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Fixed point theorems of generalized multi-valued
mappings in cone b-metric spaces
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ABSTRACT. The aim of this paper is to establish fixed points for multi-
valued mappings, by adapting the ideas in [1] to the cone b-metric space
setting.

1. INTRODUCTION AND PRELIMINARIES

The well-known Banach contraction principle and its several generaliza-
tion in the setting of metric spaces play a central role for solving many
problems of nonlinear analysis. For example, see [3, 10, 12, 20, 21|. Several
authors introduced some interesting concept, see [28, 29, 30, 31, 32|. In
[4], Bakhtin introduced b-metric spaces as a generalization of metric spaces.
He proved the contraction mapping principle in b-metric spaces that gener-
alized the famous contraction principle in metric spaces. Since then, sev-
eral papers have dealt with fixed point theory or the variational principle
for single-valued and multi-valued operators in b-metric spaces(see [6, 7, 11]
and reference therein). In recent investigations, the fixed point in non-convex
analysis, especially in an ordered normed space, occupies a prominent place
in many aspects (see [14, 15, 18, 22|). The authors define an ordering by
using a cone, which naturally induces a partial ordering in Banach spaces.
In 2007, Huang and Zhang [14] introduced the concept of cone metric spaces
as a generalization of metric spaces and establish some fixed point theorems
for contractive mappings in normal cone metric spaces. Subsequently, sev-
eral other authors [2, 16, 23, 25| studied the existence of fixed points and
common fixed points of mappings satisfying contractive type condition on a
normal cone metric space. Recently, Rezapour and Hamlbarani [23] omitted
the assumption of normality in cone metric space, which is a milestone in
developing fixed point theory in cone metric space. In 2011, Hussain and
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Shah [15] introduced the concept of cone b-metric space as a generalization
of b-metric space and cone metric spaces. They established some topologi-
cal properties in such space and improved some recent results about KKM
mappings in the setting of a cone b-metric space. In 2020, Wasfi Shatanawi,
Zoran D. Mitrovi¢, Nawab Hussain and Stojan Radenovié¢ [33] proved Gener-
alized Hardy—Rogers Type a-Admissible Mappings in Cone b-Metric Spaces
over Banach Algebras. Krishnakumar and Marudai [1] proved the following
fixed point theorems of multi-valued mappings in cone metric spaces.

Theorem 1. Let (X,d) be a complete cone metric space and the mapping
T: X — CB(X) be multi-valued map satisfying for each x,y € X,

H(Tz,Ty) < ald(z,Tz) + d(y,Ty)] + bld(x, Ty) + d(Tx,y)]

forallz,y e X, anda+b < %, a,b e [O,%), Then T has a fixed point in X.

Theorem 2. Let (X,d) be a complete cone metric space and the mapping
T: X — CB(X) be multi-valued map satisfy the condition,

H(Tz,Ty) < rmax{d(z,y),d(z,Tz),d(y, Ty)}
forallz,y € X, and r € [0,1). Then T has a fized point in X.

Theorem 3. Let (X,d) be a complete cone metric space and P a normal
cone with normal constant K. Suppose the mapping T: X — CB(X) be
multi valued mapping satisfying the condition

H(Tz,Ty) < rmax{d(z,y),d(z, Tz),d(y, Ty),d(z, Ty),d(y, Tx)}
forallz,y € X, and r € [0,1). Then T has a unique fized point in X.

Definition 1 ([14]). Let E be a real Banach space. A subset P of E is
called a cone whenever the following conditions hold:

(C1) P is closed, nonempty and P # {0};
(C9) a,be R, a,b>0and z,y € P imply azx + by € P;

(C3) PN (=P)={0}.
Given a cone P C F, we define a partial ordering < with respect to P by
x < yifand if y —x € P. We shall write x < y to indicate that x < y
but z # y, while z < y will stand for y — z € P°, where P° stands for the
interior of P. If P # () then P is called a solid cone(see[23]).
There exist two kinds of cone-normal(with the normal constant K') and non-
normal ones [12].
Let E be a real Banach space, P C E a cone and < partial ordering defined
by P. Then P is called normal if there is a number K > 0 such that for all
x,y € P,

(1) 0<z<y imply || <K]yl,
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or equivalently, if (Vn)z,, <y, < z, and

(2) lim z, = lim 2z, =z imply lim y, = x.

The least positive number K satisfying (1) is called the normal constant of
P.

The cone P is called regular if every increasing sequence which is bounded
above is convergent and every decreasing sequence which is bounded below
is convergent.

Example 1 (see [24]). Let E = C[0,1] with [|z|| = ||#]e + [|2/]ls on
P = {x € E: z(t) > 0}. This cone is not normal. Consider, for example,
xn(t) = % and y,(t) = % Then 0 < z, < yn, and lim, .oy, = 0, but
znll = max;ejo |%| + maxye,1 t"~!| = L 41 > 1; hence z,, does not
converge to zero. It follows by (2) that P is a non-normal cone.

Definition 2 (|14, 26]). Let X be a nonempty set. Suppose that the map-
ping d: X x X — FE satisfies:

(dy) 0 < d(z,y) for all z,y € X with = # y and d(z,y) = 0 if and only if

T =y;

(da) d(a:,Z) =d(y,x) for all x,y € X

(d3) d(z,y) < d(x,z)+d(z,y) z,y,z € X.
Then d is called a cone metric [14] or K-metric [26] on X and (X, d) is called
a cone metric [14] or K-metric space [26].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where £ = R and
P =10, +00).

Example 2 (see [14]). Let E =R% P = {(x,y) € R?>: 2 > 0,y > 0},

X =R and d: X x X — E defined by d(z,y) = (|z — y|, a|z — y|), where
a > 0is a constant. Then (X, d) is a cone metric space with normal cone P
where K = 1.

Example 3 (see [22]). Let E = (2, P = {{zn}n> € E: 2, > 0foralin},
(X, p) a metric space, and d: X xX — E defined by d(x,y) = {p(z,y),/ 2" }n>1.
Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains
the class of metric spaces.

Definition 3 ([15]). Let X be a nonempty set and s > 1 be a given real
number. A mapping d: X x X — FE is said to be cone b-metric if and only
if, for all x,y, z € X, the following conditions are satisfied:
(i) 0 < d(z,y) with x # y and d(z,y) = 0 if and only if x = y;
(i) d(z,y) = d(y, z);
(iil) d(z,y) < s[d(z, z) + d(z,y)].

The pair (X, d) is called a cone b-metric space.
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Remark 1. The class of cone b-metric spaces is larger than the class of cone
metric space since any cone metric spaces must be a cone b-metric spaces.
Therefore, it is obvious that cone b-metric spaces generalize b-metric spaces
and cone metric spaces.

We give some examples, which show that introducing a cone b-metric
space instead of a cone metric space is meaningful since there exist cone
b-metric space which are not cone metric space.

Example 4 (see [13]). Let E =R? P = {(z,y) € E: 2 >0,y >0} C E,
X =R and d: X x X — F defined by d(z,y) = (|x — y|P, a|z — y|P), where
a > 0 and p > 1 are two constants. Then (X,d) is a cone b-metric space
with the coefficient s = 2P > 1, but not a cone metric space.

Example 5 (see [13]). Let X = (7 with 0 < p < 1, where % = {{z,} C
R: > |zp|P < co}. Let d: X x X — Ry defined d(z,y) = (> \xn—yn|p)%,
n=1

n=1 =
where z = {z,},y = {yn} € %. Then (X,d) is a cone b-metric space with
the coefficient s = 2P > 1, but not a cone metric space.

Example 6 (see [13]). Let X = {1,2,3,4}, E=R? P={(z,y) € E: 2 >
0,y > 0}. Define d: X x X — E by

z—y| Y|z —y|l Y, ifz ,
5 gy = (7= =al ™, ey
0, if x =y.

Then (X, d) is a cone b-metric space with the coefficient s = & > 1. But it
is not a cone metric space since the triangle inequality is not satisfied,

d(1,2) > d(1,4) +d(4,2), d(3,4) > d(3,1) +d(1,4).

Definition 4 ([14]). Let (X, d) be a cone b-metric space, x € X and {z,}
be a sequence in X. Then:

(i) {zn} is a Cauchy sequence whenever, if for every ¢ € E with 0 <
¢, then there is natural number N such that for all n,m > N,
d(xn, Tm) < ¢

(ii) {zn} converges to = whenever, for every ¢ € F with 0 < ¢, then
there is a natural number N such that for all n > N, d(z,,2) < c.
We denote this by nh_)rxolo Ty = T O Ty, — £ aS N — OO.

(iii) (X,d) is a complete cone b-metric space if every Cauchy sequence is
convergent.

In the following (X, d) will stand for a cone b-metric space with respect
to a cone P with P% # ) in a real Banach space E and < is partial ordering
in E with respect to P. The following lemmas are often used(in particular
while dealing with cone metric spaces in which the cone need not be normal).
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Lemma 1 ([18]). Let P be a cone and {ay} be a sequence in E. If ¢ € intP
and 0 < a, — 0 as n — 0o, then there exists N such that for all n > N, we
have a, < c.

Lemma 2 ([18]). Let x,y,z € E, if x <y and y < z, then © < z.

Lemma 3 ([15]). Let P be a cone and if 0 < u < ¢ for each ¢ € intP, then
u=0.

Lemma 4 (|9]). Let P be a cone, if u € P and u < ku for some 0 < k < 1,
then u = 0.

Lemma 5 (|18]). Let P be a cone and a < b+ ¢ for each ¢ € intP, a <b.

Let (X, d) be a metric space. We denote by C'B(X) the family of nonempty
closed bounded subset of X. Let H be the Hausdorff distance on CB(X).
That is, for A, B € CB(X),

H(A, B) = max{supd(a, B),supd(A,b)},
acA beB

where d(a, B) = inf{d(a,b) : b € B} is the distance from the point a to the
subset B. An element x € X is said to be a fixed point of a multi-valued
mapping T: X — 2% if z € T(X).

In this paper, we study the existence of fixed points for multi-valued
mappings by adapting the ideas in [1] to the cone b-metric spaces setting.

2. MAIN RESULTS

Theorem 4. Let (X, d) be a complete cone b-metric space with the coefficient
s > 1 and the mapping T: X — CB(X) be multi-valued map satisfying for
each z,y € X

H(Tx,Ty) < ald(z, Tx) + d(y, Ty)] + bld(z, Ty) + d(Tz,y)]

forallz,y € X, and a,b € [0,1) are constants such that 2a+2bs < 1. Then
T has a fixed point in X.

Proof. For every g € X and n > 1, 1 € Txg and 41 € Txy,. We have
d(xpt1,2n) < H(Txp, Trp—1)
< ald(xn, Txy) + d(xp—1,TTH_1)]

+bld(zp, Txp—1) + d(Txy, 2Hn—1)]
< ald(xp, xny1) + d(zp—1, )] + bld(xn, zn) + d(Tnt1, Tn-1)]
< ald(xn, Tni1) + d(Tp—1,2n)] + 0[d(Tns1, Tn-1)]
< ald(xyp, xns1) + d(Tp—1,2p)]

+ bs[d(zpt1, Tn) + d(Tpn, Tn—1)]
< (a4 bs)[d(zn, xpt+1) + d(Tp—1,2n)],

(4) d(.’En+1,.’En) < Ld(.’En,l'n,l),
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where L = 1_‘1(1'_?‘28). As 2a + 2bs < 1, we obtain that L < 1. Similarly, we

obtain
(5) d(zpn, nt1) < Ld(zp—1,Tp—2).
Using (5) in (4), we get
d(Tps1,Tn) < LQd(xn,wn_l).
Continuing this process, we obtain
d(Tp41,Tn) < L"d(x1,20).
For any m > 1, p > 1, we have
@y Bmtp) < ST Tms1) + A@ms1, Tty
SA(ZTm, Tmi1) + SA(Tmt1, Tmtp)

| /\

Tm, $m+1) + Sz[d(l‘m-l—lv $m+2) + d(mm—i—Za 1‘m+p)]

| /\

sd(
sd(Tm, Tm1) + 52d(33m+1a Tmt2) + 52d(xm+2v Tm+p)
SA(Tm, Tm+1) + d($m+1a Tmt2) + d(55m+2, Tm+3)
st ld(ffmﬂof?» Ttp-1) + 57 d($m+p71’ Tmtp)
sL™d(x1, ) + s2 L™ d (21, 20) + S L™ 2d (1, z0)
oo SPTALTP T2 (g ) + PP (2, 2)
= sL™[1 + sL + s*L? + s3L3 + - - - + (sL)P"Y|d(x1, x0)
< (5, w0).
Let 0 < r be given. Note that (%)d(ml,xo) — 0 as m — oo for any p.
Making full use of ([13|, Lemma 1.8), we find mgy € N such that

sL™
<1 — 3L> d(x1,mp) < 1

IN +

for each m > mg. Thus,

sL™
d(Tm, Tmtp) < <1 — 3L> d(zy,x0) L1

for all m > 1, p > 1. Therefore,{x,} is a Cauchy sequence in (X,d).
Since (X, d) is a complete cone b-metric space, there exists z € X such that
T, — z as n — oo. Take ng € N such that d(z,,z) < rl (C{ibl)?s for all
n > ng. Hence,

d(z,Tz)

< sld(z, xny1) + d(Tng1, T2)]

< sd(z,Txyp) + sH(Txy, Tz)

< sd(z, nt1) + sla(d(zy, Tzy) + d(2,T2))
+ b(d(xp, T2) + d(Txn, 2))]
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< sd(z,nt1) + sla(d(zn, Tni1)
d(2, T(2)) + b(d(w0, T2) + d(wns1, 2))]
This implies that

s(1+4b)
< -~ @@
d(z,Tz) < <1 T bg)d(xn,z) <L,
for n > np. Then, by Lemma (1.10), we deduce that d(T'z,z) = 0, that is
Tz =z. O

Example 7. Let X = [0,1] endowed with the standard order and E =
CL[0,1] with [|u|| = [Jullec + |t/]|ccs w € E and let P = {u € E : u(t) >
0 on [0,1]}. It is well known that this cone is solid, but it is not normal.
Define a cone b-metric d : X x X — E by d(z,y)(t) = |x — y|? exp’. Then
(X,d) is a complete cone b-metric space with the coefficient s = 2. Define

T:X — CB(X) by

©) () = 3.2}, if 0<z <1,
{3}, if z=1

Let z,y € X. Without loss of generality, take z < y.
If x =yoray<1,then Tx = Ty. Hence H(Tx,Ty) = 0.
If x <1andy=1, then

1
H(Tz,Ty) = 9 exp’

< 4 ¢
=07 P
14
= —.— X
379 P

= 3(d(@,T2) + d(y, Ty))
< b(d(xz,Tx) + d(y,Ty))

—_

where b = § € [0,1) and @ = 0. So all the conditions of Theorem 2.1 are
satisfied. Moreover, % and % are the two fixed points of 7.

Corollary 1. Let (X,d) be a complete cone b-metric space with the coeffi-
cient s > 1 and the mapping T: X — CB(X) be multi valued map satisfies
condition

d(Tz,Ty) < b(d(z,Ty) + d(z, Ty))
{;?r all z,y € X, where b € [0, 2—18) is a constant. Then T has a fixed point in

Proof. The proof of the corollary immediately follows by putting a = 0 in
the previous theorem. O



38 FIXED POINT THEOREMS OF GENERALIZED MULTI-VALUED MAPPINGS. . .

Corollary 2. Let (X,d) be a complete cone b-metric space with the coeffi-
cient s > 1 and the mapping T: X — CB(X) be multi valued map satisfies
condition

d(Tz,Ty) < a(d(z,Tz) + d(y, Ty))
for all z,y € X, where a € [0, 2%) 1s a constant. Then T has a fized point in
X.

Proof. The proof of the corollary immediately follows by putting b = 0 in
the previous theorem. O

Theorem 5. Let (X, d) be a complete cone b-metric space with the coefficient
s > 1 and the mapping T: X — CB(X) be multi valued map satisfy the
condition, H(Tz,Ty) < rmax{d(x,y),d(z,Tz),d(y,Ty)} for all x,y € X,
andr € [0,1). Then T has a unique fized point in X .

Proof. For every g € X and n > 1, 1 € Tzg and xp 1 € Txy,
d(xpt1,2n) < H(Txp, Tan—1)
< rmax{d(zn, xn—1),d(xn, Try),d(xp—1,TTH_1)}
< rmax{d(zn, Tn-1),d(Tn, Tni1),d(Tpn—1,2n)}
< rd(xp—1,Tn)
< r"d(xy1,x0)
For any m > 1, p > 1, we have

d(@m, Tmtp) < 8[d(Tm; Tma1) + d(Tmt1, Tmtp)]
= Sd(JIm, mm—‘,—l) + Sd(ajm—f—l, xm+p)

IN

$d(Tm, Tmt1) + 52[d(xm+17 Tmt2) + d(Tm12, Tmap)]
= sd(zm,

< $d(Trm, Tmt1) + S2A(Tymt1, Tms2) + S (T2, Tmts)

7$m+1) + 52d(33m+17 xm—i—?) + 32d(xm+27 $m+p)

+ -+ Sp_ld($m+p727 xm+p71) + Sp_ld(merpfl, xmﬂo)
< sr’d(x1,x0) + 52rm+1d(ajl, xo) + 83rm+2d(m1, xo)
o SPTYPTRA(3, 3g) + SPrPT (2, )

= sr™[1 4 sr 4 %1% + 373 -+ (sr)P " Yd(1, o)
sr’™m

< d(x1, o).

- <1—sr> (21, 20)

Let 0 < r be given. Note that (7= )d(x1,20) — 0 as m — oo for any p.

1—sr

Making full use of ([13|, Lemma 1.8), we find mg € N such that
( T ) d(z1,20) < ¢

1—sr
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for each m > mg. Thus,

sr’m

d(Tm, Tmgp) < (1 — sr) d(z1,z0) < ¢

for all m > 1, p > 1. Therefore, {z,} is a Cauchy sequence in (X,d).
Since (X, d) is a complete cone b-metric space, there exists z € X such that
xn — z as n — oo. Take ng € N such that d(z,,z) < c% for all n > nyg.
Hence,

d(z,Tz) < s[d(z,xp+1) + d(xpy1,T2)]
sd(z,Txy) + sH(Txy, Tz)

sd(z, xp41) + smax{d(zn, ), d(zy, Txy,),d(z,T2)}]
sd(z, Tp41) + smax{0, d(zp, Tnt1),d(z,Tz2)}]

sd(z, xp41) + s[max{0,0,d(z,Tz)}]

sd(z, ) + sd(z,T'z).

(VAN VAN VANRN VANRN VAN VAN

This implies that

d(z,Tz) < <13> d(an,2) < c,

for n > ng. Then, by Lemma (1.10), we deduce that d(T'z, z) = 0,
that is Tz = z.
Assume that there is another fixed point ¢ in X such that T'q = q.

cod(z,q) < H(Tz,Tq)
< rmax{d(z,q),d(z,Tz),d(q,Tq),d(z,Tq),d(q,Tz)}

< Tmax{d(za Q)a d(Z, Z)7 d(qa Q)7 d(Z, q)? d(Q> Z)}
<rd(z,q)

This is contradiction and hence T has a unique fixed point in X. O

Example 8. Let X = [0,00) endowed with the standard order and E =
CLI0,1] with [ul| = |luljeo + |t/||sc, w € E and let P = {u € E : u(t) >
0on[0,1]}. It is well known that this cone is solid, but it is not normal.
Define a cone metric d : X x X — E by d(z,y)(t) = |z — y|> exp’. Then
(X,d) is a complete cone b-metric space with the coefficient s = 2. Define
T:X — CB(X) by

{2}, if 0<z<1,

(M) ﬂm:{ghifx>L

Let z,y € X. Without loss of generality, take z < y.
If x =y oray<l1,then Tx = Ty. Hence H(Tx,Ty) = 0.
If x <1andy=1, then
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1
H(Tz,Ty) = g exp’
4

< - t
A 27exp

= gg eXpt
1
= 3d(y, Ty)
< rmax{d(z,y),d(z,Tx),d(y, Ty)}
where r = % € [0,1). So all the conditions of Theorem 2.5 are satisfied.
Moreover, 0 is a unique fixed point of T'.

Corollary 3. Let(X,d) be a complete cone b-metric space with the coefficient
s > 1 and the mapping T: X — CB(X) be multi valued mapping satisfy the
condition

(8) H(Tz,Ty) < kd(x,y)

for all x,y € X where k € [0, 2—15) is a constant. Then T has a unique fized
point in X.

Proof. The proof of the corollary immediately follows by taking d(z,y) as
maximum value in the previous theorem. O

We prove the above theorems in the setting of P is a normal cone with
normal constant K.

Theorem 6. Let (X,d) be a complete cone b-metric space with the coeffi-
cient s > 1 and P a normal cone with normal constant K. Suppose the
mapping T: X — CB(X) be multi valued mapping satisfying the condi-
tion, H(Tw,Ty) < rmax{d(z,y), d(z, Te),d(y, Ty), d(x, Ty), d(y, T2)} for
allz,y € X, and r € [0,1),2sr < 1. Then T has a unique fized point in X.

Proof. For every g € X andn > 1, 1 € Txg and 41 € Txp,

d(xpt1,2n) < H(Txp, Txp—1)
< rmax{d(zyn, xn-1),d(xn, Txy), d(xn-1,TTHn_1),
d(xp, Txp-1),d(xn—1,Txy)}
< rmax{d(zyn, xn-1),d(Tn, Tn+1), d(Tn-1,2n), d(Tn, ),
d(Tn+1,Tn-1)}
< rmax{d(zp—1, %), d(Tn, Tn+1), d(Tni1, Tn-1)}.
Case (i)

If d(zp41,zn) < rd(zy, zp—1) then we get, d(zpy1,x,) < r"d(21,20).
For any m > 1, p > 1, we have
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d(xm, xm+p) < sld(Zms Tma1) + d(Tmy, xm—i—p)]

SA(Tm, Tm1) + SA(Tmt1, Tmgp)

»n

sd(Tm, Tmi1) + S d(@Tmi1, Tmg2) + 5°A(Tmi2, Tmop)

(
(T, Tipg1) + 32[d($m+1, Tmt2) + d(Tm+2, Tmp)]
(Tm
Sd(Tpm, Tmt1) + S2d(xm+1, Tm+2) + 83d(37m+2, Tm+3)

<
<

+ o P (T2, Tmp-1) + 5P (T, Tinp)
< sr™d(x1, o) + 82rm+1d(az1, xo) + SSTm+2d(l‘1, xo)
4+ Spflrmﬂ’dd(azl, xo) + sprm“’*ld(xl, xo)

= sr™[L+sr+s*r? + 5% + -+ (sr)P d(21, 20)

< ( s )d(xl,xo).

1—sr

We get [|d(@m, wm +p)|| < K (GG d(@1, 20)||.d(@m, @m +p) = 0 as p,m —

1—sr
oo. Hence {z,,} is a Cauchy sequence. By the completeness of X, there is

z € X such that z,, — z as m — oo.
d(z,Tz) < sld(z,zp+1) + d(xpy1,T7)]
< sd(z,Txy) + sH(Txp, Tz)
< sd(z, Xp41) + s[rmax{d(xy, 2),d(xn, Txy),
d(z,Tz),d(xn, Tz),d(z,Tzy)}]
< sd(z,Tp41) + s[rmax{0, d(zn, Tn+1),d(z,Tz),
A(n, T2), (2, 11))]
sd(z,Tn+1) + s[rmax{0,0,d(z,Tz)}]
sd(z,xy) + srd(z,Tz)
srd(z,Tz),
which implies that d(T'z,z) = 0. Hence z € T'z.

Case (ii)
If d(zp+1, zn) < rd(zpy1,Tn—1) then we get

(VAN VARRRVAN

d(xn-i-ly wn) < Ts[d(xn—i—l; xn) + d(xnv xn—l)]

sr
<

— d(fEn, xn—l)
ST

< hd(xy,Tn—1), where h= <L

1—sr
For any m > 1, p > 1, we have
d(«'Bma xm—i—p) < S[d(.%'m, xm—i—l) + d(fUm—Ha xm—i—p)]
= 8d(Tm, Tmy1) + sd(Tmy1, xm—i—p)

< sd(Tm, Tmy1) + SZ[d(xm—&-la Tmt2) + d(Tm2, xm-&-p)]
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= 5d(Tm, Tmi1) + 2 Tmi1, Tmy2) + 52d(Tmyo, Tmtp)
< 5d(Tp, Trni1) + (T, Tma2) + SSA( T2, Trmgs)
+ o P (T2, Tmp-1) + 8P (@1, Tinp)
< sh™d(zy,z0) + s*h™ rd(xy, x0) + s*h™2d (21, x0)
oo SPTIRMTPT2(1y, 3g) 4+ PR (2, 1)

= sh™[1 + sh + s*h® + s3h3 + - - - + (sh)P"'|d (1, x0)
sh™

< .

< (1 — sh) d(x1, o)

We get [|[d(zm,zm + p)|| < K(—fleh)Hd(xl,xo)H. d(Tpmy T + p) — 0 as
p,m — oo. Hence {x,,} is a Cauchy sequence. By the completeness of X,
there is z € X such that z,,, = z as m — .

d(z,Tz) < sld(z,xp+1) + d(Tpt1,T2)]
< sd(z,Txy) + sH(Txy,Tz)
< sd(z,xp41) + s[rmax{d(xy, 2), d(xn, Txy,),d(z,Tz),
d(xn, Tz),d(z,Txy)}]
< sd(z,xp41) + s[rmax{0, d(zy, Tnt1),d(z,Tz),d(xn, Tz),
d(z,xn11)}]
Z, Tnt1) + s[rmax{0,0,d(z,Tz)}]
z,xp) + srd(z,Tz)
srd(z,Tz)
d(Tz,z) =0.
Hence z € T'z.
Assume that there is another fixed point ¢ in X such that T'q = q.
c.d(z,q) < H(Tz,Tq)
< rmax{d(z,q),d(z,Tz),d(q,Tq),d(z,Tq),d(q,Tz)}
< rmax{d(z,q),d(z,z2),d(q,q),d(z,q),d(q,z)}
<rd(z,q)
This is contradiction and hence T has a unique fixed point in X. O
Example 9. Let X =[0,1], E = R?. Take P = {(z,y) € E: z,y > 0}. We

define d: X x X — F as d(z,y) = (|]z — y|?, |z — y|?) for all 2,y € X.
Then (X, d) is a complete cone b-metric. Let us define T': X — CB(X) as

sd(
sd(

INIAIA

{2}, if 0<z<1,
{1}, if z=1.
Let z,y € X. Without loss of generality, take z < y.

(9) T(z) = {
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If x=yora,y<1,then Tx = Ty. Hence H(Tx,Ty) = 0.
If x <1andy=1, then

H(Tz,Ty) = (35, 55) < (i55+ 195) = 5(25 %) = 3d(y, Ty)
< rmax{d(z,y),d(z,Tz), d(y, Ty),d(z, Ty), d(y, Tx)},

where r = £ € [0,1). So all the conditions of Theorem 2.8 are satisfied.

Moreover, % is a unique fixed point of T

Corollary 4. Let (X,d) be a complete cone b-metric space with the co-
efficient s > 1 and P a normal cone with normal constant K. Suppose
the mapping T: X — CB(X) be multi-valued mapping satisfies the condi-
tion, H(Txz,Ty) < rmax{d(x,y),d(z,Tx),d(y, Ty)} for all z,y € X, and
r €[0,1). Then T has a unique fized point in X.

Proof. The proof of the corollary immediately follows since

max{d(z,y),d(z,Tz),d(y, Ty)} <
max{d(z,y),d(x,Tz),d(y, Ty),d(z,Ty),d(y, Tz)}. O
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