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Differential subordination and superordination
results for generalized “Srivastava–Attiya”

fractional integral operator

Amit Soni

Abstract. In this paper, we derive some subordination and superordi-
nation results for the generalized “Srivastava- Attiya” fractional integral
operator. Some interesting corollaries for this operator is also obtained.

1. Introduction and preliminaries

Let H(U) denote the class of analytic functions in the open unit disk
U = {z ∈ C : |z| < 1} and S(U) denote the subclass of H(U) consisting of
functions which are also univalent in U. Further let H[a, p] be the subclass
of H(U) consisting of function of the form

f(z) = a+ apz
p + ap+1z

p+1 + . . . , (a ∈ C, p ∈ N = {1, 2, 3, . . . }).

Let Ap denote the class of all analytic functions of the form

(1) f(z) = zp +
∞∑

k=p+1

akz
k, (p ∈ N).

For simplicity, we write A1 := A.
Given two functions f ∈ H(U) and g ∈ H(U), we say that f is subordinate

to g or g is superordinate to f in U and write f ≺ g, if there exists a Schwarz
function w, analytic in U, with w(0) = 0 and |w(z)| < 1, z ∈ U, such that
f(z) = g(w(z)) in U. In particular, if g(z) is univalent in U, we have the
following equivalence:

f(z) ≺ g(z), (z ∈ U) ⇐⇒
[
f(0) = g(0) and f(U) ⊂ g(U)

]
.

Supposing that h and k are two analytic functions in U, let φ(r, s, t; z) :
C3 × U→ C. If h and φ(h(z), zh′(z), z2h′′(z); z) are univalent and if h and
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φ(h(z), zh′(z), z2h′′(z); z) are univalent functions in U and h satisfies the
second-order superordination

(2) k(z) ≺ φ(h(z), zh′(z), z2h′′(z); z),

then k(z) is said to be a solution of the differential superordination (2).
A function q ∈ U is called a subordinant of (2), if q(z) ≺ h(z) for all the
functions h satisfying (2). A univalent subordinant that satisfies q(z) ≺ q̃(z)
for all of the subordinants q of (2), is said to be the best subordinant.
Recently, Miller and Mocanu [6] obtained the sufficient conditions on the
functions k, q and φ for which the following implication holds:

k(z) ≺ φ(h(z), zh′(z), z2h′′(z); z) ⇒ q(z) ≺ h(z).

Using results of Miller and Mocanu [6], Bulboacã [2] considered certain
classes of first order differential superordination as well superordination-
preserving integral operators [3] . Ali et al. [1] have used the results of Bul-
boacã [2] to obtain sufficient conditions for normalized analytic functions to
satisfy

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent function in U. Also, Shanmugam et al.
[10] obtained sufficient conditions for a normalized analytic f(z) to satisfy

q1(z) ≺
f(z)

zf ′(z)
≺ q2(z),

q1(z) ≺
z2f ′(z)

(f(z))2
≺ q2(z),

where q1 and q2 are given univalent function in U with q1(0) = 1 and
q2(0) = 1. Further subordination results can be found in [7, 8, 11–13].

The fractional integral operator (see [20]) of order λ(λ > 0) is defined for
a funtion f by

(3) D−λz f(z) =
1

Γ(λ)

∫ z

0

f(t)

(z − t)1−λ
dt,

where f is analytic function in a simply-connected region of z-plane con-
taining the origin and the multiplicity of (z − t)1−λ is removed by requiring
log(z − t) to be real, when <(z − t) > 0.

Recently, Srivastava and Attiya [21] introduced and investigated the linear
operator: Now for f ∈ A, b ∈ C\Z−0 and s ∈ C, we define the functionGs,b(z)
by

(4) Gs,b(z) := (1 + b)s
[
Φ(z, s, b)− b−s

]
, (z ∈ U).

We also denote by
Js,b(f) : A −→ A
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the linear operator defined by

(5) Js,b(f)(z) := Gs,b(z) ∗ f(z), (z ∈ U; f ∈ A; b ∈ C\Z−0 ; s ∈ C)

in terms of the Hadamard product (or convolution).
We note that

(6) Js,bf(z) = z +

∞∑
k=2

(
1 + b

k + b

)s
akz

k, (z ∈ U; b ∈ C\Z−0 ; s ∈ C; f ∈ A).

Remark 1. It follows from (5) and (6) that one can define the operator
Js,b(f) for b ∈ C\Z−0 . Therefore, we may use the following limit relationship:

(7) Js,0f(z) := lim
b→0
{Js,b(f)(z)}.

Motivated essentially by the above-mentioned “Srivastava-Attiya” opera-
tor, Wang [22] introduced the operator for the class Ap.

(8) Jα,ps,b (f) : Ap → Ap,

which is defined as

(9) Jα,ps,b f(z) = zp +
∞∑
k=1

(α+ p)k
k !

(
p+ b

p+ k + b

)s
ap+kz

p+k, (z ∈ U),

where (ν)k is the Pochhammer symbol defined by

(10) (ν)k :=

{
1, k = 0,

ν(ν + 1) · · · (ν + k − 1), k ∈ N.

Recently q-extension of “Srivastava-Attiya” operator have been studied in
[19], the mathematical applications of q-calculus, fractional q-calculus and
the fractional q-derivative operators can be seen in [15]. Srivastava et al.
[18] also reconnoiter the not-yet-widely-known fact that the so-called (p, q)-
variation of classical q-calculus is a rather trivial and inconsequential vari-
ation of classical q-calculus. For more detail and related works one can see
in ([9, 14,16,17]).
Unless otherwise mentioned, we assume throughout this paper that the pa-
rameter s, b, p and α are constrained as follows:

(11) s ∈ C; b ∈ C\Z−0 ; p ∈ N and α > −p.

From (3) and (9), we get the fractional integral operator D−λz Jα,ps,b f(z)
defined as

(12)

D−λz Jα,ps,b f(z) =
Γ(p+ 1)

Γ(λ+ p+ 1)
zλ+p

+

∞∑
k=1

(α+ p)k
k !

Γ(p+ k + 1)

Γ(λ+ p+ k + 1)

(
p+ b

p+ k + b

)s
ap+kz

p+k+λ
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for (λ+ p+ 1 > 0, α+ p > 0. Also, it is easily verified from (12) that

(13) z
(
D−λz Jα,ps,b f(z)

)′
= (λ− α)D−λz Jα,ps,b f(z) + (α+ p)D−λz Jα+1,p

s,b f(z).

Definition 1 (Miller and Mocanu [6]). Denote by Q the set of all functions
f(z) that are analytic and injective on U\E(f), where

E(f) = {η ∈ ∂U : lim
z→η

f(z) =∞},

and are such that f ′(η) 6= 0 for η ∈ ∂U\E(f).

To prove our results we shall need the following lemmas.

Lemma 1 (Bulboacã [4]). Let q(z) be convex univalent in the unit disk U
and θ and ψ be analytic in a domain D containing q(U). Suppose that

1. <[θ′(q(z))/ψ(q(z))] > 0 for z ∈ U,
2. zq′(z)ψ(q(z)) is starlike in U.

If p(z) ∈ H[q(0), 1] ∩ Q with p(U) ⊆ D and θ(p(z)) + zp′(z)ψ(p(z)) is uni-
valent in U and

(14) θ(q(z)) + zq′(z)ψ(q(z)) ≺ θ(p(z)) + zp′(z)ψ(p(z)).

then q(z) ≺ p(z) and q is the best subordinant of (14).

Lemma 2 (Frasin [5]). Let the function p(z) and q(z) be analytic in U and
suppose that q(z) 6= 0 (z ∈ U) is also univalent in U and that zq

′(z)
q(z) is starlike

univalent in U. If q(z) satisfies

(15) <
(

1 +
c1
β
q(z) +

2c2
β

(q(z))2 + · · ·+ ncn
β

(q(z))n − zq′(z)

q(z)
+
zq′′(z)

q′(z)

)
> 0

and

(16)

c0 + c1p(z) + c2(p(z))
2 + · · ·+ cn(p(z))n + β

zp′(z)

p(z)

≺ c0 + c1q(z) + c2(q(z))
2 + · · ·+ cn(q(z))n + β

zq′(z)

q(z)
,

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C;β 6= 0),

then p(z) ≺ q(z) (z ∈ U) and q is the best dominant.

We now first prove the following subordination result involving the oper-
ator D−λz Jα,ps,b f(z).

2. Subordination results for analytic functions

Theorem 1. Let the function q(z) be analytic and univalent in U such that
q(z) 6= 0, (z ∈ U). Suppose that zq′(z)

q(z) is starlike univalent in U and the
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inequality (15) holds true. Let

(17)

Ωm
j (c0, c1, c2, ...cn, β, α, λ, p, f)

= c0 + c1

(
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
+ c2

(
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)2

+ · · ·+ cn

(
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)n
+ β(α+ p)

(
D−λz Jα+1,p

s,b f(z)

D−λz Jα,ps,b f(z)
− 1

)
.

If q(z) satisfies

(18)

Ωm
j (c0, c1, c2, ...cn, β, α, λ, p, f)

≺ c0 + c1q(z) + c2(q(z))
2 + · · ·+ cn(q(z))n + β

zq′(z)

q(z)
,

(z ∈ U; c0, c1, c2, ...cn, β ∈ C;β 6= 0),

then (
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
≺ q(z), (z ∈ U\{0}),

and q is the best dominant.

Proof. Define the function h(z) by

h(z) =
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p
, (z ∈ U\{0}).

Then a computation shows that

zh′(z)

h(z)
=
zD−λz (Jα,ps,b f(z))′

D−λz (Jα,ps,b f(z))
− (λ+ p).

By using the identity (13), we obtain

zh′(z)

h(z)
= (α+ p)

(
D−λz Jα+1,p

s,b f(z)

D−λz Jα,ps,b f(z)
− 1

)
,

which, in light of hypothesis (16), yields the following subordination

c0 + c1h(z) + c2(h(z))2 + ...+ cn(h(z))n + β
zh′(z)

h(z)

≺ c0 + c1q(z) + c2(q(z))
2 + · · ·+ cn(q(z))n + β

zq′(z)

q(z)
,

and Theorem 1 follows by an application of Lemma 2.
For the choices q(z) = 1+Az

1+Bz , −1 ≤ B < A ≤ 1 and q(z) =
(
1+z
1−z

)µ
,

0 ≤ µ ≤ 1 in Theorem 1, we get Corollaries 1 and 2 below. �
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Corollary 1. Assume that (15) holds true. If f ∈ Ap and

Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f)

≺ c0 + c1

(
1 +Az

1 +Bz

)
+ c2

(
1 +Az

1 +Bz

)2

+ · · ·

+ cn

(
1 +Az

1 +Bz

)n
+ β

(A−B)z

(1 +Az)(1 +Bz)
,

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C; β 6= 0),

where Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f) is as defined in equation (17), then(

Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
≺ 1 +Az

1 +Bz
,

and 1+Az
1+Bz is the best dominant.

Corollary 2. Assume that (15) holds true. If f ∈ Ap and

Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f)

≺ c0 + c1

(
1 + z

1− z

)µ
+ c2

(
1 + z

1− z

)2µ

+ . . .

+ cn

(
1 + z

1− z

)2nµ

+
2βµz

1− z2
,

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C;β 6= 0),

where Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f) is as defined in equation (17), then(

Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
≺
(

1 + z

1− z

)µ
,

and 1+z
1−z is the best dominant.

For q(z) = eεAz, (|εA| < π), in Theorem 1, we get the following result.

Corollary 3. Assume that (15) holds true. If f ∈ Ap and

Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f) ≺ c0 + c1e

εAz + c2e
2εAz + cne

nεAz + βεAz,

where Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f) is as defined in equation (17), then(

Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
≺ eεAz, (z ∈ U\{0}),

and eεAz is the best dominant.
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3. Superordination for analytic functions

Next, applying Lemma 1, we obtain the following two theorems.

Theorem 2. Let q be analytic and convex univalent in U such that q(z) 6= 0

and zq′(z)
q(z) is starlike univalent in U. Suppose also that

(19)
<
(
c1
β
q(z) +

2c2
β

(q(z))2 + ...+
ncn
β

(q(z))n
)
> 0,

(z ∈ U; c0, c1, c2, ...cn, β ∈ C;β 6= 0).

If f ∈ Ap (
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
∈ H[q(0), 1] ∩Q

and Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f) defined in (17) is univalent in U, then

the following superordination:

(20)
c0 + c1q(z) + c2(q(z))

2 + · · ·+ cn(q(z))n + β
zq′(z)

q(z)

≺ Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f),

(z ∈ U; c0, c1, c2, ...cn, β ∈ C;β 6= 0),

implies that

q(z) ≺

(
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
, (z ∈ U\{0}),

and q(z) is the best subordinant.

Proof. Let

θ(ω) = c0 + c1ω + c2ω
2 + ...cnω

n and ψ(ω) := β
ω′

ω
.

Then, we observe that θ(ω) is analytic in C, ψ(ω) is analytic in C∗ = C\{0}
and that ψ(ω) 6= 0 (ω ∈ C∗). Since q is a convex univalent in U, it follows
that

<
(
θ′(q(z))

ψ(q(z))

)
= <

(
c1
β
q(z) +

2c2
β

(q(z))2 + · · ·+ ncn
β

(q(z))n
)
> 0,

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C;β 6= 0).

Theorem 2 follows as an application of Lemma 1. �

Combining the results of differential subordination and superordination,
we state that the following sandwich result.
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Theorem 3. Let q1 be convex univalent and q2 be univalent in U such that
q1(z) 6= 0 and q2(z) 6= 0 (z ∈ U). Suppose also that q2 satisfies (19) and q1
satisfies (15). If f ∈ Ap,(

Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
∈ H[q(0), 1] ∩Q

and

c0 + c1

(
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)
+ c2

(
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)2

+

+ · · ·+ cn

(
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p

)n
+ β(α+ p)

(
D−λz Jα+1,p

s,b f(z)

D−λz Jα,ps,b f(z)
− 1

)
,

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C; β 6= 0)

is univalent in U, then the subordination given by

(21)

c0 + c1q1(z) + c2(q1(z))
2 + · · ·+ cn(q1(z))

n + β
zq′1(z)

q1(z)

≺ Ωm
j (c0, c1, c2, . . . , cn, β, α, λ, p, f)

≺ c0 + c1q2(z) + c2(q2(z))
2 + · · ·+ cn(q2(z))

n + β
zq′2(z)

q2(z)
,

(z ∈ U; c0, c1, c2, . . . , cn, β ∈ C;β 6= 0),

implies that

q1(z) ≺
Γ(λ+ p+ 1)

Γ(p+ 1)

D−λz Jα,ps,b f(z)

zλ+p
≺ q2(z),

and q1 and q2 are respectively, the best subordinant and the best dominant of
(21).
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