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The Tribonacci-type balancing
numbers and their applications

Sakı̇ne Hulku, Ömür Devecı̇

Abstract. In this paper, we define the Tribonacci-type balancing num-
bers via a Diophantine equation with a complex variable and then give
their miscellaneous properties. Also, we study the Tribonacci-type bal-
ancing sequence modulo m and then obtain some interesting results
concerning the periods of the Tribonacci-type balancing sequences for
any m. Furthermore, we produce the cyclic groups using the multi-
plicative orders of the generating matrices of the Tribonacci-type bal-
ancing numbers when read modulo m. Then give the connections be-
tween the periods of the Tribonacci-type balancing sequences modulo
m and the orders of the cyclic groups produced. Finally, we expand the
Tribonacci-type balancing sequences to groups and give the definition
of the Tribonacci-type balancing sequences in the 3-generator groups
and also, investigate these sequences in the non-abelian finite groups in
detail. In addition, we obtain the periods of the Tribonacci-type bal-
ancing sequences in the polyhedral groups (2, 2, n), (2, n, 2), (n, 2, 2),
(2, 3, 3), (2, 3, 4), (2, 3, 5).

1. Introduction

Behera and Panda [2] introduced the balancing numbers n and balancers
r as solutions of the Diophantine equation

(1) 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r).

First few balancing numbers 1, 6, 35, 204 are and 1189 with balancers 0, 2,
14, 84 and 492, respectively. For n ≥ 1, the nth balancing number Bn is
described [2] by

Bn+1 = 6Bn −Bn−1

with initial conditions B0 = 1 and B1 = 6.
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Ray [35] showed that the balancing numbers are also generated by a ma-
trix

QB =

[
6 −1
1 0

]
,

Qn
B =

[
Bn+1 −Bn

Bn −Bn−1

]
.

It is well-known that the tribonacci (3-step Fibonacci) sequence {Tn} is
defined by the following homogeneous linear recurrence relation:

Tn+2 = Tn+1 + Tn + Tn−1

for n ≥ 1, with initial conditions T0 = 0, T1 = 0 and T2 = 1.
Komatsu [24] defined Tribonacci-type numbers by the following recurrence

relation:
T (T0,T1,T2)
n = T

(T0,T1,T2)
n−1 + T

(T0,T1,T2)
n−2 + T

(T0,T1,T2)
n−3

for (n ≥ 3), where T
(T0,T1,T2)
0 = T0, T

(T0,T1,T2)
1 = T1 and T

(T0,T1,T2)
2 = T2. It

is important to note that Tn = T
(0,1,1)
n are ordinary Tribonacci numbers.

For a finitely generated group G = ⟨A⟩ where A = {a1, a2, . . . , an}, the

sequence xi = ai+1, 0 ≤ i ≤ n − 1, xn+i =
n∏

j=1
xi+j−1, i ≥ 0, is called the

Fibonacci orbit of G with respect to the generating set A, denoted FA (G)
(cf. [4, 5]).

A sequence is periodic if, after a certain point, it consists only of rep-
etitions of a fixed subsequence. The number of elements in the shortest
repeating subsequence is called the period of the sequence. For example,
the sequence a, b, c, d, b, c, d, b, c, d, . . . is periodic after the initial element a
and has period 3. A sequence is simply periodic with period k if the first
k elements in the sequence form a repeating subsequence. For example, the
sequence a, b, c, d, a, b, c, d, a, b, c, d, . . . is simply periodic with period 4.

The polyhedral (triangle) group (l,m, n) for l,m, n > 1, is defined by the
presentation

(l,m, n) = ⟨x, y, z | xl = ym = zn = xyz = e⟩.

The polyhedral group (l,m, n) is finite if and only if the number k = mn+
nl + lm− lmn is positive, that is in the case (2, 2, n), (2, 3, 3), (2, 3, 4) and
(2, 3, 5). Its order is 2lmn

k . By Tietze transformations, we can easily prove
that (l,m, n) ∼= (m,n, l) ∼= (n, l,m) (cf. [6, 7]).

Behera and Panda [2] defined the sequence of balancing numbers by the
aid of the equation (1) and then gave its miscellaneous properties. Since then
obtaining a recurrence sequence by using a certain Diophantine equation
have been a topic of current. In literature, one can find any interesting prop-
erties and applications of the balancing-like sequences which are obtained
from a certain Diophantine equation; see for example, [3,8,20,25–27,31,32].
We derive here a new recurrence sequence by using a Diophantine equation
with a complex variable and called the Tribonacci-type balancing sequence.
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In the first part of the paper, we give number theoretic properties of the
Tribonacci-type balancing sequence.

The study of the behavior of the linear recurrence sequences under a
modulus began with the earlier work of Wall [37], where the periods of the
ordinary Fibonacci sequences modulo m were investigated. It is important
to note that the period of a recurrence sequence modulo m with the period
of this sequence in the cyclic group Cm are the same. Lu and Wang con-
tributed to the study of Wall numbers for k-step Fibonacci sequence [28].
Recently, the theory extended to some special linear recurrence sequences by
several authors; see, for example, [9–12,16,17,19,34,36]. Patel and Ray [33]
studied the period, rank and order of the sequence of the balancing number
modulo m. In the second part of the paper, we consider the Tribonacci-
type balancing sequence modulo m and then we derive some interesting
results concerning the periods of the Tribonacci-type balancing sequences
for any m. Also, we produce the cyclic groups using the multiplicative or-
ders of the generating matrices of the Tribonacci-type balancing numbers
when read modulo m. Then we give the connections between the periods
of the Tribonacci-type balancing sequences modulo m and the orders of the
cyclic groups produced.

In the mid-eighties, Wilcox applied the idea which was firstly introduced
by Wall to the abelian groups [38]. The theory was expanded to some finite
simple groups by Campbell et al. [5], where the Fibonacci sequence in a non-
abelian group generated by two generators were introduced. The concept
of the Fibonacci sequence for more two generators had also been considered
by several authors; see, for example, [1, 4, 18, 22, 23, 29, 30]. In [9, 11, 12,
16, 17, 21, 29], the authors studied some special linear recurrence sequences
defined by the aid of the elements of a group. In the next process, the theory
was extended to the quaternions and the complex numbers, see [13–15]. In
the third part of the paper, we give the definition of the Tribonacci-type
balancing sequences in the 3-generator groups and then we investigate these
sequences in the non-abelian finite groups in detail. Finally, we obtain the
periods of the Tribonacci-type balancing sequences in the polyhedral groups
(2, 2, n), (2, n, 2), (n, 2, 2), (2, 3, 3), (2, 3, 4), (2, 3, 5) as applications of the
results produced.

2. Results

A positive integer n is called a Tribonacci-type balancing number if

i+ i2 + i3 + · · ·+ in−1 = in+1 + in+2 + · · ·+ in+k

for some positive integer k, where i =
√
−1. The positive integer k is

called as the Tribonacci-type balancer of corresponding to the Tribonacci-
type balancing number n.

First few Tribonacci-type balancing numbers are 4, 5, 8, 9 and 12 with
balancer 3, 4, 7, 8 and 9, respectively. For n ≥ 1, the nth Tribonacci-type
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balancing number Bi,n is defined recursively by

(2) Bi,n+2 = Bi,n+1 +Bi,n −Bi,n−1,

with initial conditions Bi,0 = 4, Bi,1 = 5 and Bi,2 = 8.
Using an inductive argument, we derive the following relations via the

equation in the definition of the Tribonacci-type balancing numbers:

i+ 2i2 + 3i3 + · · ·+ (n− 1)in−1 =

= (−i)

{
(n+ 1)in+1 + (n+ 2)in+2 + · · ·+ 2ni2n, if n ≡ 0 (mod 4),
(n+ 1)in+1 + (n+ 2)in+2 + · · ·+ (2n− 1)i2n−1, if n ≡ 1 (mod 4)

and

i+ 2i2 + 3i3 + · · ·+ (n− 1)in−1 =

{
n
3 (−2− 2i), if n ≡ 0 (mod 4),
n
3 (2− 2i), if n ≡ 1 (mod 4).

It is clear that the auxiliary equation of the Tribonacci-type balancing
sequence {Bi,n} is

(3) x3 = x2 + x− 1.

Using the equation (3), we can give a Binet formula for the Tribonacci-type
balancing numbers by

Bi,n = 2n+
7

2
+ (−1)n

1

2
.

By a simple calculation, we obtain the generating function of the Tribonacci-
type balancing numbers as shown:

g(x) =
−x2 + x+ 4

x3 − x2 − x+ 1

for 0 ≤ −x3 + x2 + x < 1.
Now we give an exponential representation for the Tribonacci-type bal-

ancing numbers by the aid of the generating function g(x) with the following
Proposition.

Proposition 1. The Tribonacci-type balancing sequence {Bi,n} have the
following exponential representation:

g (x) = exp

( ∞∑
n=1

1

n

(
−x3 + x2 + x

)n −
(
x2 − x− 3

)n)
.

Problem 1. By a simple calculation, we may write

ln (g (x)) = ln
(
1−

(
x2 − x− 3

))
− ln

(
1−

(
−x3 + x2 + x

))
= −

(
x2 − x− 3 +

1

2

(
x2 − x− 3

)2
+ · · ·

)
+

(
−x3 + x2 + x+

1

2

(
−x3 + x2 + x

)2
+ · · ·

)
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= −
∞∑
n=1

1

n

(
x2 − x− 3

)n
+

∞∑
n=1

1

n

(
−x3 + x2 + x

)n
.

So we have the conclusion.

If we reduce the Tribonacci-type balancing sequence {Bi,n} by a modulus
m, taking least nonnegative residues, then we get the following recurrence
sequence:

{Bi,n (m)} = {Bi,0 (m) , Bi,1 (m) , Bi,2 (m) , . . . , Bi,j (m) , . . .}
where Bi,j (m) is used to mean the jth element of the Tribonacci-type bal-
ancing sequence when read modulo m. We note here that the recurrence
relations in the sequences {Bi,n (m)} and {Bi,n} are the same.

Theorem 1. {Bi,n (m)} forms a simply periodic sequence for any m ≥ 2.

Proof. Consider the set

S = {(s1, s2, s3) | si’s are integers such that 0 ≤ si ≤ m− 1} .
Since |S| = m3, there are m3 distinct 3-tuples of the Tribonacci-type balanc-
ing sequence modulo m. Thus, it is clear that at least one of these 3-tuples
appears twice in the sequence {Bi,n (m)}. Therefore, the subsequence fol-
lowing this 3-tuple repeats; that is, {Bi,n (m)} is a periodic sequence. Let
Bi,u (m) ≡ Bi,v (m), Bi,u+1 (m) ≡ Bi,v+1 (m) and Bi,u+2 (m) ≡ Bi,v+2 (m)
such that v > u, then we get v ≡ u (mod 3). From the equation (2), we
may write the following relations:

Bi,u (m) = −Bi,u+3 (m) +Bi,u+2 (m) +Bi,u+3 (m)

and
Bi,v (m) = −Bi,v+3 (m) +Bi,v+2 (m) +Bi,v+3 (m) .

Thus, we obtain

Bi,u−1 (m) ≡ Bi,v−1 (m) ,

Bi,u−2 (m) ≡ Bi,v−2 (m) ,

...
...

Bi,0 (m) ≡ Bi,v−u (m) ,

which implies that the Tribonacci-type balancing sequence modulo m is
simply periodic. □

Let the notation PBi (m) denote the smallest period of the sequence
{Bi,n (m)}.

From the equation (2), we may write the following companion matrix:

Ci =

 1 1 −1
1 0 0
0 1 0

 .
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The matrix Ci is said to be the Tribonacci-type balancing matrix. Then
we can write the following matrix relation: 1 1 −1

1 0 0
0 1 0

 Bi,n+2

Bi,n+1

Bi,n

 =

 Bi,n+3

Bi,n+2

Bi,n+1

 .

By mathematical induction on n, it is easy to see that the nth powers of the
matrix Ci are

(4) (Ci)
n =

 n
2 + 1 0 −n

2
n
2 1 −n

2
n
2 0 −n

2 + 1

 , if n is even;

(5) (Ci)
n =

 n+1
2 1 −n−1

2
n+1
2 0 −n+1

2
n−1
2 1 −n+1

2

 if n is odd.

Given an integer matrix A = [aij ], A (mod m) means that all entries of
A are modulo m, that is, A (mod m) = (aij (mod m)). Let us consider the
set ⟨A⟩m = {(A)n (mod m) | n ≥ 0}. If (detA,m) = 1, then the set ⟨A⟩m
is a cyclic group; if (detA,m) ̸= 1, then the set ⟨A⟩m is a semigroup. Since
detCi = −1, the set ⟨Ci⟩m is a cyclic group for every positive integer m ≥ 2.
From (5), it is easy to see that the cardinality of the set ⟨Ci⟩m cannot be
odd. Thus, for m ≥ 2, we obtain

(Ci)
2m =

 m+ 1 0 −m
m 1 −m
m 0 −m+ 1

 ,

which yields that |⟨Ci⟩m| = 2m. Now we give the connections between the
periods of the Tribonacci-type balancing sequences modulo m and the orders
of the cyclic groups produced with the following Theorem.

Theorem 2. For any m ≥ 2,

PBi (m) =


|⟨Ci⟩m|

4 , if m ≡ 0 (mod 4),

|⟨Ci⟩m|
2 , if m ≡ 2 (mod 4),

|⟨Ci⟩m| , if m is odd.

Proof. In fact it is easy to see that the Tribonacci-type balancing sequence
{Bi,n} conforms to the following pattern:

Bi,4k = 4 + 8k,

Bi,4k+1 = 5 + 8k,

Bi,4k+2 = 8 + 8k,

Bi,4k+3 = 9 + 8k,
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where k ∈ N. So we need to find the smallest natural number k to deter-
mine the period of the sequence {Bi,n (m)}. If m ≡ 0 (mod 4), then the
smallest positive value k is m

8 providing conditions Bi,4k ≡ 4, Bi,4k+1 ≡ 5

and Bi,4k+2 ≡ 8 and hence PBi (m) = m
2 =

|⟨Ci⟩m|
4 . If m ≡ 2 (mod 4), then

k = m
4 . So we get PBi (m) = m =

|⟨Ci⟩m|
2 . Similarly, we obtain k = m

2
when m is odd. Thus it is veried that PBi (m) = 2m = |⟨Ci⟩m|. □

Let G be a finite k-generator group and let

X =

(x1, x2, . . . , xk) ∈ G×G× · · · ×G︸ ︷︷ ︸
k

| ⟨{x1, x2, . . . , xk}⟩ = G

 .

We call (x1, x2, . . . , xk) a generating k-tuple for G.
Now we redefine the Tribonacci-type balancing sequence by means of the

elements of a group which have three generators.

Definition 1. Let G be a 3-generator group and let (x1, x2, x3) be a gen-
erating 3-tuple of G. For generating 3-tuple (x1, x2, x3), we define the
Tribonacci-type balancing orbits of the first and second kind of the group
G, respectively by:

b
(1)
0 = x1, b

(1)
1 = x2x3, b

(1)
2 = (x3)

4 , b
(1)
n+3 =

(
b(1)n

)−1
b
(1)
n+1b

(1)
n+2, (n ≥ 0)

and

b
(2)
0 = x1, b

(2)
1 = x3x2, b

(2)
2 = (x3)

4 , b
(2)
n+3 =

(
b(2)n

)−1
b
(2)
n+1b

(2)
n+2, (n ≥ 0) .

For generating 3-tuple (x1, x2, x3), we denote the Tribonacci-type balanc-
ing orbits of the first and second kind of G by the notations B

(1)
(x1,x2,x3)

(G)

and B
(2)
(x1,x2,x3)

(G), respectively.

Theorem 3. Let G be a 3-generator group and let (x1, x2, x3) be a gener-
ating 3-tuple for G. If G is finite, then the sequences B

(1)
(x1,x2,x3)

(G) and

B
(2)
(x1,x2,x3)

(G) are simply periodic.

Proof. Let us consider the sequence B
(1)
(x1,x2,x3)

(G). Suppose that n is the
order of G. Since there are n3 distinct 3-tuples of elements of G, at least
one of the 3-tuples appears twice in the sequence B

(1)
(x1,x2,x3)

(G). Therefore,
the subsequence following this 3-tuple repeats. Because of the repetition,
the sequence is periodic. Then we have the natural numbers i and j, with
i > j, such that

b
(1)
i+1 = b

(1)
j+1, b

(1)
i+2 = b

(1)
j+2, b

(1)
i+3 = b

(1)
j+3.
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From the defining recurrence relation of the Tribonacci-type balancing orbit
of G, it is easy to see that

b
(1)
k = b

(1)
k+1

(
b
(1)
k+2

)−1 (
b
(1)
k+2

)−1

for k = i, j. Thus we obtain b
(1)
i = b

(1)
j and so

b
(1)
i−1 = b

(1)
j−1, b

(1)
i−2 = b

(1)
j−2, . . . , b

(1)
i−j = b

(1)
j−j = b

(1)
0 ,

which implies that the sequence B
(1)
(x1,x2,x3)

(G) is simply periodic.
The proof for the Tribonacci-type balancing orbit of the second kind of

G is similar to the above and is omitted. □

Let the notations LB(1)
(x1,x2,x3)

(G) and LB
(2)
(x1,x2,x3)

(G) denote the smallest

periods of the sequences B(1)
(x1,x2,x3)

(G) and B
(2)
(x1,x2,x3)

(G), respectively. From
the definitions, it is clear that the lengths of the periods of the Tribonacci-
type balancing orbits of the first and second kinds of a finite non-abelian
3-generator group depend on the chosen generating set and the order in
which the assignments of x1, x2, x3 are made.

We shall now address the lengths of the periods of the Tribonacci-type bal-
ancing orbits of the first and second kinds of the polyhedral groups (2, 2, n),
(2, n, 2), (n, 2, 2), (2, 3, 3), (2, 3, 4) and (2, 3, 5) with respect to the generating
3-tuple (x, y, z).

Theorem 4. Let Gn = ⟨x, y, z | x2 = y2 = zn = xyz = e⟩, where n ≥ 2.
Then

(i) LB
(1)
(x,y,z)(G2) = LB

(1)
(x,y,z)(G4) = 4 and LB

(1)
(x,y,z)(Gn) = 8 for

n ̸= 2, 4.
(ii) LB

(2)
(x,y,z)(G2) = LB

(2)
(x,y,z)(G4) = 4 and

LB
(2)
(x,y,z)(Gn) =


n, if n ≡ 0 (mod 8),
2n, if n ≡ 4 (mod 8),
4n, if n ≡ 2, 6 (mod 8),
8n, if n is odd,

for n ̸= 2, 4.

Proof. We prove this by direct calculation. We first note that x = yz, y = zx
and z = yx.

(i) The sequence LB
(1)
(x,y,z)(Gn) is

x, x, z4, z4, xz8, xz8, z−4, z−4, x, x, z4, . . .

Thus we have the conclusion.
(ii) Now we consider the start of the Tribonacci-type balancing orbit of

the second kind of the polyhedral group (2, 2, n)
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x, zy, z4, z2, yz5, yz7, e, z2,

yz9, yz7, z−4, z−6, z3y, zy, z8, z10,

yz17, yz15, z−12, z−14, z11y, z9y, z16, z18,

yz25, yz23, z−20, z−22, z19y, z17y, z24, z26,

yz33, yz31, z−28, z−30, z27y, z25y, z32, z34, . . . ,

which is verifed that LB
(2)
(x,y,z) ((2, 2, 2)) = LB

(2)
(x,y,z) ((2, 2, 4)) = 4.

Using the above, the sequence B
(2)
(x,y,z) (Gn) becomes:

b
(2)
0 = x, b

(2)
1 = zy, b

(2)
2 = z4, . . . ,

b
(2)
8 = xz8, b

(2)
9 = z−7y, b

(2)
10 = z−4, . . . ,

b
(2)
16 = xz16, b

(2)
17 = z−15y, b

(2)
18 = z−12, . . . ,

b
(2)
8i = xz8i, b

(2)
8i+1 = z1−8iy, b

(2)
8i+2 = z4−8i, . . .

So we need the smallest i ∈ N such that 8i = nk (n ̸= 2, 4) for
k ∈ N. If n ≡ 0 (mod 8), then i = n

8 . Thus, we obtain 8i = n

and so LB
(2)
(x,y,z)(Gn) = n. If n ≡ 4 (mod 8), then the smallest

positive value for i is n
4 , giving a period 2n. If n ≡ 2 (mod 8) or

n ≡ 6 (mod 8), then i = n
2 and hence the period is 4n. Similarly, we

obtain i = n when n is odd. Then, we get LB
(2)
(x,y,z)(Gn) = 8n. □

Consider the sequences

u0 = 1, u1 = −1 u2 = 0 un+3 = un+2 + un+1 − un, (n ≥ 0)

and

v0 = 1 v1 = 1 v2 = 0 vn+3 = vn+2 + vn+1 − vn, (n ≥ 0).

It is easy to prove that the sequences {un} and {vn} modulo m are periodic.
Reducing the sequences {un} and {vn} by a modulus m, then we get the
repeating sequences, respectively denoted by

{un(m)} = {u0(m), u1(m), . . . , uτ (m), . . .}

and

{vn(m)} = {v0(m), v1(m), . . . vτ (m), . . .} .

They have the same recurrence relation as in the definitions of the sequences
{un} and {vn}. We denote the lengths of the periods of the sequences
{un(m)} and {vn(m)} by hun(m) and hvn(m). By mathematical induction
on n, we find the relationships between the Tribonacci-type balancing matrix
Ci and the elements of the sequences {un} and {vn} as follows:
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(Ci)
n =

 −un+1 0 un−1

−un+1 − 1 1 un−1

−un+1 − 1 0 un−1 + 1

 =

=

 −vn+1 0 vn−1

−vn+1 − 1 1 vn−1

−vn+1 − 1 0 vn−1 + 1

 , if n is even;

(Ci)
n =

 −un 1 un
−un 0 un + 1

−un − 1 1 un + 1

 =

=

 −vn 1 vn
−vn 0 vn + 1

−vn − 1 1 vn + 1

 , if n is odd.

From the above matrix relations, it is clear that hun(m) = hvn(m) =
|⟨Ci⟩m| = 2m.

Now we give the lengths of the periods of the sequences B(1)
(x,y,z)((n, 2, 2)),

B
(2)
(x,y,z)((n, 2, 2)) and B

(1)
(x,y,z)((2, n, 2)) via |⟨Ci⟩m|.

Theorem 5. For n ≥ 2, LB(1)
(x,y,z)((n, 2, 2)) = hun(n) and LB

(2)
(x,y,z)((n, 2, 2)) =

hvn(n).

Proof. We first note that in the group defined by

⟨x, y, z | xn = y2 = z2 = xyz = e⟩,

x = zy, y = zx and z = xy. Clearly, the Tribonacci-type balancing orbits
of the first and second kind of the polyhedral group (n, 2, 2) are as follows,
respectively:

x , yz , z4, x−1yz5, z−1y−1x−1yz9, x−2y3z9, . . .

and
x, zy, z4, x−1z5y, y−1z−1x−1z9y, x−2z9y, . . .

By direct calculation it is easy to see that the sequences B
(1)
(x,y,z)((n, 2, 2))

and B
(2)
(x,y,z)((n, 2, 2)) conform to the following patterns:

b
(1)
0 = x = xu0 , b

(1)
1 = x−1 = xu1 , b

(1)
2 = e = xu2 ,

b
(1)
3 = x−2 = xu3 , b

(1)
4 = x−1 = xu4 , b

(1)
5 = x−3 = xu5 , . . .

and

b
(2)
0 = x = xv0 , b

(2)
1 = x = xv1 , b

(2)
2 = e = xv2 ,

b
(2)
3 = e = xv3 , b

(2)
4 = x−1 = xv4 , b

(1)
5 = x−1 = xv5 , . . .
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Since the order of the element x is n, we get

LB
(1)
(x,y,z)((n, 2, 2)) = LB

(2)
(x,y,z)((n, 2, 2)) = |⟨Ci⟩n| = 2n. □

Theorem 6. Let Gn, n ≥ 2, be the group defined by the presentation ⟨x, y, z |
x2 = yn = z2 = xyz = e⟩. Then

i. For n ≥ 2, LB(1)
(x,y,z) (Gn) = hvn (n) = |⟨Ci⟩n| = 2n.

ii. LB
(2)
(x,y,z) (G2) = LB

(2)
(x,y,z) (G4) = 4 and

LB
(2)
(x,y,z) (Gn) =


n, if n ≡ 0 (mod 8),
2n, if n ≡ 4 (mod 8),
4n, if n ≡ 2, 6 (mod 8),
8n, if n is odd,

for n ̸= 2, 4.

Proof. The proof is similar to the above and is omitted. □

Now we concentrate on finding the lengths of the periods of the Tribonacci-
type balancing orbits of the first and second kind of the polyhedral groups
(2, 3, 3), (2, 3, 4) and (2, 3, 5). The results are summarized in the following
table:

Gn LB
(1)
(x,y,z)(Gn) LB

(2)
(x,y,z)(Gn)

(2, 3, 3) 12 24

(2, 3, 4) 4 24

(2, 3, 5) 12 60

3. Conclusion

In this paper, the Tribonacci-type balancing numbers were defined and
their miscellaneous properties were given. Also, taking into account the
Tribonacci-type balancing sequence modulo m, some interesting results con-
cerning the periods of the Tribonacci-type balancing sequence for any m
were obtained. In addition, the cyclic groups from the generating matri-
ces of the Tribonacci-type balancing numbers when read modulo m were
produced. Finally, the Tribonacci-type balancing sequence to groups were
expanded and then the periods of these sequences in the finite polyhedral
groups were examined.
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