
UNIVERSITY THOUGHT doi: 10.5937/univtho9-21821
Publication in Natural Sciences, Vol.9, No.2, 2019, pp. 63-68. Original Scientific Paper

ISOMORPHIC TRANSFORMATION AND ITS APPLICATION TO
THE MODULO (2n + 1) CHANNEL FOR RNS BASED FIR FILTER
DESIGN

NEGOVAN STAMENKOVIĆ1,?

1Faculty of Natural Sciences and Mathematics, University of Priština, Kosovska Mitrovica, Serbia

ABSTRACT

In this paper, the implementation of a Finite Impulse Response (FIR) filter in the Residue Number System (RNS),
is presented, in which a modulo multiplier based on the isomorphism technique is used to perform multiplication
in the (2n + 1) channel. An RNS modular multiplication in the Galois Field GF(2n + 1) is presented in detail in this
paper. The multiplication is based on the isomorphic mapping technique adapted to the residue arithmetic. The
isomorphic encoder and decoder look-up tables in the GF(28 + 1) are given. An architecture for FIR filter design
based on distributed arithmetic for multiplication and accumulation in mentioned (2n + 1) channel is also presented.
This architecture is discussed in details and compared with with architecture based on isomorphing technique.

Keywords: Galois field, Multiplication, Lookup table, Modular arithmetic, Distributed arithmetic.

INTRODUCTION

Modulo (2n + 1) multipliers of various types have been con-
sidered in literature (a) both inputs in standard representation, (b)
one input in standard form and another in diminished-1 form and
(c) both inputs in diminished-1 representation.

This paper develops an enhanced algorithm for the arith-
metic modular (2n+1) multiplication problem in the Residue Num-
ber System. The proposed algorithm is based on Galois finite field
theory (Pradhan, 1978). Galois field (GF(m)) is a number system
with a finite number of elements, m, and two main arithmetic op-
erations, called addition and multiplication. Other operations such
as division can be derived from those two (Chen et al., 2007).
Some of the formal properties of a finite field the following. They
consist of a set number of GF(m), and two operations, modular ad-
dition (+) and modular multiplication (∗). The result of adding or
multiplying two numbers from the finite field is always an element
in the field.

Mapping the arithmetic multiplication problem over the Ga-
lois field GF(m) eliminates many of the limitations of existing al-
gorithms for modular (2n + 1) multiplication. And advantage of
the proposed algorithm is that it has no restriction on the multi-
plier and the multiplicand, no diminished one multiplication, and
no based extension operation.

A prime Galois field as a multiplier

A prime Galois field GF(m) is a finite field of order m (m is the
number of elements) where m is a prime positive integer (Kitsos
et al., 2003; Chen et al., 2014). They consist of two operations,
modular addition (denoted by +) and modular multiplication (de-

noted by ∗), both operations are communicative and associative,
that satisfies the usual arithmetic properties:

(a) The (GF,+) is an Abelian group with an additive neutral
element denoted by 0, such that a + 0 = a for any element
a ∈ GF(m).

(b) The (GF\0, ∗) excluding the zero element is an Abelian
group with a multiplicative neutral element denoted by 1,
such that a ∗ 1 = a for any element a ∈ GF(m).

(c) For every element a ∈ GF(m), there is an additive inverse
element −a, such that a + (−a) = 0.

(d) For every nonzero element b ∈ GF(m) there is a multiplica-
tive inverse element b−1 such that b ∗ b−1 = 1.

(c) Multiplication distributes across addition as: (a + b)c = ac +

bc and c(a + b) = ca + cb for all a, b, c ∈ GF(m).

These properties can be satisfied if the field size is any prime num-
ber or any integer power of a prime.

The organization of the paper is as follows: Section 2 gives
a brief overview of the index mapping method; Section 3 gives a
short explanation of the design (24 +1) channel for RNS based FIR
filter design using the index mapping method given in Section 2;
Section 4 deals with distributed arthmetic and its comparison with
isomorphing transformatin; Section 5 deals with the conclusion of
the work. Isomorphing encoded and decoded tables for modulu
(m = 28 + 1) are given in Appendix.

THE INDEX MAPPING OVERVIEW

In the residue number system (RNS), an analogous method
which can be, as logarithms multiplication used, to call index cal-
culus (Padmavathy & Bhagvati, 2012). Using index mapping over

? Corresponding author: negovan.stamenkovic@pr.ac.rs

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
63

the Galois Field GF(m), the multiplication operation can be im-
plemented by the addition. The multiplication operation in RNS
is a modular operation, therefore, multiplication can be done as
an addition in RNS, which is easier than multiplication (Qi et al.,
2012).

The groups (G1, ∗) and (G2,
⊙

) are said to be isomorphic if
there is a one-to-one correspondence (bijection) f : G1 → G2

that preserves the group operation, in other words, f (a ∗ b) =

f (a)
⊙

f (b), for all a, b ∈ G1.

The input and output index mapping of RNS numbers is
based on the following definitions.

Definition 1. The Euler’s ϕ(n) function or the totient function
of a positive integer n is the number of integers in the range
(1, 2, . . . , n − 1) which are relatively prime or co-prime to n. If
m is prime then ϕ(m) = m − 1. �

For example, ϕ(5) = 4, the numbers 1, 2, 3, 4 are relatively
prime to 5, but 5 is not. If n = pk1

1 pk2
2 · · · p

km
m , where p1, p2, . . . , pm

are distinct prime divisors of n and ki ≥ 1, then

ϕ(n) = n
(
1 −

1
p1

)(
1 −

1
p2

)
· · ·

(
1 −

1
pm

)
To calculate Euler’s function, the Matlab string given in Listing 1
can be used.

Listing 1. Euler’s ϕ(n) function

N = 48; % for example

n = 1:N-1;

ind = gcd(n,N)==1;
tot = n(ind)

Definition 2. Let a , 0 and m > 0 be relatively prime. Then x is
called the order of a modulo n, denoted x = ordm(a) if x is the
smallest natural number so that 〈ax〉m = 1. �

For example, order of a = 3 modulo m = 11 is ord11(3) = 5
because 〈35〉11 = 1.

Definition 3. Let m ∈ N and g ∈ Z be such that gcd(g,m) = 1.
Then g is called a primitive root modulo m if ordmg = ϕ(m), i.e.
if the order of g is equal to the maximal possible value. In other
words, an integer g is a primitive root modulo m if the powers of g
generate all residue classes coprime to m. �

For example, let m = 17 be a second order Femat number ,
then the number g = 3 is the primitive roots of the prime m.

Listing 2. The number g = 3 is a primitive root modulo 17

m = 17; % for example

k = 1:m-1;

g = 3;

ind = mod(g.^k,m);

ind =sort(ind)

ind =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Definition 4. Let m be any prime number, and let g be any primi-
tive root of m, then to each integer a, relative prime to m, there is
a unique integer (index) i, denoted as i = indga, such that

a = 〈gi〉m, 0 ≤ i < m − 1 �

Indexes over Galois field GF(m) have the following impor-
tant properties:

1. indgl = 0,
2. indg(a × b) = 〈indga + indgb〉m−1,
3. indgan = 〈n × indga〉m−1,
4. indga = 〈indgg′ + indga〉m−1, where g′ is any other primitive

root.

Definition 5. For integer numbers a, b and m, notation b = 〈a〉m
means a − b is divisible by m, that is m|(a − b) or, equivalently,
a − b = km for some integer k. �

For any integer a, r = 〈a〉m shall denote the unique integer
remainder r, 0 ≤ r ≤ m − 1, obtained upon dividing a by m; this
operation is called reduction modulo m.

A special technique, based on isomorphic transformations
(Jullien, 1980), can be used in RNS to transform the modular mul-
tiplication into a simpler modular addition. It is based on the con-
cept of indices that are similar to logarithms, and primitive roots g
which are similar to logarithm bases. It is possible to demonstrate
that if the number m is a prime there exists a number of primitive
roots (the number of the primitive roots can be computed by us-
ing the Eulers function) that share the following property: every
element of the field GF(m) = 0, 1, . . . ,m − 1 excluding the zero
element can be generated by using the following equation

x = 〈gk〉m (1)

where k (index) is an integer number and g a primitive root. In
this way, an isomorphism exists between the multiplicative group
{x} = {1, 2, . . . ,m − 1} with the multiplication modulo m, and the
additive group {kx} = {0, 1, . . . ,m − 2} with the addition modulo
m − 1. Multiplication of two integers can now be performed by
adding the corresponding indices mod (m−1), and then finding its
inverse index value. Thus, the product of x and y is given by

〈x × y〉m = 〈gkx〉m × 〈gky〉m = g〈kx+ky〉m−1 (2)

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
64

This approach is known as index calculus. By using isomor-
phisms, the product of the two residue numbers is mapped into the
sum of their indexes which are obtained by an isomorphic map-
ping. The scheme for an index calculus multiplier is shown in Fig-
ure 1. This multiplication needs three ROM look-up tables and an
addition modulo (m − 1).

Figure 1. An index calculus multiplier.

The modulo (m− 1) adder has two n-bit inputs and one n-bit
output, were n = dlog2(m − 2)e.

Proposed applications can only be computed with only index
ROM and inverse index ROM look-up tables and addition modulo
m − 1.

APPLICATION ISOMORPHING TRANSFORMATION TO
THE MODULO (24 + 1) CHANNEL FIR FILTER

An m channel of N taps (degree) for RNS based FIR filters
is described by the ordinary expression

yn =

N−1∑
k=0

Ak xn−k (3)

where x(n) is the input to the filter, Ak represents the filter coef-
ficients and yn is the otput of the filter. This can be implemented
using a single Multiply Accumulate (MAC) engine, but it would
require N MAC cycles, before the next input sample can be pro-
cessed. Clearly, it is necessary to apply modular arithmetic.

Two direct isomorphic transformations to obtain An → kAn

and xn−k → kx,n−k, and one inverse isomorphic transformation to
obtain yn → 〈kAn + kx,n−k〉16, are performed. Because of the com-
plexity of modular multiplication, we used the isomorphism tech-
nique to implement the product of residues.

The prime number m = 24 +1 = 17 is a second order Fermat
number and it has 7 primitive roots. The complete list of primitive
roots for GF(17) is: {3, 5, 6, 7, 10, 11, 12}. In isomorphism Table 1
the elements of prime field GF(17), which are generated by using
mapping equation, (1), for primitive root g = 3, are given.

Table 1. The isomorphism table for m = 17 and g = 3.

GF(17) 1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The modular product of two integer elements x and y be-
longing to the Galois field with m elements is implemented in the
following way

1. Forward mapping of x ∈ GF(m) and y ∈ GF(m) in the cor-
responding indices kx ans ky.

2. Addition modulo (m − 1) of the two indexes.
3. Reverse mapping of the result of the addition to obtain the

final result of the modular product.

The block diagram of a typical isomorphic implementation
of the three tap modulo 17 channel of RNS FIR filter is shown in
Fig. 2.

Figure 2. Isomorphic multiplication based Implementation of a
3-tap modulo 17 channel for RNS based FIR Filter.

Product Ak xn−k is transferred into Register R. The modulo
(24 + 1) adder in the next stage adds the present sum to the previ-
ous sum fed back from Register ACC, which is initialized to zero,
thus accumulating the summation of the products Ak xn−k, over the
interval i = 1, . . . ,N. The final sum is left in Register ACC.

The architecture shown in figure 2 is also suitable for the
modulo 28 + 1 channel of the RNS based FIR filter design. Iso-
morphing encoded and decoded tables for modulu (m = 28 + 1)
are given in Appendix.

For example, for the modular multiplication in the GF (17)
of the integers x = 15 and y = 16 the corresponding indices are
kx = 6 and ky = 8 respectively, and these can be found in Table 1.
Addition modulo 16 is

〈kx + ky〉m−1 = 〈6 + 8〉16 = 14

Reverse isomorphic mapping of the index 14 gives product 〈15 ×
16〉17 in the field GF(17) which is equal to 2. Thus

〈314〉17 = 〈15 × 16〉17 = 2

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
65

Although theoretically multiplication by zero can not be per-
formed using isomorphing technique, notice that by using used
look-ups one can solve the problem by adding an additional code
to every ROM.

DISTRIBUTED ARITHMETIC AECHITECTURE

Distributed arithmetic (DA) (NagaJyothi & SriDevi, 2017)
is a well known method for the calculation of the sum of products
to perform Multiplication and Accumulation (MAC). It is a very
common method in many Digital Signal Processing (DSP) Algo-
rithms. It should be noted that the DA method is applicable only
to cases where the (MAC) operation involves fixed coefficients.

Let the variable y hold the result of an inner product op-
eration between a integer data vector xi and a integer coefficient
vector An, i = 0, 1, 2, . . . ,N − 1. The distributed arithmetic repre-
sentation of the inner modular product operation is as follows:

y =

N−1∑
n=0

Anxn (4)

where An are constant coefficient values (e.g. coefficients of FIR
filter) and xn = [bn,0, bn,1, . . . , bn,K−1] is the corresponding data
vector with N inputs, each binary encoded with bit length of N.
Using the standard multiply and accumulate approach, it is obvi-
ous that the calculation of this inner product will take N multiply
and accumulate execution cycles, corresponding to the number of
coefficients used in (4).

Now consider expressing each input in the data vector, xn,
in the unsigned binary number form as

xn =

K−1∑
k=0

bn,k2k, bn,k ∈ [0.1] (5)

where K − 1 is binary word lengrth.
The inner product y in (4) can then be written in the form

associating it directly with the bit values of the inputs in the data
vector

y =

K−1∑
k=0

{ N−1∑
n=0

Anbn,k

}
2k =

K−1∑
k=0

f (An, bn,k)2k (6)

where

f (An, bn.k) =

N−1∑
n=0

Anbn.k (7)

The function (6) contains values representing the sum of
products An with the individual binary bit value bn.k of the data
vector xn. Since the bn,k bit value is either 0 or 1, while the value
of each An is constant, there are 2N possible combination values of
f (An, bn,k).

Applying RNS arithmetic using a moduli set, for example
RNS modulo basis is B = {m1,m2, . . . ,mL} where one of them is
mi = 2p +1, for the inner product in (6), it can be rewritten in terms
of its residue mi, i.e.

yi =
〈 K−1∑

k=0

f (An, bn,k)2k
〉

mi
(8)

By applying the algebra of RNS we get follows:

yi =
〈 K−1∑

k=0

fmi (An, bn,k)〈2k〉mi

〉
mi

(9)

Hence values of fmi (An, bn,k) = 〈 f (An, bn,k)〉mi can be pre-
computed and stored in the Look Up Table LUT, which can be
subsequently clocked out by using the bit-serial stream of the input
vector for the accumulation operation. However each of the value
needs to be first scaled with the 〈2n〉mi factor, which is difficult
to be implemented in hardware due to its modulo operation with
respect to modulo mi.

The evaluation of a polynomial yi of degree N allows only
N multiplications and N additions. This is optimal, since there are
polynomials of degree N that cannot be evaluated with fewer arith-
metic operations.

yi =
〈

fmi (An, bn,0) + fmi (An, bn,1)2 + fmi (An, bn,2)22 + · · ·

+ fmi (An, bn,K−2)2K−2 + fmi (An, bn,K−1)2K−1〉
mi

(10)

Using Horners method for evaluating a polynomial we can
rewrite

yi =
〈

fmi (An, bn,0) + [fmi (An, bn,1) + [fmi (An, bn,2)

+ [fmi (An, bn,3) + · · ·

+ [fmi (An, bn,K−2) + fmi (An, bn,K−1)2]2] · · · 2]2
〉

mi

(11)

The basic distributed arithmetic architecture of a three tap
(N = 3) FIR filter is shown in Fig. 3. The bank of shift registers
in Fig. 1 stores four consecutive input samples. The concatenation
of the rightmost bits of the shift registers becomes the address of
the LUT. The shift registers are shifted right at every clock cycle.
The corresponding LUT entries are also shifted and accumulated
N consecutive times where N is the precision of the input data.

Example. Let N = 3 and K = 5 for mi = 17. Equation (11)
is reduced to

yi = f17(An, bk,0) + 2
[

f17(An, bk,1) + 2
[
f17(An, bk,2)

+ 2[f17(An, bk,3) + 2[f17(An, bk,4) + 0]]
]] (12)

where [b2,4b1,4b0,4] create a memory address which is loaded into
the memory address register, and

f17(An, bk,n) =

2∑
k=0

〈Anbk,n〉17, (13)

for n = 0, 1, 2, 3, 4. For n = 4 we have

f17(An, bk,n) = 〈A0b0,4 + A1b1,4 + A2b2,4〉17

The DA of FIR filter consists of the LUT, shift registers and
scaling accumulator. The block diagram of a typical distributed
arithmetic implementation of the three taps RNS FIR filter for
modulo 17 channel is shown in Fig. 3.

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
66

Figure 3. Distributed Arithmetic based Implementation of a 3-tap
RNS FIR Filter. Each coefficient has N = 5 bits of precision.

We can store data in a look-up table of 2K words addressed
by K-bits. The multiplication by 2 can be implemented with a one-
bit shift to the left.

The look-up-table size increases exponentially with the filter
coefficients. A smaller number of coefficients can be realized very
ealisy with a LUT of a smaller size. When dealing with larger
coefficients, they will take up a lot of storage space in the LUT, for
implementation and also reduce the calculation speed.

CONCLUSIONS

The proposed algorithm over Galois field GF(m) provides
an efficient algorithm for the modulo 28 + 1 multiplication prob-
lem. Efficient procedures were proposed to convert the multipli-
cation problem to the addition problem. The proposed algorithm
and mapping procedure can be implemented using lookup tables,
which means that multiplication in RNS can be computed very
fast. The results of this research research can be used to design a
general purpose multimoduli ALU.

A modulo multiplier based on the isomorphism technique is
compared with those realized as the distributed arithmetic. Isomor-
phing technique has the following advantages. It does not contain
shift registers and memory size is not in the correlation with the
FIR filter degree.

APPENDIX

Isomorphic transformation for m = 28 + 1

Prime number 28 + 1 = 257 is a Fermat number order three
and it has 128 primitive roots. The smallest primitive root of mod-
ulo 257 is 3, because ord257(3) = ϕ(257) = 256. Acording to Def-
inition 2, 〈3256〉257 = 1 is calcuated

The Encoder in Table 2 is determined from the mapping
〈3k〉257 for indices k = 1, 2, . . . , 256.

Table 2. The isomorphism encoder table for m = 257, and primi-
tive root g = 3.

〈3k〉m k 〈3k〉m k 〈3k〉m k 〈3k〉m k
1 0 65 161 129 208 193 160
2 48 66 245 130 209 194 215
3 1 67 100 131 7 195 162
4 96 68 216 132 37 196 10
5 55 69 29 133 210 197 24
6 49 70 188 134 148 198 246
7 85 71 163 135 58 199 14
8 144 72 146 136 8 200 254
9 2 73 44 137 72 201 101

10 103 74 11 138 77 202 123
11 196 75 111 139 38 203 179
12 97 76 221 140 236 204 217
13 106 77 25 141 62 205 74
14 133 78 155 142 211 206 249
15 56 79 22 143 46 207 30
16 192 80 247 144 194 208 42
17 120 81 4 145 149 209 65
18 50 82 67 146 92 210 189
19 125 83 15 147 171 211 204
20 151 84 182 148 59 212 185
21 86 85 175 149 227 213 164
22 244 86 255 150 159 214 79
23 28 87 95 151 9 215 6
24 145 88 84 152 13 216 147
25 110 89 102 153 122 217 71
26 154 90 105 154 73 218 235
27 3 91 191 155 41 219 45
28 181 92 124 156 203 220 91
29 94 93 243 157 78 221 226
30 104 94 109 158 70 222 12
31 242 95 180 159 90 223 40
32 240 96 241 160 39 224 69
33 197 97 167 161 113 225 112
34 168 98 218 162 52 226 114
35 140 99 198 163 237 227 232
36 98 100 206 164 115 228 222
37 219 101 75 165 252 229 53
38 173 102 169 166 63 230 131
39 107 103 201 167 233 231 26
40 199 104 250 168 230 232 238
41 19 105 141 169 212 233 17
42 134 106 137 170 223 234 156
43 207 107 31 171 127 235 116
44 36 108 99 172 47 236 214
45 57 109 187 173 54 237 23
46 76 110 43 174 143 238 253
47 61 111 220 175 195 239 178
48 193 112 21 176 132 240 248
49 170 113 66 177 119 241 64
50 158 114 174 178 150 242 184
51 121 115 83 179 27 243 5
52 202 116 190 180 153 244 234
53 89 117 108 181 93 245 225
54 51 118 166 182 239 246 68
55 251 119 205 183 139 247 231
56 229 120 200 184 172 248 130
57 126 121 136 185 18 249 16
58 142 122 186 186 35 250 213
59 118 123 20 187 60 251 177
60 152 124 82 188 157 252 183
61 138 125 165 189 88 253 224
62 34 126 135 190 228 254 129
63 87 127 81 191 117 255 176
64 32 128 80 192 33 256 128

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
67

Table 3. The isomorphism decoder table for m = 257, and primi-
tive root g = 3.

k 〈3k〉m k 〈3k〉m k 〈3k〉m k 〈3k〉m
0 1 64 241 128 256 192 16
1 3 65 209 129 254 193 48
3 27 67 82 131 230 195 175
4 81 68 246 132 176 196 11
5 243 69 224 133 14 197 33
6 215 70 158 134 42 198 99
7 131 71 217 135 126 199 40
8 136 72 137 136 121 200 120
9 151 73 154 137 106 201 103

10 196 74 205 138 61 202 52
11 74 75 101 139 183 203 156
12 222 76 46 140 35 204 211
13 152 77 138 141 105 205 119
14 199 78 157 142 58 206 100
15 83 79 214 143 174 207 43
16 249 80 128 144 8 208 129
17 233 81 127 145 24 209 130
18 185 82 124 146 72 210 133
19 41 83 115 147 216 211 142
20 123 84 88 148 134 212 169
21 112 85 7 149 145 213 250
22 79 86 21 150 178 214 236
23 237 87 63 151 20 215 194
24 197 88 189 152 60 216 68
25 77 89 53 153 180 217 204
26 231 90 159 154 26 218 98
27 179 91 220 155 78 219 37
28 23 92 146 156 234 220 111
29 69 93 181 157 188 221 76
30 207 94 29 158 50 222 228
31 107 95 87 159 150 223 170
32 64 96 4 160 193 224 253
33 192 97 12 161 65 225 245
34 62 98 36 162 195 226 221
35 186 99 108 163 71 227 149
36 44 100 67 164 213 228 190
37 132 101 201 165 125 229 56
38 139 102 89 166 118 230 168
39 160 103 10 167 97 231 247
40 223 104 30 168 34 232 227
41 155 105 90 169 102 233 167
42 208 106 13 170 49 234 244
43 110 107 39 171 147 235 218
44 73 108 117 172 184 236 140
45 219 109 94 173 38 237 163
46 143 110 25 174 114 238 232
47 172 111 75 175 85 239 182
48 2 112 225 176 255 240 32
49 6 113 161 177 251 241 96
50 18 114 226 178 239 242 31
51 54 115 164 179 203 243 93
52 162 116 235 180 95 244 22
53 229 117 191 181 28 245 66
54 173 118 59 182 84 246 198
55 5 119 177 183 252 247 80
56 15 120 17 184 242 248 240
57 45 121 51 185 212 249 206
58 135 122 153 186 122 250 104
59 148 123 202 187 109 251 55
60 187 124 92 188 70 252 165
61 47 125 19 189 210 253 238
62 141 126 57 190 116 254 200
63 166 127 171 191 91 255 86

Consider the modulo multiplication of integers X = 100 and
Y = 234 using modulo m = 257. Using Table 2, the index codes
for X = 100 and Y = 234 are kx = 206 and ky = 156 respectively.
The indices kx and ky are binary added modulo m1 = 256, giving a
result of 106. Since modulo m1 has the form 28, addition modulo
28 is very simple. This is obtaind as the remainder of the division
of sum by 28.

1 1 0 0 1 1 1 0 kx = 206
+ 1 0 0 1 1 1 0 0 ky = 156

← 1 0 1 1 0 1 0 1 0 〈kx + ky〉256 = 106

This represents the final product of 13 that is given in Table
3. It can easily verified that 〈100 × 234〉257 = 13. The scheme in
Fig. 1 should be completed by a few gates to detect when one of
the two operands is zero (no corresponding index in the isomor-
phism). When a zero is detected, the product is set to zero. Be-
cause isomorphic multipliers use modular adders in combination
with two isomorphic tables, the modular adder in Fig. 1 should
be replaced by a binary adder and incorporated in the inverse iso-
morphic mapping table. The resulting scheme will be faster and
consumes less power, as detailed in (Nannarelli et al., 2003).

REFERENCES

Chen, G., Bai, G., & Chen, H. (2007). A New Systolic Architec-
ture for Modular Division. IEEE Transactions on Computers,
56(2), pp. 282-286. doi:10.1109/tc.2007.20

Chen, R. J., Fan, J. W., & Liao, C. H. (2014). Reconfig-
urable Galois Field multiplier. In 2014 International Sympo-
sium on Biometrics and Security Technologies (ISBAST). In-
stitute of Electrical and Electronics Engineers (IEEE)., pp. 112-
115. doi:10.1109/isbast.2014.7013104

Jullien, G. A. (1980). Implementation of Multiplication, Mod-
ulo a Prime Number, with Applications to Number Theoretic
Transforms. IEEE Transactions on Computers, C-29(10), pp.
899-905. doi:10.1109/tc.1980.1675473

Kitsos, P., Theodoridis, G., & Koufopavlou, O. (2003). Theodor-
idis, G., & Koufopavlou, O. 2003. An efficient reconfig-
urable multiplier architecture for Galois field GF(2m). Micro-
electronics Journal, 34(10), pp. 975-980. doi:10.1016/s0026-
2692(03)00172-1

NagaJyothi, G. & SriDevi, S. (2017). Distributed arithmetic
architectures for FIR filters-A comparative review. In 2017
International Conference on Wireless Communications, Sig-
nal Processing and Networking (WiSPNET). Institute of Elec-
trical and Electronics Engineers (IEEE)., pp. 2684-2690.
doi:10.1109/wispnet.2017.8300250

Nannarelli, A., Cardarilli, G. C., & Re, M. (2003). Power-
delay tradeoffs in residue number system. In Proceedings of
the 2003 International Symposium on Circuits and Systems,
2003. ISCAS ’03..Institute of Electrical and Electronics Engi-
neers (IEEE)., pp. 413-416. doi:10.1109/iscas.2003.1206300

Padmavathy, R. & Bhagvati, C. (2012). Discrete log-
arithm problem using index calculus method. Mathe-
matical and Computer Modelling, 55(1-2), pp. 161-169.
doi:10.1016/j.mcm.2011.02.022

Pradhan, D. K. (1978). A Theory of Galois Switching Func-
tions. IEEE Transactions on Computers, C-27(3), pp. 239-248.
doi:10.1109/tc.1978.1675077

Qi, H., Kim, Y. B., & Choi, M. (2012). A high speed low
power modulo 2n + 1 multiplier design using carbon-nanotube
technology. In 2012 IEEE 55th International Midwest Sym-
posium on Circuits and Systems (MWSCAS). Institute of
Electrical and Electronics Engineers (IEEE)., pp. 406-409.
doi:10.1109/mwscas.2012.6292043

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
68

