Fixed point theorems of generalized multi-valued mappings in cone b-metric spaces

Mani Gunaseelan, Lakshmi Narayan Mishra, Vishnu Narayan Mishra*

ABSTRACT. The aim of this paper is to establish fixed points for multi-valued mappings, by adapting the ideas in [1] to the cone b-metric space setting.

1. Introduction and preliminaries

The well-known Banach contraction principle and its several generalization in the setting of metric spaces play a central role for solving many problems of nonlinear analysis. For example, see [3, 10, 12, 20, 21]. Several authors introduced some interesting concept, see [28, 29, 30, 31, 32]. In [4]. Bakhtin introduced b-metric spaces as a generalization of metric spaces. He proved the contraction mapping principle in b-metric spaces that generalized the famous contraction principle in metric spaces. Since then, several papers have dealt with fixed point theory or the variational principle for single-valued and multi-valued operators in b-metric spaces(see [6, 7, 11] and reference therein). In recent investigations, the fixed point in non-convex analysis, especially in an ordered normed space, occupies a prominent place in many aspects (see [14, 15, 18, 22]). The authors define an ordering by using a cone, which naturally induces a partial ordering in Banach spaces. In 2007, Huang and Zhang [14] introduced the concept of cone metric spaces as a generalization of metric spaces and establish some fixed point theorems for contractive mappings in normal cone metric spaces. Subsequently, several other authors [2, 16, 23, 25] studied the existence of fixed points and common fixed points of mappings satisfying contractive type condition on a normal cone metric space. Recently, Rezapour and Hamlbarani [23] omitted the assumption of normality in cone metric space, which is a milestone in developing fixed point theory in cone metric space. In 2011, Hussain and

²⁰²⁰ Mathematics Subject Classification. Primary: 47H10; Secondary: 54H25.

Key words and phrases. Cone b-metric space, Multi-valued mappings, Fixed point.

 $Full\ paper.$ Received 1 July 2020, revised 1 September 2020, accepted 1 October 2020, available online 16 March 2021.

^{*}Corresponding author

Shah [15] introduced the concept of cone b-metric space as a generalization of b-metric space and cone metric spaces. They established some topological properties in such space and improved some recent results about KKM mappings in the setting of a cone b-metric space. In 2020, Wasfi Shatanawi, Zoran D. Mitrović, Nawab Hussain and Stojan Radenović [33] proved Generalized Hardy–Rogers Type α -Admissible Mappings in Cone b-Metric Spaces over Banach Algebras. Krishnakumar and Marudai [1] proved the following fixed point theorems of multi-valued mappings in cone metric spaces.

Theorem 1. Let (X,d) be a complete cone metric space and the mapping $T: X \to CB(X)$ be multi-valued map satisfying for each $x, y \in X$,

$$H(Tx, Ty) \le a[d(x, Tx) + d(y, Ty)] + b[d(x, Ty) + d(Tx, y)]$$

for all $x, y \in X$, and $a + b < \frac{1}{2}$, $a, b \in [0, \frac{1}{2})$. Then T has a fixed point in X.

Theorem 2. Let (X,d) be a complete cone metric space and the mapping $T: X \to CB(X)$ be multi-valued map satisfy the condition,

$$H(Tx, Ty) \le r \max\{d(x, y), d(x, Tx), d(y, Ty)\}\$$

for all $x, y \in X$, and $r \in [0, 1)$. Then T has a fixed point in X.

Theorem 3. Let (X,d) be a complete cone metric space and P a normal cone with normal constant K. Suppose the mapping $T: X \to CB(X)$ be multi-valued mapping satisfying the condition

$$H(Tx, Ty) \le r \max\{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}$$

for all $x, y \in X$, and $r \in [0, 1)$. Then T has a unique fixed point in X.

Definition 1 ([14]). Let E be a real Banach space. A subset P of E is called a cone whenever the following conditions hold:

- (C_1) P is closed, nonempty and $P \neq \{0\}$;
- (C_2) $a, b \in R, a, b \ge 0$ and $x, y \in P$ imply $ax + by \in P$;

$$(C_3) P \cap (-P) = \{0\}.$$

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and if $y - x \in P$. We shall write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in P^0$, where P^0 stands for the interior of P. If $P^0 \neq \emptyset$ then P is called a solid cone(see[23]).

There exist two kinds of cone-normal (with the normal constant K) and non-normal ones [12].

Let E be a real Banach space, $P \subset E$ a cone and \leq partial ordering defined by P. Then P is called normal if there is a number K > 0 such that for all $x, y \in P$,

$$(1) 0 \le x \le y \quad \text{imply} \quad ||x|| \le K||y||,$$

or equivalently, if $(\forall n)x_n \leq y_n \leq z_n$ and

(2)
$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = x \quad \text{imply} \quad \lim_{n \to \infty} y_n = x.$$

The least positive number K satisfying (1) is called the normal constant of P.

The cone P is called regular if every increasing sequence which is bounded above is convergent and every decreasing sequence which is bounded below is convergent.

Example 1 (see [24]). Let $E = C_{\mathbb{R}}^1[0,1]$ with $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ on $P = \{x \in E : x(t) \ge 0\}$. This cone is not normal. Consider, for example, $x_n(t) = \frac{t^n}{n}$ and $y_n(t) = \frac{1}{n}$. Then $0 \le x_n \le y_n$, and $\lim_{n \to \infty} y_n = 0$, but $||x_n|| = \max_{t \in [0,1]} |\frac{t^n}{n}| + \max_{t \in [0,1]} |t^{n-1}| = \frac{1}{n} + 1 > 1$; hence x_n does not converge to zero. It follows by (2) that P is a non-normal cone.

Definition 2 ([14, 26]). Let X be a nonempty set. Suppose that the mapping $d: X \times X \to E$ satisfies:

- (d₁) $0 \le d(x, y)$ for all $x, y \in X$ with $x \ne y$ and d(x, y) = 0 if and only if x = y;
- (d_2) d(x,y) = d(y,x) for all $x,y \in X$;
- $(d_3) d(x,y) \le d(x,z) + d(z,y) x, y, z \in X.$

Then d is called a cone metric [14] or K-metric [26] on X and (X, d) is called a cone metric [14] or K-metric space [26].

The concept of a cone metric space is more general than that of a metric space, because each metric space is a cone metric space where $E = \mathbb{R}$ and $P = [0, +\infty)$.

Example 2 (see [14]). Let $E = \mathbb{R}^2$, $P = \{(x,y) \in \mathbb{R}^2 : x \geq 0, y \geq 0\}$, $X = \mathbb{R}$ and $d : X \times X \to E$ defined by $d(x,y) = (|x-y|, \alpha |x-y|)$, where $\alpha \geq 0$ is a constant. Then (X,d) is a cone metric space with normal cone P where K = 1.

Example 3 (see [22]). Let $E = \ell^2$, $P = \{\{x_n\}_{n \geq 0} \in E : x_n \geq 0 \text{ for all } n\}$, (X, ρ) a metric space, and $d : X \times X \to E$ defined by $d(x, y) = \{\rho(x, y)/2^n\}_{n \geq 1}$. Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains the class of metric spaces.

Definition 3 ([15]). Let X be a nonempty set and $s \ge 1$ be a given real number. A mapping $d: X \times X \to E$ is said to be cone b-metric if and only if, for all $x, y, z \in X$, the following conditions are satisfied:

- (i) $0 \le d(x, y)$ with $x \ne y$ and d(x, y) = 0 if and only if x = y;
- (ii) d(x,y) = d(y,x);
- (iii) $d(x,y) \le s[d(x,z) + d(z,y)].$

The pair (X, d) is called a cone b-metric space.

Remark 1. The class of cone b-metric spaces is larger than the class of cone metric space since any cone metric spaces must be a cone b-metric spaces. Therefore, it is obvious that cone b-metric spaces generalize b-metric spaces and cone metric spaces.

We give some examples, which show that introducing a cone b-metric space instead of a cone metric space is meaningful since there exist cone b-metric space which are not cone metric space.

Example 4 (see [13]). Let $E = \mathbb{R}^2$, $P = \{(x,y) \in E : x \ge 0, y \ge 0\} \subset E$, $X = \mathbb{R}$ and $d: X \times X \to E$ defined by $d(x,y) = (|x-y|^p, \alpha |x-y|^p)$, where $\alpha \ge 0$ and p > 1 are two constants. Then (X,d) is a cone b-metric space with the coefficient $s = 2^p > 1$, but not a cone metric space.

Example 5 (see [13]). Let $X = \ell^p$ with $0 , where <math>\ell^p = \{\{x_n\} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$. Let $d: X \times X \to \mathbb{R}_+$ defined $d(x,y) = (\sum_{n=1}^{\infty} |x_n - y_n|^p)^{\frac{1}{p}}$, where $x = \{x_n\}, y = \{y_n\} \in \ell^p$. Then (X,d) is a cone b-metric space with the coefficient $s = 2^p > 1$, but not a cone metric space.

Example 6 (see [13]). Let $X = \{1, 2, 3, 4\}$, $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x \ge 0, y \ge 0\}$. Define $d: X \times X \to E$ by

(3)
$$d(x,y) = \begin{cases} (|x-y|^{-1}, |x-y|^{-1}), & \text{if } x \neq y, \\ 0, & \text{if } x = y. \end{cases}$$

Then (X,d) is a cone b-metric space with the coefficient $s = \frac{6}{5} > 1$. But it is not a cone metric space since the triangle inequality is not satisfied,

$$d(1,2) > d(1,4) + d(4,2), \quad d(3,4) > d(3,1) + d(1,4).$$

Definition 4 ([14]). Let (X, d) be a cone b-metric space, $x \in X$ and $\{x_n\}$ be a sequence in X. Then:

- (i) $\{x_n\}$ is a Cauchy sequence whenever, if for every $c \in E$ with $0 \ll c$, then there is natural number N such that for all $n, m \geq N$, $d(x_n, x_m) \ll c$;
- (ii) $\{x_n\}$ converges to x whenever, for every $c \in E$ with $0 \ll c$, then there is a natural number N such that for all $n \geq N$, $d(x_n, x) \ll c$. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.
- (iii) (X, d) is a complete cone b-metric space if every Cauchy sequence is convergent.

In the following (X, d) will stand for a cone b-metric space with respect to a cone P with $P^0 \neq \emptyset$ in a real Banach space E and \leq is partial ordering in E with respect to P. The following lemmas are often used(in particular while dealing with cone metric spaces in which the cone need not be normal).

Lemma 1 ([18]). Let P be a cone and $\{a_n\}$ be a sequence in E. If $c \in int P$ and $0 \le a_n \to 0$ as $n \to \infty$, then there exists N such that for all n > N, we have $a_n \ll c$.

Lemma 2 ([18]). Let $x, y, z \in E$, if $x \le y$ and $y \ll z$, then $x \ll z$.

Lemma 3 ([15]). Let P be a cone and if $0 \le u \ll c$ for each $c \in intP$, then u = 0.

Lemma 4 ([9]). Let P be a cone, if $u \in P$ and $u \le ku$ for some $0 \le k < 1$, then u = 0.

Lemma 5 ([18]). Let P be a cone and $a \le b + c$ for each $c \in intP$, $a \le b$.

Let (X, d) be a metric space. We denote by CB(X) the family of nonempty closed bounded subset of X. Let H be the Hausdorff distance on CB(X). That is, for $A, B \in CB(X)$,

$$H(A,B) = \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(A,b)\},\$$

where $d(a, B) = \inf\{d(a, b) : b \in B\}$ is the distance from the point a to the subset B. An element $x \in X$ is said to be a fixed point of a multi-valued mapping $T: X \to 2^X$ if $x \in T(X)$.

In this paper, we study the existence of fixed points for multi-valued mappings by adapting the ideas in [1] to the cone b-metric spaces setting.

2. Main results

Theorem 4. Let (X,d) be a complete cone b-metric space with the coefficient $s \geq 1$ and the mapping $T: X \to CB(X)$ be multi-valued map satisfying for each $x, y \in X$

$$H(Tx,Ty) \leq a[d(x,Tx)+d(y,Ty)] + b[d(x,Ty)+d(Tx,y)]$$

for all $x, y \in X$, and $a, b \in [0, 1)$ are constants such that 2a + 2bs < 1. Then T has a fixed point in X.

Proof. For every $x_0 \in X$ and $n \ge 1$, $x_1 \in Tx_0$ and $x_{n+1} \in Tx_n$. We have

$$d(x_{n+1}, x_n) \leq H(Tx_n, Tx_{n-1})$$

$$\leq a[d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1})]$$

$$+ b[d(x_n, Tx_{n-1}) + d(Tx_n, x_{n-1})]$$

$$\leq a[d(x_n, x_{n+1}) + d(x_{n-1}, x_n)] + b[d(x_n, x_n) + d(x_{n+1}, x_{n-1})]$$

$$\leq a[d(x_n, x_{n+1}) + d(x_{n-1}, x_n)] + b[d(x_{n+1}, x_{n-1})]$$

$$\leq a[d(x_n, x_{n+1}) + d(x_{n-1}, x_n)]$$

$$+ bs[d(x_{n+1}, x_n) + d(x_n, x_{n-1})]$$

$$\leq (a + bs)[d(x_n, x_{n+1}) + d(x_{n-1}, x_n)],$$

(4)
$$d(x_{n+1}, x_n) \le Ld(x_n, x_{n-1}),$$

where $L = \frac{a+bs}{1-(a+bs)}$. As 2a+2bs < 1, we obtain that L < 1. Similarly, we obtain

(5)
$$d(x_n, x_{n+1}) \le Ld(x_{n-1}, x_{n-2}).$$

Using (5) in (4), we get

$$d(x_{n+1}, x_n) \le L^2 d(x_n, x_{n-1}).$$

Continuing this process, we obtain

$$d(x_{n+1}, x_n) \le L^n d(x_1, x_0).$$

For any $m \geq 1$, $p \geq 1$, we have

$$\begin{split} d(x_m,x_{m+p}) &\leq s[d(x_m,x_{m+1}) + d(x_{m+1},x_{m+p})] \\ &= sd(x_m,x_{m+1}) + sd(x_{m+1},x_{m+p}) \\ &\leq sd(x_m,x_{m+1}) + s^2[d(x_{m+1},x_{m+2}) + d(x_{m+2},x_{m+p})] \\ &= sd(x_m,x_{m+1}) + s^2d(x_{m+1},x_{m+2}) + s^2d(x_{m+2},x_{m+p}) \\ &\leq sd(x_m,x_{m+1}) + s^2d(x_{m+1},x_{m+2}) + s^3d(x_{m+2},x_{m+3}) \\ &+ \cdots + s^{p-1}d(x_{m+p-2},x_{m+p-1}) + s^{p-1}d(x_{m+p-1},x_{m+p}) \\ &\leq sL^md(x_1,x_0) + s^2L^{m+1}d(x_1,x_0) + s^3L^{m+2}d(x_1,x_0) \\ &+ \cdots + s^{p-1}L^{m+p-2}d(x_1,x_0) + s^pL^{m+p-1}d(x_1,x_0) \\ &= sL^m[1 + sL + s^2L^2 + s^3L^3 + \cdots + (sL)^{p-1}]d(x_1,x_0) \\ &\leq (\frac{sL^m}{1-sL})d(x_1,x_0). \end{split}$$

Let $0 \ll r$ be given. Note that $(\frac{sL^m}{1-sL})d(x_1,x_0) \to 0$ as $m \to \infty$ for any p. Making full use of ([13], Lemma 1.8), we find $m_0 \in \mathbb{N}$ such that

$$\left(\frac{sL^m}{1-sL}\right)d(x_1,x_0) \ll r$$

for each $m > m_0$. Thus,

$$d(x_m, x_{m+p}) \le \left(\frac{sL^m}{1 - sL}\right) d(x_1, x_0) \ll r$$

for all $m \geq 1$, $p \geq 1$. Therefore, $\{x_n\}$ is a Cauchy sequence in (X,d). Since (X,d) is a complete cone b-metric space, there exists $z \in X$ such that $x_n \to z$ as $n \to \infty$. Take $n_0 \in \mathbb{N}$ such that $d(x_n,z) \ll r \frac{1-as-bs}{s(1+b)}$ for all $n > n_0$. Hence,

$$d(z,Tz) \le s[d(z,x_{n+1}) + d(x_{n+1},Tz)]$$

$$\le sd(z,Tx_n) + sH(Tx_n,Tz)$$

$$\le sd(z,x_{n+1}) + s[a(d(x_n,Tx_n) + d(z,Tz))$$

$$+ b(d(x_n,Tz) + d(Tx_n,z))]$$

$$\leq sd(z, x_{n+1}) + s[a(d(x_n, x_{n+1}) + d(z, T(z))) + b(d(x_n, Tz) + d(x_{n+1}, z))].$$

This implies that

$$d(z,Tz) \le \left(\frac{s(1+b)}{1-as-bs}\right)d(x_n,z) \ll r,$$

for $n > n_0$. Then, by Lemma (1.10), we deduce that d(Tz, z) = 0, that is Tz = z.

Example 7. Let X = [0,1] endowed with the standard order and $E = C_R^1[0,1]$ with $||u|| = ||u||_{\infty} + ||u'||_{\infty}$, $u \in E$ and let $P = \{u \in E : u(t) \ge 0 \text{ on } [0,1]\}$. It is well known that this cone is solid, but it is not normal. Define a cone b-metric $d: X \times X \to E$ by $d(x,y)(t) = |x-y|^2 \exp^t$. Then (X,d) is a complete cone b-metric space with the coefficient s=2. Define $T: X \to CB(X)$ by

(6)
$$T(x) = \begin{cases} \{\frac{1}{3}, \frac{2}{3}\}, & \text{if } 0 \le x < 1, \\ \{\frac{1}{3}\}, & \text{if } x = 1. \end{cases}$$

Let $x, y \in X$. Without loss of generality, take $x \leq y$. If x = y or x, y < 1, then Tx = Ty. Hence H(Tx, Ty) = 0. If x < 1 and y = 1, then

$$H(Tx, Ty) = \frac{1}{9} \exp^t$$

$$\leq \frac{4}{27} \exp^t$$

$$= \frac{1}{3} \cdot \frac{4}{9} \exp^t$$

$$= \frac{1}{3} (d(x, Tx) + d(y, Ty))$$

$$\leq b(d(x, Tx) + d(y, Ty))$$

where $b = \frac{1}{3} \in [0,1)$ and a = 0. So all the conditions of Theorem 2.1 are satisfied. Moreover, $\frac{1}{3}$ and $\frac{2}{3}$ are the two fixed points of T.

Corollary 1. Let (X,d) be a complete cone b-metric space with the coefficient $s \ge 1$ and the mapping $T \colon X \to CB(X)$ be multi valued map satisfies condition

$$d(Tx, Ty) \le b(d(x, Ty) + d(x, Ty))$$

for all $x, y \in X$, where $b \in [0, \frac{1}{2s})$ is a constant. Then T has a fixed point in X.

Proof. The proof of the corollary immediately follows by putting a=0 in the previous theorem.

Corollary 2. Let (X,d) be a complete cone b-metric space with the coefficient $s \ge 1$ and the mapping $T \colon X \to CB(X)$ be multi-valued map satisfies condition

$$d(Tx, Ty) \le a(d(x, Tx) + d(y, Ty))$$

for all $x, y \in X$, where $a \in [0, \frac{1}{2s})$ is a constant. Then T has a fixed point in X.

Proof. The proof of the corollary immediately follows by putting b=0 in the previous theorem.

Theorem 5. Let (X,d) be a complete cone b-metric space with the coefficient $s \geq 1$ and the mapping $T \colon X \to CB(X)$ be multi valued map satisfy the condition, $H(Tx,Ty) \leq r \max\{d(x,y),d(x,Tx),d(y,Ty)\}$ for all $x,y \in X$, and $r \in [0,1)$. Then T has a unique fixed point in X.

Proof. For every $x_0 \in X$ and $n \ge 1$, $x_1 \in Tx_0$ and $x_{n+1} \in Tx_n$

$$d(x_{n+1}, x_n) \leq H(Tx_n, Tx_{n-1})$$

$$\leq r \max\{d(x_n, x_{n-1}), d(x_n, Tx_n), d(x_{n-1}, Tx_{n-1})\}$$

$$\leq r \max\{d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_n)\}$$

$$\leq r d(x_{n-1}, x_n)$$

$$\leq r^n d(x_1, x_0)$$

For any $m \ge 1$, $p \ge 1$, we have

$$d(x_{m}, x_{m+p}) \leq s[d(x_{m}, x_{m+1}) + d(x_{m+1}, x_{m+p})]$$

$$= sd(x_{m}, x_{m+1}) + sd(x_{m+1}, x_{m+p})$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}[d(x_{m+1}, x_{m+2}) + d(x_{m+2}, x_{m+p})]$$

$$= sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2}) + s^{2}d(x_{m+2}, x_{m+p})$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2}) + s^{3}d(x_{m+2}, x_{m+3})$$

$$+ \dots + s^{p-1}d(x_{m+p-2}, x_{m+p-1}) + s^{p-1}d(x_{m+p-1}, x_{m+p})$$

$$\leq sr^{m}d(x_{1}, x_{0}) + s^{2}r^{m+1}d(x_{1}, x_{0}) + s^{3}r^{m+2}d(x_{1}, x_{0})$$

$$+ \dots + s^{p-1}r^{m+p-2}d(x_{1}, x_{0}) + s^{p}r^{m+p-1}d(x_{1}, x_{0})$$

$$= sr^{m}[1 + sr + s^{2}r^{2} + s^{3}r^{3} + \dots + (sr)^{p-1}]d(x_{1}, x_{0})$$

$$\leq \left(\frac{sr^{m}}{1 - sr}\right)d(x_{1}, x_{0}).$$

Let $0 \ll r$ be given. Note that $(\frac{sr^m}{1-sr})d(x_1, x_0) \to 0$ as $m \to \infty$ for any p. Making full use of ([13], Lemma 1.8), we find $m_0 \in \mathbb{N}$ such that

$$\left(\frac{sr^m}{1-sr}\right)d(x_1,x_0) \ll c$$

for each $m > m_0$. Thus,

$$d(x_m, x_{m+p}) \le \left(\frac{sr^m}{1 - sr}\right) d(x_1, x_0) \ll c$$

for all $m \geq 1$, $p \geq 1$. Therefore, $\{x_n\}$ is a Cauchy sequence in (X,d). Since (X,d) is a complete cone b-metric space, there exists $z \in X$ such that $x_n \to z$ as $n \to \infty$. Take $n_0 \in \mathbb{N}$ such that $d(x_n,z) \ll c\frac{1-s}{s}$ for all $n > n_0$. Hence,

$$\begin{split} d(z,Tz) &\leq s[d(z,x_{n+1}) + d(x_{n+1},Tz)] \\ &\leq sd(z,Tx_n) + sH(Tx_n,Tz) \\ &\leq sd(z,x_{n+1}) + s[\max\{d(x_n,z),d(x_n,Tx_n),d(z,Tz)\}] \\ &\leq sd(z,x_{n+1}) + s[\max\{0,d(x_n,x_{n+1}),d(z,Tz)\}] \\ &\leq sd(z,x_{n+1}) + s[\max\{0,0,d(z,Tz)\}] \\ &\leq sd(z,x_n) + sd(z,Tz). \end{split}$$

This implies that

$$d(z,Tz) \le \left(\frac{s}{1-s}\right)d(x_n,z) \ll c,$$

for $n > n_0$. Then, by Lemma (1.10), we deduce that d(Tz, z) = 0, that is Tz = z.

Assume that there is another fixed point q in X such that Tq = q.

$$\therefore d(z,q) \le H(Tz,Tq)$$

$$\le r \max\{d(z,q), d(z,Tz), d(q,Tq), d(z,Tq), d(q,Tz)\}$$

$$\le r \max\{d(z,q), d(z,z), d(q,q), d(z,q), d(q,z)\}$$

$$\le rd(z,q)$$

This is contradiction and hence T has a unique fixed point in X.

Example 8. Let $X = [0, \infty)$ endowed with the standard order and $E = C_R^1[0,1]$ with $||u|| = ||u||_{\infty} + ||u'||_{\infty}$, $u \in E$ and let $P = \{u \in E : u(t) \ge 0 on[0,1]\}$. It is well known that this cone is solid, but it is not normal. Define a cone metric $d: X \times X \to E$ by $d(x,y)(t) = |x-y|^2 \exp^t$. Then (X,d) is a complete cone b-metric space with the coefficient s=2. Define $T: X \to CB(X)$ by

(7)
$$T(x) = \begin{cases} \{\frac{2}{3}\}, & \text{if } 0 \le x < 1, \\ \{\frac{1}{3}\}, & \text{if } x > 1. \end{cases}$$

Let $x, y \in X$. Without loss of generality, take $x \leq y$. If x = y or x, y < 1, then Tx = Ty. Hence H(Tx, Ty) = 0. If x < 1 and y = 1, then

$$H(Tx, Ty) = \frac{1}{9} \exp^t$$

$$\leq \frac{4}{27} \exp^t$$

$$= \frac{1}{3} \cdot \frac{4}{9} \exp^t$$

$$= \frac{1}{3} d(y, Ty)$$

$$\leq r \max\{d(x, y), d(x, Tx), d(y, Ty)\}$$

where $r = \frac{1}{3} \in [0,1)$. So all the conditions of Theorem 2.5 are satisfied. Moreover, 0 is a unique fixed point of T.

Corollary 3. Let(X, d) be a complete cone b-metric space with the coefficient $s \ge 1$ and the mapping $T: X \to CB(X)$ be multi valued mapping satisfy the condition

(8)
$$H(Tx, Ty) \le kd(x, y)$$

for all $x, y \in X$ where $k \in [0, \frac{1}{2s})$ is a constant. Then T has a unique fixed point in X.

Proof. The proof of the corollary immediately follows by taking d(x,y) as maximum value in the previous theorem.

We prove the above theorems in the setting of P is a normal cone with normal constant K.

Theorem 6. Let (X,d) be a complete cone b-metric space with the coefficient $s \geq 1$ and P a normal cone with normal constant K. Suppose the mapping $T: X \to CB(X)$ be multi-valued mapping satisfying the condition, $H(Tx,Ty) \leq r \max\{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)\}$ for all $x,y \in X$, and $r \in [0,1), 2sr < 1$. Then T has a unique fixed point in X.

Proof. For every $x_0 \in X$ and $n \ge 1$, $x_1 \in Tx_0$ and $x_{n+1} \in Tx_n$,

$$\begin{split} d(x_{n+1},x_n) &\leq H(Tx_n,Tx_{n-1}) \\ &\leq r \max\{d(x_n,x_{n-1}),d(x_n,Tx_n),d(x_{n-1},Tx_{n-1}),\\ &d(x_n,Tx_{n-1}),d(x_{n-1},Tx_n)\} \\ &\leq r \max\{d(x_n,x_{n-1}),d(x_n,x_{n+1}),d(x_{n-1},x_n),d(x_n,x_n),\\ &d(x_{n+1},x_{n-1})\} \\ &\leq r \max\{d(x_{n-1},x_n),d(x_n,x_{n+1}),d(x_{n+1},x_{n-1})\}. \end{split}$$

Case (i)

If $d(x_{n+1}, x_n) \le rd(x_n, x_{n-1})$ then we get, $d(x_{n+1}, x_n) \le r^n d(x_1, x_0)$. For any $m \ge 1$, $p \ge 1$, we have

$$d(x_{m}, x_{m+p}) \leq s[d(x_{m}, x_{m+1}) + d(x_{m+1}, x_{m+p})]$$

$$= sd(x_{m}, x_{m+1}) + sd(x_{m+1}, x_{m+p})$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}[d(x_{m+1}, x_{m+2}) + d(x_{m+2}, x_{m+p})]$$

$$= sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2}) + s^{2}d(x_{m+2}, x_{m+p})$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2}) + s^{3}d(x_{m+2}, x_{m+3})$$

$$+ \dots + s^{p-1}d(x_{m+p-2}, x_{m+p-1}) + s^{p-1}d(x_{m+p-1}, x_{m+p})$$

$$\leq sr^{m}d(x_{1}, x_{0}) + s^{2}r^{m+1}d(x_{1}, x_{0}) + s^{3}r^{m+2}d(x_{1}, x_{0})$$

$$+ \dots + s^{p-1}r^{m+p-2}d(x_{1}, x_{0}) + s^{p}r^{m+p-1}d(x_{1}, x_{0})$$

$$= sr^{m}[1 + sr + s^{2}r^{2} + s^{3}r^{3} + \dots + (sr)^{p-1}]d(x_{1}, x_{0})$$

$$\leq \left(\frac{sr^{m}}{1 - sr}\right)d(x_{1}, x_{0}).$$

We get $||d(x_m, x_m + p)|| \le K(\frac{sr^m}{1-sr})||d(x_1, x_0)||.d(x_m, x_m + p) \to 0$ as $p, m \to \infty$. Hence $\{x_m\}$ is a Cauchy sequence. By the completeness of X, there is $z \in X$ such that $x_m \to z$ as $m \to \infty$.

$$\begin{split} d(z,Tz) &\leq s[d(z,x_{n+1}) + d(x_{n+1},Tz)] \\ &\leq sd(z,Tx_n) + sH(Tx_n,Tz) \\ &\leq sd(z,x_{n+1}) + s[r\max\{d(x_n,z),d(x_n,Tx_n),\\ &\qquad \qquad d(z,Tz),d(x_n,Tz),d(z,Tx_n)\}] \\ &\leq sd(z,x_{n+1}) + s[r\max\{0,d(x_n,x_{n+1}),d(z,Tz),\\ &\qquad \qquad d(x_n,Tz),d(z,x_{n+1})\}] \\ &\leq sd(z,x_{n+1}) + s[r\max\{0,0,d(z,Tz)\}] \\ &\leq sd(z,x_n) + srd(z,Tz) \\ &\leq srd(z,Tz), \end{split}$$

which implies that d(Tz, z) = 0. Hence $z \in Tz$.

Case (ii)

If $d(x_{n+1}, x_n) \leq rd(x_{n+1}, x_{n-1})$ then we get

$$d(x_{n+1}, x_n) \le rs[d(x_{n+1}, x_n) + d(x_n, x_{n-1})]$$

$$\le \frac{sr}{1 - sr} d(x_n, x_{n-1})$$

$$\le hd(x_n, x_{n-1}), \text{ where } h = \frac{sr}{1 - sr} < 1.$$

For any $m \ge 1$, $p \ge 1$, we have

$$d(x_m, x_{m+p}) \le s[d(x_m, x_{m+1}) + d(x_{m+1}, x_{m+p})]$$

$$= sd(x_m, x_{m+1}) + sd(x_{m+1}, x_{m+p})$$

$$\le sd(x_m, x_{m+1}) + s^2[d(x_{m+1}, x_{m+2}) + d(x_{m+2}, x_{m+p})]$$

$$= sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2}) + s^{2}d(x_{m+2}, x_{m+p})$$

$$\leq sd(x_{m}, x_{m+1}) + s^{2}d(x_{m+1}, x_{m+2}) + s^{3}d(x_{m+2}, x_{m+3})$$

$$+ \dots + s^{p-1}d(x_{m+p-2}, x_{m+p-1}) + s^{p-1}d(x_{m+p-1}, x_{m+p})$$

$$\leq sh^{m}d(x_{1}, x_{0}) + s^{2}h^{m+1}d(x_{1}, x_{0}) + s^{3}h^{m+2}d(x_{1}, x_{0})$$

$$+ \dots + s^{p-1}h^{m+p-2}d(x_{1}, x_{0}) + s^{p}h^{m+p-1}d(x_{1}, x_{0})$$

$$= sh^{m}[1 + sh + s^{2}h^{2} + s^{3}h^{3} + \dots + (sh)^{p-1}]d(x_{1}, x_{0})$$

$$\leq \left(\frac{sh^{m}}{1 - sh}\right)d(x_{1}, x_{0}).$$

We get $||d(x_m, x_m + p)|| \le K(\frac{sh^m}{1-sh})||d(x_1, x_0)||$. $d(x_m, x_m + p) \to 0$ as $p, m \to \infty$. Hence $\{x_m\}$ is a Cauchy sequence. By the completeness of X, there is $z \in X$ such that $x_m \to z$ as $m \to \infty$.

Hence $z \in Tz$.

Assume that there is another fixed point q in X such that Tq = q.

$$\begin{aligned} \therefore d(z,q) & \leq H(Tz,Tq) \\ & \leq r \max\{d(z,q),d(z,Tz),d(q,Tq),d(z,Tq),d(q,Tz)\} \\ & \leq r \max\{d(z,q),d(z,z),d(q,q),d(z,q),d(q,z)\} \\ & \leq rd(z,q) \end{aligned}$$

This is contradiction and hence T has a unique fixed point in X.

Example 9. Let X = [0, 1], $E = \mathbb{R}^2$. Take $P = \{(x, y) \in E : x, y \ge 0\}$. We define $d: X \times X \to E$ as $d(x, y) = (|x - y|^2, |x - y|^2)$ for all $x, y \in X$. Then (X, d) is a complete cone b-metric. Let us define $T: X \to CB(X)$ as

(9)
$$T(x) = \begin{cases} \{\frac{2}{5}\}, & \text{if } 0 \le x < 1, \\ \{\frac{1}{5}\}, & \text{if } x = 1. \end{cases}$$

Let $x, y \in X$. Without loss of generality, take $x \leq y$.

If x = y or x, y < 1, then Tx = Ty. Hence H(Tx, Ty) = 0. If x < 1 and y = 1, then

$$H(Tx,Ty) = (\frac{1}{25}, \frac{1}{25}) \le (\frac{16}{125}, \frac{16}{125}) = \frac{1}{5}(\frac{1}{25}, \frac{1}{25}) = \frac{1}{5}d(y,Ty)$$

$$\le r \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\},$$

where $r = \frac{1}{5} \in [0,1)$. So all the conditions of Theorem 2.8 are satisfied. Moreover, $\frac{2}{5}$ is a unique fixed point of T.

Corollary 4. Let (X,d) be a complete cone b-metric space with the coefficient $s \geq 1$ and P a normal cone with normal constant K. Suppose the mapping $T: X \to CB(X)$ be multi-valued mapping satisfies the condition, $H(Tx,Ty) \leq r \max\{d(x,y),d(x,Tx),d(y,Ty)\}$ for all $x,y \in X$, and $r \in [0,1)$. Then T has a unique fixed point in X.

Proof. The proof of the corollary immediately follows since

$$\max\{d(x,y), d(x,Tx), d(y,Ty)\} \le \max\{d(x,y), d(x,Tx), d(y,Ty), d(x,Ty), d(y,Tx)\}.$$

References

- [1] R. Krishnakumar and M. Marudai, Fixed point theorems of multivalued mappings in cone metric spaces, International Journal of Contemporary Mathematical Sciences, 5 (31) (2010), 1533-1540.
- [2] M. Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric spaces, Journal of Mathematical Analysis and Applications, 341 (2008), 416-420.
- [3] R.P. Agarwal, D. O'Regan and R. Precup, *Domain invariance theorems for contractive type maps*, Dynamic Systems and Applications, 16 (3) (2007), 579-586.
- [4] S. Banach, Surles operation dans les ensembles abstraits et leur application aux equation integrals, Fundamenta Mathematica, 3 (1922), 133-181.
- [5] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Analysis (Unianowsk Gos. Ped. Inst.), 30 (1989), 26-37. (Russian)
- [6] M. Boriceanu, M. Bota and A. Petrusel, A multivalued fractals in b-metric spaces, Central European Journal of Mathematics, 8 (2) (2010), 367-377.
- [7] M. Bota, A. Moinar and V. Csaba, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory, 12 (2011), 21-28.
- [8] S.K. Chatterjae, Fixed point theorems compactes, Comptes Rendus de l'Academie Bulgare des Sciences, 25 (1972), 727-730.
- [9] S-H Cho and J-S Bae, Common fixed point theorems for mappings satisfying property(E.A) on cone metric space, Mathematical and Computer Modelling, 53 (2011), 945-951.
- [10] L.B. Ćirić, Generalized contractions and fixed point theorems, Publications de l'Institut Mathematique (Nouvelle Serie), 12 (26) (1971), 19-26.

- [11] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric, Atti del Seminario Matematico e Fisico dell'Universitá di Modena, 46 (1998), 263-276.
- [12] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.
- [13] H. Huang and S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory and Applications, 2013 (2013), Article ID: 112, 10 pages.
- [14] L-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 332 (2) (2007), 1468-1476.
- [15] N. Hussain and MH. Shah, KKM mappings in cone b-metric spaces, Computers & Mathematics with Applications, 62 (2011), 1677-1684.
- [16] D. Ilic and V. Rakočević, Common fixed points for maps on cone metric space, Journal of Mathematical Analysis and Applications, 341 (2008), 876-882.
- [17] D. Ilic and V. Rakočević, Quasi-contraction on a cone metric space, Applied Mathematics Letters, 22 (5) (2009), 728-731.
- [18] S. Janković, Z. Kadelburg and S. Radenović, On cone metric spaces: a survey, Nonlinear Analysis, 4 (7) (2011), 2591-2601.
- [19] R. Kannan, Some results on fixed point theorems, Bulletin of the Calcutta Mathematical Society, 60 (1969), 71-78.
- [20] G. Petruşel and A. Petruşel, Multivalued contractions of Feng-Liu type in complete gauge spaces, Carpthian Journal of Mathematics, 24 (3) (2008), 392-396.
- [21] A. Petrusel, Generalized multivalued contractions, Nonlinear Analysis (TMA), 47 (1) (2001), 649-659.
- [22] Sh. Rezapour, A review on topological properties of cone metric spaces, in Proceedings of the International Conference on Analysis, Topology and Applications (ATA 08), Vrinjačka Banja, Serbia, May-June 2008.
- [23] Sh. Rezapour and R. Hamlbarani, Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 345 (2) (2008), 719-724.
- [24] J. Vandergraft, Newton method for convex operators in partially ordered spaces, SIAM Journal on Numerical Analysis, 4 (1967), 406-432.
- [25] P. Vetro, Common fixed points in cone metric spaces, Rendiconti del Circolo Matematico di Palermo Series 2, 56 (3) (2007), 464-468.
- [26] P.P. Zabrejko, K-metric and K-normal linear spaces: survey, Collectanea Mathematica, 48 (4-6) (1997), 825-859.
- [27] G. S Saluja, Some fixed point theorems of contractive type conditions in cone b-metric spaces, Nonlinear Analysis Forum, 20 (8) (2015), 241-255.
- [28] R. Dubey, Deepmala, V.N. Mishra, Higher-order symmetric duality in nondifferentiable multiobjective fractional programming problem over cone constraints, Statistics, Optimization & Information Computing, 8 (2020), 187–205.

- [29] L.N. Mishra, V. Dewangan, V.N. Mishra, S. Karateke, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, Journal of Mathematics and Computer Science, 22 (2) (2021), 97–109.
- [30] L.N. Mishra, S.K. Tiwari, V.N. Mishra, I.A. Khan, Unique fixed point theorems for generalized contractive mappings in partial metric spaces, Journal of Function Spaces, 2015 (2015), Article ID: 960827, 8 pages.
- [31] L. N. Mishra, S.K. Tiwari, V.N. Mishra, Fixed point theorems for generalized weakly S-contractive mappings in partial metric spaces, Journal of Applied Analysis and Computation, 5 (4) (2015), 600-612.
- [32] X. Liu, M. Zhou, L.N. Mishra, V.N. Mishra, B. Damjanović, Common fixed point theorem of six self-mappings in Menger spaces using (CLR_{ST}) property, Open Mathematics, 16 (2018), 1423–1434.
- [33] Wasfi Shatanawi, Zoran D. Mitrović, Nawab Hussain and Stojan Radenović, On generalized Hardy–Rogers type α-admissible mappings in cone b-metric spaces over banach algebras, Symmetry, 12 (1) (2020), Article ID: 81, 12 pages.

Mani Gunaseelan

Department of Mathematics, Sri Sankara Arts and Science College(Autonomous) Affiliated to Madras University Enathur, Kanchipuram, Tamil Nadu India 631 561

E-mail address: mathsguna@yahoo.com

LAKSHMI NARAYAN MISHRA

Department of Mathematics School of Advanced Sciences Vellore Institute of Technology (VIT) University Vellore 632 014, Tamil Nadu India

E-mail address: lakshminarayanmishra04@gmail.com

VISHNU NARAYAN MISHRA

DEPARTMENT OF MATHEMATICS
INDIRA GANDHI NATIONAL TRIBAL UNIVERSITY
LAIPUR, AMARKANTAK, ANUPPUR
MADHYA PRADESH
INDIA 484887
E-mail address: vishnunarayanmishra@gmail.com