Differential subordination and superordination results for generalized “Srivastava–Attiya” fractional integral operator

Amit Soni

Abstract. In this paper, we derive some subordination and superordination results for the generalized “Srivastava-Attiya” fractional integral operator. Some interesting corollaries for this operator is also obtained.

1. Introduction and preliminaries

Let $H(U)$ denote the class of analytic functions in the open unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$ and $S(U)$ denote the subclass of $H(U)$ consisting of functions which are also univalent in U. Further let $H[a, p]$ be the subclass of $H(U)$ consisting of function of the form

$$f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \ldots, \quad (a \in \mathbb{C}, \ p \in \mathbb{N} = \{1, 2, 3, \ldots \}).$$

Let A_p denote the class of all analytic functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad (p \in \mathbb{N}). \tag{1}$$

For simplicity, we write $A_1 := A$.

Given two functions $f \in H(U)$ and $g \in H(U)$, we say that f is subordinate to g or g is superordinate to f in U and write $f \prec g$, if there exists a Schwarz function w, analytic in U, with $w(0) = 0$ and $|w(z)| < 1$, $z \in U$, such that $f(z) = g(w(z))$ in U. In particular, if $g(z)$ is univalent in U, we have the following equivalence:

$$f(z) \prec g(z), \quad (z \in U) \iff [f(0) = g(0) \text{ and } f(U) \subset g(U)].$$

Supposing that h and k are two analytic functions in U, let $\phi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$. If h and $\phi(h(z), zh'(z), z^2 h''(z); z)$ are univalent and if h and
\(\phi(h(z), zh'(z), z^2 h''(z); z) \) are univalent functions in \(U \) and \(h \) satisfies the second-order superordination

\[
(2) \quad k(z) \prec \phi(h(z), zh'(z), z^2 h''(z); z),
\]

then \(k(z) \) is said to be a solution of the differential superordination (2). A function \(q \in \mathbb{U} \) is called a subordinant of (2), if \(q(z) \prec h(z) \) for all the functions \(h \) satisfying (2). A univalent subordinant that satisfies \(q(z) \prec \tilde{q}(z) \) for all of the subordinants \(q \) of (2), is said to be the best subordinant. Recently, Miller and Mocanu [6] obtained the sufficient conditions on the functions \(k, q \) and \(\phi \) for which the following implication holds:

\[
k(z) \prec \phi(h(z), zh'(z), z^2 h''(z); z) \Rightarrow q(z) \prec h(z).
\]

\[
q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),
\]

where \(q_1 \) and \(q_2 \) are given univalent function in \(\mathbb{U} \). Also, Shanmugam et al. [10] obtained sufficient conditions for a normalized analytic \(f(z) \) to satisfy

\[
q_1(z) \prec \frac{f(z)}{zf'(z)} \prec q_2(z),
\]

\[
q_1(z) \prec \frac{z^2 f'(z)}{(f(z))^2} \prec q_2(z),
\]

where \(q_1 \) and \(q_2 \) are given univalent function in \(\mathbb{U} \) with \(q_1(0) = 1 \) and \(q_2(0) = 1 \). Further subordination results can be found in [7, 8, 11–13].

The fractional integral operator (see [20]) of order \(\lambda (\lambda > 0) \) is defined for a function \(f \) by

\[
D_{z}^{-\lambda} f(z) = \frac{1}{\Gamma(\lambda)} \int_{0}^{z} \frac{f(t)}{(z-t)^{1-\lambda}} dt,
\]

where \(f \) is analytic function in a simply-connected region of \(z \)-plane containing the origin and the multiplicity of \((z-t)^{1-\lambda} \) is removed by requiring \(\log(z-t) \) to be real, when \(\Re(z-t) > 0 \).

Recently, Srivastava and Attiya [21] introduced and investigated the linear operator: Now for \(f \in \mathcal{A}, b \in \mathbb{C} \setminus \mathbb{Z}_0^− \) and \(s \in \mathbb{C} \), we define the function \(G_{s, b}(z) \) by

\[
G_{s, b}(z) := (1 + b)^s \left[\Phi(z, s, b) - b^{-s} \right], \quad (z \in \mathbb{U}).
\]

We also denote by

\[
J_{s, b}(f) : \mathcal{A} \rightarrow \mathcal{A}
\]
the linear operator defined by
\[
J_{s,b}(f)(z) := G_{s,b}(z) \ast f(z), \quad (z \in \mathbb{U}; f \in \mathcal{A}; b \in \mathbb{C} \setminus \mathbb{Z}_0^-; s \in \mathbb{C})
\]
in terms of the Hadamard product (or convolution).

We note that
\[
J_{s,b}f(z) = z + \sum_{k=2}^{\infty} \left(\frac{1+b}{k+b} \right)^s a_k z^k, \quad (z \in \mathbb{U}; b \in \mathbb{C} \setminus \mathbb{Z}_0^-; s \in \mathbb{C}; f \in \mathcal{A}).
\]

Remark 1. It follows from (5) and (6) that one can define the operator
\(J_{s,b}(f) \) for \(b \in \mathbb{C} \setminus \mathbb{Z}_0^- \). Therefore, we may use the following limit relationship:
\[
J_{s,0}f(z) := \lim_{b \to 0} \{ J_{s,b}(f)(z) \}.
\]

Motivated essentially by the above-mentioned “Srivastava-Attiya” operator, Wang [22] introduced the operator for the class \(\mathcal{A}_p \).
\[
J_{s,b}^{\alpha,p}(f) : \mathcal{A}_p \to \mathcal{A}_p,
\]
which is defined as
\[
J_{s,b}^{\alpha,p}f(z) = z^p + \sum_{k=1}^{\infty} \left(\frac{\alpha + p}{k} \right) \left(\frac{p+b}{p+k+b} \right)^s a_{p+k} z^{p+k}, \quad (z \in \mathbb{U}),
\]
where \((\nu)_k\) is the Pochhammer symbol defined by
\[
(\nu)_k := \begin{cases}
1, & k = 0, \\
\nu(\nu+1) \cdots (\nu+k-1), & k \in \mathbb{N}.
\end{cases}
\]

Recently q-extension of “Srivastava-Attiya” operator have been studied in [19], the mathematical applications of q-calculus, fractional q-calculus and the fractional q-derivative operators can be seen in [15]. Srivastava et al. [18] also reconnoiter the not-yet-widely-known fact that the so-called \((p,q)\) variation of classical q-calculus is a rather trivial and inconsequential variation of classical q-calculus. For more detail and related works one can see in ([9,14,16,17]).

Unless otherwise mentioned, we assume throughout this paper that the parameter \(s, b, p \) and \(\alpha \) are constrained as follows:
\[
(\nu)_k := \begin{cases}
1, & k = 0, \\
\nu(\nu+1) \cdots (\nu+k-1), & k \in \mathbb{N}.
\end{cases}
\]

\[s \in \mathbb{C}; \ b \in \mathbb{C} \setminus \mathbb{Z}_0^-; \ p \in \mathbb{N} \text{ and } \alpha > -p. \]

From (3) and (9), we get the fractional integral operator \(D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z) \) defined as
\[
D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z) = \frac{\Gamma(p+1)}{\Gamma(\lambda + p + 1)} z^{\lambda+p} + \sum_{k=1}^{\infty} \frac{(\alpha + p)_k}{k!} \frac{\Gamma(p + k + 1)}{\Gamma(\lambda + p + k + 1)} \left(\frac{p+b}{p+k+b} \right)^s a_{p+k} z^{p+k+\lambda}
\]
for \((\lambda + p + 1 > 0, \alpha + p > 0)\). Also, it is easily verified from (12) that
\[
(13) \quad z \left(\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z) \right)' = (\lambda - \alpha) \mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z) + (\alpha + p) \mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha+1,p} f(z).
\]

Definition 1 (Miller and Mocanu [6]). Denote by \(Q\) the set of all functions \(f(z)\) that are analytic and injective on \(\mathbb{U}\setminus E(f)\), where
\[
E(f) = \{\eta \in \partial \mathbb{U} : \lim_{z \to \eta} f(z) = \infty\},
\]
and are such that \(f'(\eta) \neq 0\) for \(\eta \in \partial \mathbb{U}\setminus E(f)\).

To prove our results we shall need the following lemmas.

Lemma 1 (Bulboacă [4]). Let \(q(z)\) be convex univalent in the unit disk \(\mathbb{U}\) and \(\theta\) and \(\psi\) be analytic in a domain \(\mathbb{D}\) containing \(q(\mathbb{U})\). Suppose that
1. \(\Re[\theta'(q(z))/\psi(q(z))] > 0\) for \(z \in \mathbb{U}\),
2. \(zq'(z)\psi(q(z))\) is starlike in \(\mathbb{U}\).

If \(p(z) \in H[q(0),1] \cap Q\) with \(p(\mathbb{U}) \subseteq \mathbb{D}\) and \(\theta(p(z)) + zp'(z)\psi(p(z))\) is univalent in \(\mathbb{U}\) and
\[
(14) \quad \theta(q(z)) + zq'(z)\psi(q(z)) \prec \theta(p(z)) + zp'(z)\psi(p(z)).
\]
then \(q(z) \prec p(z)\) and \(q\) is the best subordinant of (14).

Lemma 2 (Frasin [5]). Let the function \(p(z)\) and \(q(z)\) be analytic in \(\mathbb{U}\) and suppose that \(q(z) \neq 0\) (\(z \in \mathbb{U}\)) is also univalent in \(\mathbb{U}\) and that \(zq'(z)/q(z)\) is starlike univalent in \(\mathbb{U}\). If \(q(z)\) satisfies
\[
(15) \quad \Re \left(1 + \frac{c_1}{\beta} q(z) + \frac{2c_2}{\beta} (q(z))^2 + \cdots + \frac{nc_n}{\beta} (q(z))^n - \frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)} \right) > 0
\]
and
\[
(16) \quad c_0 + c_1 p(z) + c_2 (p(z))^2 + \cdots + c_n (p(z))^n + \beta \frac{zp'(z)}{p(z)} \prec c_0 + c_1 q(z) + c_2 (q(z))^2 + \cdots + c_n (q(z))^n + \beta \frac{zq'(z)}{q(z)},
\]
\((z \in \mathbb{U}; c_0, c_1, c_2, \ldots, c_n, \beta \in \mathbb{C}; \beta \neq 0)\),
then \(p(z) \prec q(z)\) (\(z \in \mathbb{U}\)) and \(q\) is the best dominant.

We now first prove the following subordination result involving the operator \(\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)\).

2. **Subordination results for analytic functions**

Theorem 1. Let the function \(q(z)\) be analytic and univalent in \(\mathbb{U}\) such that \(q(z) \neq 0\), (\(z \in \mathbb{U}\)). Suppose that \(zq'(z)/q(z)\) is starlike univalent in \(\mathbb{U}\) and the
inequality (15) holds true. Let
\[
\Omega^m_j(c_0, c_1, c_2, \ldots c_n, \beta, \alpha, \lambda, p, f)
\]

(17)
\[
= c_0 + c_1 \left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right) + c_2 \left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right)^2
\]

+ \cdots + c_n \left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right)^n + \beta(\alpha + p) \left(\frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha+1,p} f(z)}{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)} - 1 \right).
\]

If \(q(z) \) satisfies
\[
\Omega^m_j(c_0, c_1, c_2, \ldots c_n, \beta, \alpha, \lambda, p, f)
\]

(18)
\[
< c_0 + c_1 q(z) + c_2 (q(z))^2 + \cdots + c_n (q(z))^n + \beta \frac{z q'(z)}{q(z)},
\]

\((z \in \mathbb{U}; c_0, c_1, c_2, \ldots c_n, \beta \in \mathbb{C}; \beta \neq 0)\),
then
\[
\left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right) < q(z), \quad (z \in \mathbb{U}\setminus\{0\}),
\]
and \(q \) is the best dominant.

Proof. Define the function \(h(z) \) by
\[
h(z) = \frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}}, \quad (z \in \mathbb{U}\setminus\{0\}).
\]
Then a computation shows that
\[
\frac{zh'(z)}{h(z)} = \frac{z \mathcal{D}_z^{-\lambda} (J_{s,b}^{\alpha,p} f(z))'}{\mathcal{D}_z^{-\lambda} (J_{s,b}^{\alpha,p} f(z))} - (\lambda + p).
\]
By using the identity (13), we obtain
\[
\frac{zh'(z)}{h(z)} = (\alpha + p) \left(\frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha+1,p} f(z)}{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)} - 1 \right),
\]
which, in light of hypothesis (16), yields the following subordination
\[
c_0 + c_1 h(z) + c_2 (h(z))^2 + \cdots + c_n (h(z))^n + \beta \frac{zh'(z)}{h(z)}
\]

\[
< c_0 + c_1 q(z) + c_2 (q(z))^2 + \cdots + c_n (q(z))^n + \beta \frac{z q'(z)}{q(z)},
\]
and Theorem 1 follows by an application of Lemma 2.

For the choices \(q(z) = \frac{1+Az}{1+Bz}, \ -1 \leq B < A \leq 1 \) and \(q(z) = \left(\frac{1+z}{1-z} \right)^\mu, \ 0 \leq \mu \leq 1 \) in Theorem 1, we get Corollaries 1 and 2 below. □
Corollary 1. Assume that (15) holds true. If \(f \in \mathcal{A}_p \) and
\[
\Omega^m_j(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f)
\prec c_0 + c_1 \left(\frac{1 + Az}{1 + Bz} \right) + c_2 \left(\frac{1 + Az}{1 + Bz} \right)^2 + \cdots
+ c_n \left(\frac{1 + Az}{1 + Bz} \right)^n
+ \beta \frac{(A - B)z}{(1 + Az)(1 + Bz)}
(z \in \mathbb{U}; c_0, c_1, c_2, \ldots, c_n, \beta \in \mathbb{C}; \beta \neq 0),
\]
where \(\Omega^m_j(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f) \) is as defined in equation (17), then
\[
\left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right) \prec \frac{1 + Az}{1 + Bz}.
\]
and \(\frac{1 + Az}{1 + Bz} \) is the best dominant.

Corollary 2. Assume that (15) holds true. If \(f \in \mathcal{A}_p \) and
\[
\Omega^m_j(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f)
\prec c_0 + c_1 \left(\frac{1 + z}{1 - z} \right)^\mu + c_2 \left(\frac{1 + z}{1 - z} \right)^{2\mu} + \cdots
+ c_n \left(\frac{1 + z}{1 - z} \right)^{2n\mu}
+ \frac{2\beta \mu z}{1 - z^2},
(z \in \mathbb{U}; c_0, c_1, c_2, \ldots, c_n, \beta \in \mathbb{C}; \beta \neq 0),
\]
where \(\Omega^m_j(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f) \) is as defined in equation (17), then
\[
\left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right) \prec \left(\frac{1 + z}{1 - z} \right)^\mu,
\]
and \(\frac{1 + z}{1 - z} \) is the best dominant.

For \(q(z) = e^{\epsilon Az}, (|\epsilon A| < \pi) \), in Theorem 1, we get the following result.

Corollary 3. Assume that (15) holds true. If \(f \in \mathcal{A}_p \) and
\[
\Omega^m_j(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f) \prec c_0 + c_1 e^{\epsilon Az} + c_2 e^{2\epsilon Az} + c_n e^{n\epsilon Az} + \beta \epsilon Az,
\]
where \(\Omega^m_j(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f) \) is as defined in equation (17), then
\[
\left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right) \prec e^{\epsilon Az}, \quad (z \in \mathbb{U}\{0\}),
\]
and \(e^{\epsilon Az} \) is the best dominant.
3. SUPERORDINATION FOR ANALYTIC FUNCTIONS

Next, applying Lemma 1, we obtain the following two theorems.

Theorem 2. Let \(q \) be analytic and convex univalent in \(U \) such that \(q(z) \neq 0 \) and \(\frac{zq'(z)}{q(z)} \) is starlike univalent in \(U \). Suppose also that

\[
\Re \left(\frac{c_1}{\beta} q(z) + \frac{2c_2}{\beta} (q(z))^2 + \ldots + \frac{n c_n}{\beta} (q(z))^n \right) > 0, \\
(z \in U; c_0, c_1, c_2, \ldots c_n, \beta \in \mathbb{C}; \beta \neq 0).
\]

If \(f \in A_p \)

\[
\left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J^\alpha_{s,b} f(z)}{z^{\lambda+p}} \right) \in \mathcal{H}[q(0), 1] \cap Q
\]

and \(\Omega_j^m(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f) \) defined in (17) is univalent in \(U \), then the following superordination:

\[
c_0 + c_1 q(z) + c_2 (q(z))^2 + \cdots + c_n (q(z))^n + \beta \frac{zq'(z)}{q(z)} \prec \Omega_j^m(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f), \\
(z \in U; c_0, c_1, c_2, \ldots c_n, \beta \in \mathbb{C}; \beta \neq 0),
\]

implies that

\[
q(z) \prec \left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{\mathcal{D}_z^{-\lambda} J^\alpha_{s,b} f(z)}{z^{\lambda+p}} \right), \\
(z \in U \setminus \{0\}),
\]

and \(q(z) \) is the best subordinant.

Proof. Let

\[
\theta(\omega) = c_0 + c_1 \omega + c_2 \omega^2 + \ldots c_n \omega^n \quad \text{and} \quad \psi(\omega) := \beta \frac{\omega'}{\omega}.
\]

Then, we observe that \(\theta(\omega) \) is analytic in \(\mathbb{C} \), \(\psi(\omega) \) is analytic in \(\mathbb{C}^* = \mathbb{C} \setminus \{0\} \) and that \(\psi(\omega) \neq 0 \) (\(\omega \in \mathbb{C}^* \)). Since \(q \) is a convex univalent in \(U \), it follows that

\[
\Re \left(\frac{\theta'(q(z))}{\psi(q(z))} \right) = \Re \left(\frac{c_1}{\beta} q(z) + \frac{2c_2}{\beta} (q(z))^2 + \ldots + \frac{n c_n}{\beta} (q(z))^n \right) > 0, \\
(z \in U; c_0, c_1, c_2, \ldots, c_n, \beta \in \mathbb{C}; \beta \neq 0).
\]

Theorem 2 follows as an application of Lemma 1. \(\square \)

Combining the results of differential subordination and superordination, we state that the following sandwich result.
Theorem 3. Let q_1 be convex univalent and q_2 be univalent in U such that $q_1(z) \neq 0$ and $q_2(z) \neq 0$ ($z \in U$). Suppose also that q_2 satisfies (19) and q_1 satisfies (15). If $f \in A_p$,

$$
\left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right) \in H[0,1] \cap Q
$$

and

$$
c_0 + c_1 \left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right) + c_2 \left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right)^2 + \cdots + c_n \left(\frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \right)^n + \beta(\alpha + p) \left(\frac{D_z^{-\lambda} J_{s,b}^{\alpha+1,p} f(z)}{D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)} - 1 \right),
$$

(z $\in U$; $c_0, c_1, c_2, \ldots, c_n, \beta \in \mathbb{C}$; $\beta \neq 0$)

is univalent in U, then the subordination given by

$$
c_0 + c_1 q_1(z) + c_2(q_1(z))^2 + \cdots + c_n(q_1(z))^n + \beta \frac{z q_1'(z)}{q_1(z)}
\prec \Omega^m_j(c_0, c_1, c_2, \ldots, c_n, \beta, \alpha, \lambda, p, f)
\prec c_0 + c_1 q_2(z) + c_2(q_2(z))^2 + \cdots + c_n(q_2(z))^n + \beta \frac{z q_2'(z)}{q_2(z)},
$$

(z $\in U$; $c_0, c_1, c_2, \ldots, c_n, \beta \in \mathbb{C}$; $\beta \neq 0$),

implies that

$$
q_1(z) \prec \frac{\Gamma(\lambda + p + 1)}{\Gamma(p + 1)} \frac{D_z^{-\lambda} J_{s,b}^{\alpha,p} f(z)}{z^{\lambda+p}} \prec q_2(z),
$$

and q_1 and q_2 are respectively, the best subordinant and the best dominant of (21).

REFERENCES

Differential subordination and superordination results

Amit Soni
Department of Mathematics
Govt. Engineering College
Bikaner, 334004, Rajasthan
India
E-mail address: aamitt1981@gmail.com