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On approximation properties of functions by
means of Fourier and Faber series in weighted

Lebesgue spaces with variable exponent

Sadulla Z. Jafarov∗

Abstract. In this paper the approximation of functions by linear means
of Fourier series in weighted variable exponent Lebesgue spaces was
studied. This result was applied to the approximation of the functions
by linear means of Faber series in Smirnov classes with variable expo-
nent defined on simply connected domain of the complex plane.

1. Introduction and main results

Let T denote the interval [0, 2π] and Lp(T), 1 ≤ p ≤ ∞, the Lebesgue
space of measurable functions on T.

Let ℘ denote the class of Lebesgue measurable functions p : T −→ (1,∞)
such that

1 < p∗ := ess inf
x∈T

p(x) ≤ p∗ := ess sup
x∈T

p(x) <∞.

The conjugate exponent of p(x) is shown by p′(x) := p(x)
p(x)−1 . For p ∈ ℘,

we define a class Lp(.)(T) of 2π periodic measurable functions f : T → R
satisfying the condition ∫

T

|f(x)|p(x)dx <∞.

This class Lp(.)(T) is a Banach space with respect to the norm

∥f∥Lp(.)(T) := inf{λ > 0 :

∫
T

∣∣∣∣f(x)λ
∣∣∣∣p(x) dx ≤ 1}.
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98 Approximation in weighted Lebesgue spaces with variable exponent

The spaces Lp(.)(T) are called generalized Lebesgue spaces with variable
exponent. It is known that for p(x) := p (0 < p ≤ ∞), the space Lp(x)(T)
coincides with the Lebesgue space Lp(T). If p∗ <∞ then the spaces Lp(.)(T)
represent a special case of the so-called Orlicz-Musielak spaces [37]. For the
first time Lebesgue spaces with variable exponent were introduced by Orlicz
[38]. Note that the generalized Lebesgue spaces with variable exponent are
used in the theory of elasticity, in mechanics, especially in fluid dynamics
for the modelling of electrorheological fluids, in the theory of differential
operators, and in variational calculus [5,8,9,41,43]. The detailed information
about properties of the Lebesque spaces with variable exponent can be found
in [8, 10, 27, 33, 34, 42, 46]. Note that some of the fundamental problems of
the approximation theory in the generalized Lebesgue spaces with variable
exponent of periodic and non-periodic functions were studied and solved by
Sharapudinov [47–49].

A function ω : T → [0,∞] is called a weight function if ω is a measurable
and almost everywhere (a.e.) positive.

Let ω be a 2π periodic weight function. We denote by Lp
ω(T) the weighted

Lebesgue space of 2π periodic measurable functions f : T → C such that
fω

1
p ∈ Lp(T). For f ∈ Lp

ω(T) we set∥∥f∥∥
Lp
ω(T)

:=
∥∥fω 1

p
∥∥
Lp(T).

L
p(.)
ω (T) stands for the class of Lebesgue measurable functions f : T → C

such that ωf ∈ Lp(.)(T). Lp(.)
ω (T) is called the weighted Lebesgue space with

variable exponent. The space Lp(.)
ω (T) is a Banach space with respect to the

norm
∥f∥

L
p(.)
ω (T) :=

∥∥fω∥∥
Lp(.)(T).

It is known (see [28]) that the set of trigonometric polynomials is dense in
L
p(.)
ω (T), if [ω(x)]p(x) is integrable on T.
Let B be the class of all intervals in T. For B ∈ B we set

pB :=

(
1

|B|

∫
B

1

p(x)
dx

)−1

.

For given p ∈ ℘ the class of weights ω satisfying the condition∥∥ωp(x)
∥∥
Ap(.)

:= sup
B∈B

1

|B|pB
∥∥ωp(x)

∥∥
L1(B)

∥∥∥ 1

ωp(x)

∥∥∥
L(p′(.)/p(.))(B)

<∞

will be denoted by Ap(.) [1, 15,23,30,32].
We say that the variable exponent p(x) satisfies Local log-Hölder continu-

ity condition, if there is a positive constant c1 such that

(1)
∣∣p(x)− p(y)

∣∣ ≤ c1

log
(
e+ 1

|x−y|
) , for all x, y ∈ T.
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A function p ∈ ℘ is said to belong to the class ℘log, if the condition (1) is
satisfied.

We denote by En(f)Lp(.)
ω (T) the best approximation of f ∈ L

p(.)
ω (T) by

trigonometric polynomials of degree not exceeding n− 1, i.e.,

En(f)Lp(.)
ω (T) = inf

{∥∥f − Tn−1

∥∥
L
p(.)
ω (T) : Tn−1 ∈ Πn−1

}
,

where Πn−1 denotes the class of trigonometric polynomials of degree at most
n− 1.

Let 1 < p <∞, 1/p+ 1/p′ = 1 and let ω be a weight function on T. ω is
said to satisfy Muckenhoupt ’s Ap-condition on T [2, 3, 15,17], if

sup
J

(
1∣∣J∣∣
∫
J

ωp(t)dt

)1/p( 1∣∣J∣∣
∫
J

ω−p′(t)dt

)1/p′

<∞,

where J is any subinterval of T and |J | denotes its length.
Let us denote by Ap(T) the set of all weight functions satisfying Mucken-

houpt’s Ap-condition on T.
We use the constants c, c1, c2, . . . , (in general, different in different rela-

tions) which depend only on the quantities that are not important for the
questions of interest.

Let f ∈ L
p(.)
ω (T), p(·) ∈ ℘log and ω ∈ Ap(.). We define the modulus of

smoothness as

Ω(f, δ)p(·),ω := sup
0<h≤δ

∥∥∥∥1h
h∫

0

(
f(x+ t)− f(x)

)
dt

∥∥∥∥
L
p(.)
ω (T)

, δ > 0.

Note that according to [53,54] Ω(f, δ)p(·),ω ≤ c(p)∥f∥
L
p(.)
ω (T). It can easily

be shown that Ω(·, f)p(·),ω is a continuous, nonnegative and nondecreasing
function satisfying the conditions

lim
δ→0

Ω(f, δ)p(·),ω = 0,

Ω(f + g, δ)p(·),ω ≤ Ω(f, δ)p(·),ω +Ω(g, δ)p(·),ω

for f, g ∈ L
p(.)
ω (T).

Let

(2)
a0
2

+

∞∑
k=1

(
ak(f) cos kx+ bk(f) sin kx

)
be the Fourier series of the function f ∈ L1(T), where ak(f) and bk(f) are
the Fourier coefficients of the function f . Let (2) be the Fourier series of the
function f .
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For f ∈ L
p(.)
ω (T) we define the summability method by the tringular ma-

trix Λ =
{
λij
}j,∞
i,j=0

by the linear means

Un(x, f) = λ0n
a0
2

+

n∑
i=1

λin
(
ai(f) cos ix+ bi(f) sin ix

)
.

If the Fourier series of f is given by (2), then Zygmund-Rieszmeans of order
k is defined as

Zk
n(x, f) =

a0
2

+

n∑
i=1

(
1− ik

(n+ 1)k

)(
ai(f) cos ix+ bi(f) sin ix

)
.

We denote by En(f)p(.),ω the best approximation of f ∈ L
p(.)
ω (T) by

trigonometric polynomials of degree not exceeding n, i.e.,

En(f)p(.),ω = inf
{∥∥f − Tn

∥∥
L
p(.)
ω (T) : Tn ∈ Πn

}
,

where Πn denotes the class of trigonometric polynomials of degree at most
n.

Let Tn ∈ Πn

Tn =
c0
2

+

n∑
i=1

(
ci cos ix+ di sin ix

)
.

The conjugate polynomial T̃n is defined by

T̃n =
n∑

i=1

(
ci sin ix− di cos ix

)
.

We will say that the method of summability by the matrix Λ satisfies
condition bk,p(·) (respectively b∗k,p(·)) if for Tn ∈ Πn the inequality∥∥Tn − Un(Tn)

∥∥
L
p(.)
ω (T) ≤ c(n+ 1)−k

∥∥T (k)
n

∥∥
L
p(.)
ω (T)(∥∥Tn − Un(Tn)

∥∥
L
p(.)
ω (T) ≤ c(n+ 1)−k

∥∥T̃n(k)∥∥Lp(.)
ω (T)

)
holds and the norms∥∥Λ∥∥

1
:=

2π∫
0

∣∣∣λ0n
2

+

n∑
i=1

λin cos it
∣∣∣dt

are bounded.
In the present paper, the necessary and sufficient condition about the rela-

tionship between the approximation of functions by linear means of Fourier
series and by Zygmund-Riesz means of order k was investigated in weighted
Lebesgue spaces with variable exponent. Also, we investigate the approxi-
mation of functions by linear means of Fourier series in terms of the modulus
of smoothness of these functions in weighted Lebesgue spaces with variable
exponent. This result was applied to the approximation of the functions
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by linear means of Faber series in weighted Smirnov classes with variable
exponent defined on simply connected domains of the complex plane. The
similar problems in different spaces were investigated by several authors (see,
for example, [1, 2, 4, 7, 12, 14,16–26,29–32,35,36,39,44,50–57]).

The main results in the present work are the following theorems.

Theorem 1. Let f ∈ L
p(.)
ω (T ), p(·) ∈ ℘log and ω ∈ Ap(.). In order that

(3)
∥∥f − Un(·, f)

∥∥
L
p(.)
ω (T) ≤ c1

∥∥f − Zk
n(·, f)

∥∥
L
p(.)
ω (T)

it is sufficient and necessary that

(4)
∥∥Tn − Un(·, Tn)

∥∥
L
p(.)
ω (T) ≤ c2

∥∥Tn − Zk
n(·, Tn)

∥∥
L
p(.)
ω (T).

Theorem 2. Let f ∈ L
p(.)
ω (T ), p(·) ∈ ℘log and ω ∈ Ap(.). If the summability

method with the matrix Λ satisfies the condition (bk,M ) or (b∗k,M ), then the
inequality

(5)
∥∥f − Un(·, f)

∥∥
L
p(.)
ω (T) ≤ c3Ω

(
f,

1

n

)
p(·),ω

holds with a constant c3 > 0 independent of n.

Theorem 3. Let f ∈ L
p(.)
ω (T ), p(·) ∈ ℘log and ω ∈ Ap(.). If the summability

method with the matrix Λ satisfies the condition (bk,p(·)) or (b∗k,p(·)), then the
estimate

(6) Ω
(
Un(·, f), δ

)
p(·),ω ≤ c4Ω(f, δ)p(·),ω

holds with a constant c4 > 0 not depend on n, f and δ.

Let G be a finite domain in the complex plane C, bounded by a rectifiable
Jordan curve Γ, and let G− := extΓ. Further let

T :=
{
w ∈ C : |w| = 1

}
, D := intT, D− := extT.

Let w = ϕ(z) be the conformal mapping of G− onto D− normalized by

ϕ(∞) = ∞, lim
z→∞

ϕ(z)

z
> 0,

and let ψ denote the inverse of ϕ.
Let w = ϕ1(z) denote a function that maps the domain G conformally

onto the disk |w| < 1. The inverse mapping of ϕ1 will be denoted by ψ1. Let
Γr denote circular images in the domainG, that is, curves inG corresponding
to circle |ϕ1(z)| = r under the mapping z = ψ1(w).

Let us denote by Ep, where p > 0, the class of all functions f(z) ̸= 0
which are analytic in G and have the property that the integral∫

Γr

|f(z)|p|dz|
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is bounded for 0 < r < 1. We shall call the Ep-class the Smirnov class. If
the function f(z) belongs to Ep, then f(x) has definite limiting values f(z′)
almost everywhere on Γ, over all nontangential paths; |f(z′)| is summable
on Γ; and

lim
r→1

∫
Γr

∣∣f(z)∣∣p|dz| = ∫
Γ

∣∣f(z′)∣∣p|dz|.
It is known that φ′ = E1(G

−) and ψ′ ∈ E1(D
−). Note that the general

information about Smirnov classes can be found in the books [13, pp. 438-
453] and [11, pp. 168-185].

Let LM (T, ω) is a weighted Orlicz space defined on Γ. We define also the
ω-weighted Smirnov class of variable exponent Ep(·)(G,ω) as

Ep(·)(G,ω) :=
{
f ∈ E1(G) : f ∈ Lp(·)

ω (Γ)
}
.

For f ∈ L
p(·)
ω (Γ) with p ∈ ℘log we define the functions

f0(t) := f
(
ψ(t)

)
, t ∈ T,

p0(t) := p
(
ψ(t)

)
, t ∈ T.

Let h be a continuous function on [0, 2π]. Its modulus of continuity is
defined by

ω(t, h) := sup
{
|h(t1)− h(t2)| : t1, t2 ∈ [0, 2π], |t1 − t2| ≤ t

}
, t ≥ 0.

The curve Γ is called Dini-smooth if it has a parameterization

Γ : φ0(s), 0 ≤ s ≤ 2π,

such that φ′
0(s) is Dini-continuous, i.e.,

π∫
0

ω(t, φ′
0)

t
dt <∞

and φ′
0(s) ̸= 0 [40, p. 48]. If Γ is Dini-smooth curve, then there exist (see

[58]) the constants c5 and c6 such that

(7) 0 ≤ c5 ≤ |ψ′(t)| ≤ c6 <∞, |t| > 1.

Note that if Γ is a Dini-smooth curve, then by (7) we have f0 ∈ L
p(·)
ω0 (T)

for f ∈ L
p(·)
ω (Γ). It is known (see [20]) that, if Γ is a Dini-smooth curve,

then p0 ∈ ℘log(T) if and only if p ∈ ℘log(Γ).
Let 1 < p < ∞, 1

p + 1
p′ and let ω be a weight function on Γ. ω is said to

satisfy Muckenhoupt’s Ap-condition on Γ, if

sup
z∈Γ

sup
r>0

(
1

r

∫
Γ∩D(z,r)

|ω(τ)|p|dτ |
)1/p(1

r

∫
Γ∩D(z,r)

[ω(τ)]−p′ |dτ |
)1/p′

<∞,

where D(z, r) is an open disk with radius r and centered z.
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Let us denote by Ap(Γ) the set of all weight functions satisfying Muck-
enhoupt’s Ap -condition on Γ. For a detailed discussion of Muckenhoupt
weights on curves, see, e.g., [3].

Let Γ be a rectifiable Jordan curve and f ∈ L1(Γ). Then the function f+
defined by

f+(z) :=
1

2πi

∫
Γ

f(s)ds

s− z
, z ∈ G

is analytic in G. Note that if p(·) ∈ ℘log, ω ∈ Ap(Γ) and f ∈ L
p(·)
ω (Γ), then

by Lemma 5 in [53] f+ ∈ Ep(·)(G,ω).
Let ϕk(z), k = 0, 1, 2, . . . , be the Faber polynomials for G. The Faber

polynomials ϕk(z), associated with G∪Γ, are defined through the expansion

(8)
ψ′(w)

ψ(w)− z
=

∞∑
k=0

ϕk(z)

wk+1
, z ∈ G, w ∈ D−

and the equalities

(9)

ϕk(z) =
1

2πi

∫
T

tkψ′(t)

ψ(t)− z
dt, z ∈ G,

ϕk(z) = ϕk(z) +
1

2πi

∫
T

ϕk(s)

s− z
ds, z ∈ G−

hold [45, p. 33-48].
Let f ∈ Ep(·)(G,ω). Since f ∈ E1(G), we obtain

f(z) :=
1

2πi

∫
Γ

f(s)ds

s− z
=

1

2πi

∫
T

f(ψ(t))ψ′(t)

ψ(t)− z
dt,

for every z ∈ G. Considering this formula and expansion (8), we can asso-
ciate with f the formal series

(10) f(z) ∼
∞∑
i=0

ai(f)ϕi(z), z ∈ G,

where

ai(f) :=
1

2πi

∫
T

f(ψ(t))

ti+1
dt, i = 0, 1, 2, . . . .

This series is called the Faber series expansion of f , and the coefficients
ai(f) are said to be the Faber coefficients of f .

Let (10) be the Faber series of the function f ∈ Ep(·)(G,ω). For the
function f we define the summability method by the tringular matrix



104 Approximation in weighted Lebesgue spaces with variable exponent

Λ =
{
λij
}j,∞
i,j=0

by the linear means

Un(z, f) =

n∑
i=0

λinai(f)ϕi(z),

The n-the partial sums and Zygmund means of order k of the series (10) are
defined, respectively, as

Sn(z, f) =

n∑
k=0

ak(f)ϕk(z),

Zk
n(z, f) =

n∑
i=0

(
1− ik

(n+ 1)k

)
ai(f)ϕi(z).

Let Γ be a Dini-smooth curve. Using the nontangential boundary values
of f+0 on T we define the modulus of smoothness of f ∈ L

p(·)
ω (Γ) as

Ω(f, δ)p(·),Γ,ω := Ω(f+0 , δ)p0(·),ω0
, δ > 0.

The following theorem holds.

Theorem 4. Let Γ be a Dini-smoth curve, p(·) ∈ ℘log, ω ∈ Ap(Γ) and
the summability method with the matrix Λ satisfies the condition (bk,p(·)) or
(b∗k,p(·)), then for f ∈ Ep(·)(G,ω) the estimate

(11)
∥∥f − Un(·, f)

∥∥
L
p(·)
ω (Γ)

≤ c7Ω

(
f,

1

n

)
p(·),Γ,ω

holds with a constant c7 > 0, independent of n.

Let P be the set of all algebraic polynomials (with no restriction on the
degree), and let P(D) be the set of traces of members of P on D. We define
the operator

T : P(D) −→ Ep(·)(G,ω)

as
T (P )(z) :=

1

2πi

∫
T

P (w)ψ′(w)

ψ(w)− z
dw, z ∈ G.

Then, from (9) we have

T

(
n∑

k=0

βkw
k

)
=

n∑
k=0

βkϕk(z).

The following result holds for the linear operator T [53].

Theorem 5. If Γ is a Dini-smooth curve, p(·) ∈ ℘log and ω ∈ Ap(Γ), then
the operator

T : Ep0(·)(D, ω0) −→ Ep(·)(G,ω)

is linear, bounded, one-to-one and onto. Moreover, T (f+0 ) = f for every
f ∈ Ep(·)(G,ω).
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2. Proof of the main results

Proof of Theorem 1. It is clear that the inequality (4) follows from the in-
equality (3).

Sufficiency. Let f ∈ L
p(.)
ω (T ), p(·) ∈ ℘log and ω ∈ Ap(.) and let T ∈ Πn

(n = 0, 1, 2, . . . ) be the polynomial of best approximation to f . Then∥∥f − Un(·, f)
∥∥
L
p(·)
ω (T)

≤
∥∥f − Tn

∥∥
L
p(·)
ω (T) −

∥∥Tn − U(·, Tn)
∥∥
L
p(·)
ω (T) +

∥∥Un(·, f − Tn)
∥∥
L
p(·)
ω (T)

≤ En(f)Lp(·)
ω (T) + c2

∥∥Tn − Zk
n(·, Tn)

∥∥
L
p(·)
ω (T) + c8En(f)Lp(·)

ω (T)

≤ c9En(f)Lp(·)
ω (T) + c2

(∥∥Tn − f
∥∥
L
p(·)
ω (T) +

∥∥f − Zk
n(·, f)

∥∥
L
p(·)
ω (T)

+
∥∥Zk

n(·, f − Tn)
∥∥
L
p(·)
ω (T)

)
≤ c9En(f)Lp(·)

ω (T) + c2En(f)Lp(·)
ω (T)

+ c2
∥∥f − Zk

n(·, f)
∥∥
L
p(·)
ω (T) + c2c10En(f)Lp(·)

ω (T)

≤ c11En(f)Lp(·)
ω (T) + c2

∥∥f − Zk
n(·, f)

∥∥
L
p(·)
ω (T)

≤ c12
∥∥f − Zk

n(·, f)
∥∥
L
p(·)
ω (T).

The proof of Theorem 1 is completed. □

Proof of Theorem 2. We suppose that the condition b∗k,p(·) is satisfed. Let

f ∈ L
p(.)
ω (T ), p(·) ∈ ℘log, ω ∈ Ap(.) and Tn ∈ Πn be the polynomial of best

approximation to f . Note that Un(f) = Λn ∗f . Considering [6] the operator
Un(f) is bounded in L

p(·)
ω (T), i.e.,

∥∥Un(·, f)
∥∥
L
p(·)
ω (T) ≤ c5

∥∥f∥∥
L
p(·)
ω (T). Then

we have

(12)

∥∥f − Un(·, f)
∥∥
L
p(·)
ω (T)

≤
∥∥f − Tn

∥∥
L
p(·)
ω (T) +

∥∥Tn − U(·, Tn)
∥∥
L
p(·)
ω (T)

+
∥∥U(·, Tn)− U(·, f)

∥∥
L
p(·)
ω (T)

≤ c13En(f)Lp(·)
ω (T) + c7En(f)Lp(·)

ω (T) + c14(n+ 1)−1
∥∥T̃ ′

n

∥∥
L
p(·)
ω (T)

≤ c15En(f)M,ω + c16n
−1
∥∥T̃ ′

n

∥∥
L
p(·)
ω (T).

Using boundedness of the linear operator f → f̃ in L
p(·)
ω (T) into account

[22, Lemma 1] we obtain

(13)
∥∥T̃ ′

n

∥∥
L
p(·)
ω (T) ≤ c17

∥∥T ′
n

∥∥
L
p(·)
ω (T),
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where f̃ is the conjugate function of f ∈ L
p(·)
ω (T).

Use of (13) and [54] gives us

(14)

n−1
∥∥T̃ ′

n

∥∥
LM (T,ω)

≤ c19n
−1
∥∥T ′

n

∥∥
LM (T,ω)

≤ c20Ω

(
f,

1

n

)
p(·),ω

.

Note that according to the direct theorem of approximation in Lp(·)
ω (T) given

in [21, Lemma 4] the inequality

(15) En(f)M,ω ≤ c21Ω

(
f,

1

n

)
p(·),ω

.

holds. Taking into account the relations (12), (14) and (15), we obtain∥∥f − Un(·, f)
∥∥
LM (T,ω) ≤ c22Ω

(
f,

1

n

)
p(·),ω

.

If the summability method with the matrix Λ satisfies condition (b∗k,p(·)), the
proof is made anologously to the above.

The proof of Theorem 2 is completed. □

Proof of Theorem 3. By [21] the inequality

(16) Ω(Un(f)− f, δ)p(·),ω ≤ c23
∥∥Un(·, f)− f

∥∥
L
p(·)
ω (T).

holds.
Let δ ≥ (n+ 1)−1. By using Theorem 2 and (16) we have

(17)

Ω(Un(f), δ)p(·),ω ≤ Ω(f, δ)p(·),ω +Ωr
M,ω(Un(·, f)− f, δ)

p(·),ω

≤ Ω(f, δ)p(·),ω + c24
∥∥Un(·, f)− f

∥∥
L
p(·)
ω (T)

≤ Ω(f, δ)p(·),ω + c25Ω(f, δ)p(·),ω

≤ c26Ω(f, δ)p(·),ω.

Now we suppose that δ < (n + 1)−1. Then considering [22, Lemma 3] and
[54, Theorem 1.3] we conclude that

(18) Ω(Un(·, f), δ)p(·),ω ≤ c27δ
∥∥U ′

n(·, f)
∥∥
L
p(·)
ω (T) ≤ c28Ω(f, δ)p(·),ω.

The use of (17) and (18) gives us the inequality (6) of Theorem 3. □

Proof of Theorem 4. Let f ∈ Ep(·)(G,ω). Then by virtue of Theoerm 5 the
operator T : E p0(·)(D, ω0) −→ Ep(·)(G,ω) is linear, bounded, one-to-one and
onto and T (f+0 ) = f . The function f has the following Faber series

f(z) ∽
∞∑

m=0

am(f)ϕm(z).
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Taking into account [53, relation (3) and lemma 5] we conclude that f+0 ∈
Ep0(·)(D, ω0). For the function f+0 the following Taylor series holds:

f+0 (w) =
∞∑

m=0

am(f)wm.

Note that f+0 ∈ E1(D) and boundary function f+0 ∈ L
p0(·)
ω0 (T). Then by [11,

Theorem, 3.4] for the function f+0 we have the following Fourier expansion:

f+0 (w) ∽
∞∑

m=0

am(f)eimt.

Hence, if we consider boundedness of the operator T : Ep0(·)(D, ω0) −→
Ep(·)(G,ω) and Theorem 2, we have∥∥f − Un(., f)

∥∥
L
p(·)
ω (T) =

∥∥T (f+0 )− T (Un(., f
+
0 ))
∥∥
L
p(·)
ω (T)

≤ c29
∥∥f+0 − Un(., f

+
0 )
∥∥
L
p0(·)
ω0

(T)

≤ c30Ω

(
f+0 ,

1

n

)
p0(·),ω0

= c31Ω

(
f,

1

n

)
p(·),Γ,ω

,

and (11) is proved. □

Remark 1. Let f ∈ L
p(.)
ω (T ), p(·) ∈ ℘log and ω ∈ Ap(.)LM (T, ω). Then by

virtue of Theorem 2 in [22] the inequality

(19) Ω

(
f,

1

n

)
p(·),ω

≤ c32
n

n∑
m=0

Em(f)
L
p0(·)
ω0

(T)

holds, with a constant c32 independent of n. If the summability method
with the matrix Λ satisfy the condition (bk,p(·)) or (b∗k,p(·)), then relation (5)
and inequality (19) immediately yield

(20)
∥∥f − Un(., f)

∥∥
L
p(.)
ω (T) ≤

c33
n

n∑
m=0

Em(f)
L
p0(·)
ω0

(T).

The inequality (20) holds for Zygmund-Riesz means of order k. Note that
in the Lebesgue spaces Lp(T), 1 < p ≤ ∞, the inequality (20) was proved in
[50].

3. Conclusion

In Theorem 1 of this work, the relationship between the linear means of
Fourier and Zygmund means of Fourier series in weighted variable expo-
nent Lebesgue spaces has been investigated. The necessary and sufficient
condition has been found for this relationship.
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In Theorem 2, the approximation of the function by the linear means of
Fourier series in weighted variable exponent Lebesgue spaces was studied in
terms of modulus of smoothness.

In Theorem 3, the modulus of smoothness of the linear means of Fourier
series of the function has been estimated.

In Theorem 4, the result obtained in Theorem 2 was applied to the ap-
proximation of the functions by linear means of Faber series in Smirnov
classes with variable exponent defined in the domains with a Dini-smooth
boundary of the complex plane.

In Remark 1, the approximation of the function by linear means of Fourier
series has been obtained in terms of the best approximation of the function.
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