)‖ → 0 as n→∞.
Thus N is continuous.

Step 2. N maps bounded sets into bounded sets in PC(J,R)× PC(J,R).
Indeed, it is enough to show that for any q > 0 there exists a positive
constant l such that for each (x, y) ∈ Bq = {(x, y) ∈ PC(J,R)× PC(J,R) :
‖x‖ ≤ q, ‖y‖ ≤ q}, we have

N(x, y) ≤ l = (l1, l2).

Then for each t ∈ [0, T ], we get

‖N1(x, y)‖ ≤ ‖x0‖+Aα‖f1(t, x, y)‖+Bα

∫ t

0
‖f1(s, x(s), y(s))‖ds

+
∑

0≤tk≤t
‖Ik(x(tk), y(tk))‖

≤ ‖x0‖+Aα[c1‖x‖+ c2‖y‖] +BαT [c1‖x‖+ c2‖y‖]

+

m∑
k=1

[d1k‖x‖+ d2k‖y‖]
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≤ ‖x0‖+ q
(
Aα[c1 + c2] +BαT [c1 + c2] +

m∑
k=1

[d1k + d2k]
)

:= l1.

Similarly, we have

‖N2(x, y)‖ ≤ ‖y0‖+ q
(
Aβ[c3 + c4] +BβT [c3 + c4] +

m∑
k=1

[e1k + e2k]
)

:= l2.

Step 3. N maps bounded sets into equicontinuous sets of PC([0, T ],R) ×
PC([0, T ],R). Let Bq be a bounded set in PC(J,R)× PC(J,R) as in Step
2. Let r1, r2 ∈ J , r1 < r2 and u ∈ Bq. Thus we have

‖N1(x(r2), y(r2))−N1(x(r1), y(r1))‖ ≤
≤ Aα‖f1(r2, x(r2), y(r2))− f1(r1, x(r1), y(r1))‖+

+Bα

∫ r2

r1

‖f1(s, x(s), y(s)))‖ds+
∑

r1≤tk≤r2

(‖Ik(x, y)‖.

This implies that ‖N1(x(r2), y(r2)) − N1(x(r1), y(r1))‖ → 0 whenever
r2 → r1. As a consequence of Steps 1 to 3 together with the Arzelà-Ascoli,
we conclude that N maps Bq into a precompact set in PC(J,R)×PC(J,R).

Similarly, we have

‖N2(x(r2), y(r2))−N2(x(r1), y(r1))‖ ≤
≤ Aβ‖f2(r2, x(r2), y(r2))− f2(r1, x(r1), y(r1))‖+

+ Bβ

∫ r2

r1

‖f2(s, x(s), y(s)))‖ds+
∑

r1≤tk≤r2

‖Ik(x, y)‖.

Again, by utilizing the Arzelà-Ascoli theorem we observe that N2 is com-
pletely continuous. Therefore, we get ‖N2(x(r2), y(r2))−N2(x(r1), y(r1))‖ →
0 whenever r2 tends to r2. Thus, N is completely continuous operator.

Step 4. It remains to show that

A =
{

(x(·), y(·)) ∈ PC(J,R)× PC(J,R) :

(x(·), y(·)) = λN(x(·), y(·)), λ ∈ (0, 1)
}

is bounded.
Let (x, y) ∈ A. Then x = λN1(x, y) and y = λN2(x, y) for some

0 < λ < 1. Thus, for t ∈ [0, b], we have
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|x(t)| ≤ |x0|+Aα|f1(t, x(t), y(t))|+Bα

∫ t

0
|f1(s, x(s), y(s))|ds

+
∑

0≤tk≤t
|Ik(x(tk), y(tk))|

≤ ‖x0‖+Aα[c1‖x‖+ c2‖y‖] +BαT [c1‖x‖+ c2‖y‖]

+

m∑
k=1

[d1k‖x‖+ d2k‖y‖]

and

|y(t)| ≤ |y0|+Aβ|f2(t, x(t), y(t))|+Bβ

∫ t

0
|f2(s, x(s), y(s))|ds

+
∑

0≤tk≤t
|Ik(x(tk), y(tk))|

≤ ‖y0‖+Aβ[c3‖x‖+ c4‖y‖] +BβT [c3‖x‖+ c4‖y‖]

+

m∑
k=1

[e1k‖x‖+ e2k‖y‖].

Therefore

|x(t)|+ |y(t)| ≤ C +
(
Aαc1 +BαTc1 +

m∑
k=1

d1k +Aαc3

+BαTc3 +

m∑
k=1

e1k

)
‖x‖

+
(
Aβc2 +BβTc2 +

m∑
k=1

d2k +Aβc4

+BβTc4 +

m∑
k=1

e2k

)
‖y‖

≤ C + max(γ1, γ2)(‖x‖+ ‖y‖), for all t ∈ [0, T ],

where
C = ‖x0‖+ ‖y0‖

and

γ1 = Aαc1 +BαTc1 +

m∑
k=1

d1k +Aαc3 +BαTc3 +

m∑
k=1

e1k,

γ2 = Aβc2 +BβTc2 +

m∑
k=1

d2k +Aβc4 +BβTc4 +

m∑
k=1

e2k.
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Hence
‖x‖+ ‖y‖ ≤ C + max(γ1, γ2)(‖x‖+ ‖y‖).

This implies that

‖x‖+ ‖y‖ ≤ C

1−max(γ1, γ2)
:= K.

Consequently
‖x‖ ≤ K and ‖y‖ ≤ K.

This shows that A is bounded. As a consequence of Theorem 2 we deduce
that N has a fixed point (x(·), y(·)) which is a solution to the problem (1).

Step 5. Compactness of the solution sets. We will show that the set

S = {(x, y) ∈ PC × PC, (x, y) is solution of (1)}

is compact.
Let {(xn, yn)}n∈N be a sequence in S(x0, y0). For every n ∈ N, we get

xn(t) = x0 +Aαf1(t, xn, yn) +Bα

∫ t

0
f1(s, xn(s), yn(s))ds

+
∑

0≤tk≤t
Ik(xn(tk), yn(tk)),

and

yn(t) = y0 +Aβf2(t, xn, yn) +Bβ

∫ t

0
f2(s, xn(s), yn(s))ds

+
∑

0≤tk≤t
Ik(xn(tk), yn(tk)),

and set B = {(xn, yn) : n ∈ N} ⊂ PC(J,R)× PC(J,R). From earlier parts
of the proof of this theorem, we see that B is bounded and equicontinuous.
Then, from the Ascoli-Arzelà theorem, we can conclude that B is compact.
Hence, (xn, yn)n∈N has a subsequence (xnk

, ynk
)nk∈N ⊆ S that converges to

some (x(·), y(·)) ∈ PC(J,R)× PC(J,R). Let

zx(t) = x0 +Aαf1(t, x, y) +Bα

∫ t

0
f1(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk)),

and

zy(t) = y0 +Aβf2(t, x, y) +Bβ

∫ t

0
f2(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk)).
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Then

|xnk
− zx(t)| ≤ Aα|f1(t, xnk

, ynk
)− f1(t, x, y)|

+Bα

∫ t

0
|f1(s, xnk

(s), ynk
(s))− f1(s, x(s), y(s))|ds

+
∑

0≤tk≤t
|Ik(xnk

(tk), ynk
(tk))− Ik(x(tk), y(tk))|,

and

|ynk
− zy(t)| ≤ Aα|f1(t, xnk

, ynk
)− f2(t, x, y)|

+Bα

∫ t

0
|f2(s, xnk

(s), ynk
(s))− f1(s, x(s), y(s))|ds

+
∑

0≤tk≤t
|Ik(xnk

(tk), ynk
(tk))− Ik(x(tk), y(tk))|.

Since f1(., ., .), f2(., ., .), Ik(·) and Ik(·) are continuous functions, then as
nk →∞, xnk

→ zx(t) and ynk
→ zy(t), so

x(t) = x0 +Aαf1(t, x, y) +Bα

∫ t

0
f1(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk)),

and

y(t) = y0 +Aβf2(t, x, y) +Bβ

∫ t

0
f2(s, x(s), y(s))ds

+
∑

0≤tk≤t
Ik(x(tk), y(tk)).

Hence, S is compact. �

5. An example

In this section we present an example to illustrate the usefulness and ap-
plicability of our results. Consider the following differential equation system
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(13)



D
1
2x(t) =

sin(x(t) + y(t))

16(ln(t+ 1) + 1)
+ 1, t ∈ [0, 1], t 6= 3

4 ,

D
1
2 y(t) =

sinx(t) + sin y(t)

18 ln(t exp(t2) + 1)
, t ∈ [0, 1], t 6= 3

4 ,

∆x(34) =
1

5
sin(x(34) + y(34)),

∆y(34) =
1

7

[
cos(x(34)) + cos(y(34))

]
,

x(0) =
√

3,

y(0) =
√

2.

Here

f1(t, x, y) =
sin(x(t) + y(t))

16(ln(t+ 1) + 1)
+ 1,

f2(t, x, y) =
sinx(t) + sin y(t)

18 ln(t exp(t2) + 1)
.

Clearly, the map t 7→ f1(t, x, y) is jointly continuous for all x, y ∈ R. The
same for the map f2. Also the maps x 7→ f1(t, x, y) and y 7→ f2(t, x, y) are
continuous for all t ∈ J . Firstly, we show that f1, f2,I1 and Ĩ1 are Lipschitz
functions. Indeed, let x, y ∈ R, then

|f1(t, x, y)− f1(t, x̃, ỹ)| =
∣∣∣∣ sin(x(t) + y(t))

16(ln(t+ 1) + 1)
− sin(x̃(t) + ỹ(t))

16(ln(t+ 1) + 1)

∣∣∣∣
≤ 1

16
|x− x̃|+ 1

16
|y − ỹ|.

Then

|f1(t, x, y)− f1(t, x̃, ỹ)| ≤ 1

16
|x− x̃|+ 1

16
|y − ỹ|.

Analogously for the function f2, we get

|f2(t, x, y)− f2(t, x̃, ỹ)| ≤ 1

18
|x− x̃|+ 1

18
|y − ỹ|,∣∣∣∣I1(x(3

4

)
, y

(
3

4

))
− I1

(
x̃

(
3

4

)
, ỹ

(
3

4

))∣∣∣∣ ≤ 1

5
|x− x̃|+ 1

5
|y − ỹ|,∣∣∣∣Ĩ1(x(3

4

)
, y

(
3

4

))
− Ĩ1

(
x̃

(
3

4

)
, ỹ

(
3

4

))∣∣∣∣ ≤ 1

7
|x− x̃|+ 1

7
|y − ỹ|.

Therefore the matrix

M =

(
0.26 0.26
0.20 0.20

)
converges to zero, since its eigenvalues are λ1 = 0, 46 < 1, λ2 = 0 < 1. From
Theorem 3, the problem (13) has a unique solution.
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6. Conclusion

In this paper, we used the Perov and Schaefer fixed point theorems type in
generalized Banach space to achieve the necessary criteria for the existence
and uniqueness of the solution of considered coupled system of Caputo-
Fabrizio fractional impulsive differential equations. Similarly, under partic-
ular assumptions and conditions, we have established the compactness of
the solution sets of the system.
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