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ABSTRACT 

Power flow equation for step-index glass optical fiber was solved using recently reported unconditionally-positive 

finite difference (UPFD) scheme. Solution obtained using UPFD scheme was compared with solution obtained 

using standard explicit finite difference (EFD) scheme. For accuracy testing both schemes were compared with 

analytical solution for steady state distribution of given fiber. The advantage of UPFD is reflected in stability of 

the scheme regardless of discretization step taken. Nevertheless EFD scheme has better concurrence with 

analytical solution than UPFD. This is due to the additional truncation-error terms in the approximations of the 

first and second derivatives with respect to θ.  
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INTRODUCTION 

Partial differential equations are used to model a wide 

variety of problems in natural sciences. Usually those are 

physical, chemical, biological and engineering problems such as 

transmission of light through optical fibers, heat transfer, 

transport and reaction of chemical species, solid state physics, 

adsorption of pollutants in soil and diffusion of radon and 

neutrons (Bear et al., 2007; Hetrick, 1971; Kevkic et al., 2019; 

Murray, 2002; Petrović, 2017; Shih, 1984). Often those 

equations are parabolic differential equations with no, or limited, 

analytical solution and their solvation requires various numerical 

techniques (Djordjevich 2013; Savović et al., 2009; Savović et 

al., 2012; Savović et al., 2013a; Savović et al., 2013b). In case of 

three-dimensional problems solutions are often obtained by the 

finite element method (Urošević et al., 2003). If problems are 

one-dimensional they are much easier solved by finite difference 

method (Savović et al., 2013b). Both methods have advantages 

and limitations, and the choice between two methods is mostly 

conditioned by geometry of the problem. For neither does the 

standard finite discretization explicitly constrain the solutions to 

positive values, which may lead to numerical instabilities and 

oscillations of the solution. Moreover there is no unanimous 

opinion of choice between different finite difference methods for 

diverse applications. 

With the development of computers most algorithms for 

numerical methods were implemented in a variety of 

programming languages. In the beginning, during 1970s and 

1980s, implicit finite difference methods (IFDMs) were 

generally first choice. Being often unconditionally stable, the 

IFDM allows larger step lengths. Despite, this does not increase 
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IFDM’s computational efficiency because extremely large 

matrices must be manipulated at each calculation step. With 

further advancement of the computers this trend has been 

changing, shifting the emphasis to explicit finite difference 

methods (EFDMs). Although EFDM is not unconditionally 

stable we found that it is also simpler in addition to being 

computationally more efficient (Savović et al., 2009; Savović et 

al., 2012; Simovic et al., 2014). 

The constant development of numerical methods in search 

of the best possible solution has led to the proposition of new 

solutions. Several authors propose new numerical solution of the 

parabolic differential equations that guarantees positivity of the 

solutions and that is independent both of the step size in z 

direction and mesh size (Chen-Charpentier et al., 2013; Liu et al., 

2010; Quang et al., 2006). The method works with reaction terms 

that are the sum of a positive function and a negative function of 

the unknown – either or both may be zero. It is applicable to 

both, problems where either advection or diffusion dominates. In 

this work, a recently reported UPFD scheme and a standard EFD 

scheme for solving power flow equation are compared to 

analytical solution for steady-state distribution for glass optical 

fiber CGW-CGE-68 (Drljaca, 2011). 

THEORETICAL PART 

Power distribution in optical fiber can be determined by 

using one of the three methods: ray-tracing method, wave 

approach and Gloge`s power flow equation. The simplest way 

that can describe evolution of the power in the multimode optical 

fibers and account for all important characteristics of the fiber is 

Gloge`s power flow equation. The Gloge’s power flow equation 

is given as (Gloge, 1972): 
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where P(,z) is the angular power distribution, z is distance from 

the input end of the fiber,  is the propagation angle with respect 

to the core axis, D is the coupling coefficient assumed constant 

(Garito et al. 1998; Savovic et al., 2015) and ( )  is the modal 

attenuation. The boundary conditions are P(c,z)=0, where c is 

the critical angle of the fiber, and D(P/)=0 at =0. Condition 

P(c,z)=0 implies that modes with infinitely high loss do not 

carry power. Condition D(P/)=0 at =0 indicates that the 

coupling is limited to the modes propagating with 0. After 

simplification equation (1) becomes (Djordjevich et al., 2000):   
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Numerical solution of equation (2) is obtained by EFDM, 

used in our previous works (Drljaca, 2011; Savović et al. 2013a; 

Savovic et al., 2015) and UPFDM proposed by other authors 

(Chen-Charpentier et al., 2013; Liu et al., 2010; Quang et al., 

2006.]. The results thus obtained are compared to the analytical 

solution of steady-state distribution for the given glass optical 

fiber: 
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where J0 is the Bessel function of the first kind and zero order 

and 1

0 m     = 2.4052 2/ cD    is the attenuation coefficient 

(Drljaca, 2011). 

NUMERICAL METHOD 

In order to compare results obtained by EFD and UPFD 

method we considered equation (2) for the same input data used 

previously (Drljaca, 2011), subjected to following initial and 

boundary conditions: 0( , )
( , z) 0;  0c
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 (Djordjevich 

et. al. 2000; Drljaca, 2011; Savović et al., 2013b; Savović et al., 

2015; Simovic et al., 2014). 

Standard Explicit Finite Difference Method 

After applying EFD scheme (Anderson, 1995):                 
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equation (2) becomes: 
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Truncation errors of the scheme are 2( ,  )O z  . 

When (5) is rewritten in explicit form it becomes:  
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Unconditionally Positive Finite Difference Method 

After applying UPFD scheme:  
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equation (2) becomes: 
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When equation (8) is rewritten in explicit form it becomes: 
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where ˆ /u D       and 2ˆ /D D   . If the parameters 

/D  ,  and D are all non-negative, and therefore û  and D̂ are 

both positive, then the numerical scheme represents a UPFD 

method for any  z > 0 and  θ > 0. In this way, the solutions of 

the scheme are always positive independently of the choice of 

space and angle steps [Chen-Charpentier et al., 2013.]. If /D   

< 0, Chen-Charpentier and Kojouharov (Chen-Charpentier et al., 

2013) proposed that this term is discretized as +
, 1, 1m n m nP PD

x

 


 

so that the UPFD solution would remain positive. In that case 

power flow equation is written in the following form: 
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Truncation error of the scheme is ( ) O z . 

The method (7) proposed by Chen-Charpentier and 

Kojouharov (Chen-Charpentier et al., 2013) is simultaneously 

explicit and unconditionally positive, but it is not unconditionally 

consistent. There are extra truncation error terms because the 

approximations of the first and second derivatives with respect to 

θ are evaluated at different lengths. One way to reduce this error 

is to choose the length step depending on the mesh size so that 

the inconsistent terms approach zero when the mesh is refined. 

Second approach is to incorporate these terms into the numerical 

scheme to achieve a consistent approximation of the original 

partial differential equation (Chen-Charpentier et al., 2013). 

RESULTS 

In order to present obtained far-field intensity patterns for 

numerical calculations we used same fiber that was previously 

used in different experiments and numerical simulations - CGW-

CGE-68 glass optical fiber. The fiber has critical angle θc = 7.26◦ 

measured inside the fiber and θc = 10.6o measured in air. 

Coupling coefficient for this fiber is D=7.9×10-7 rad2/m at room 

temperature and was used for numerical calculations (Drljaca, 

2011). Attenuation coefficient is calculated as 0 =2.86×10-4m-1. 

 

Figure 1. Normalized output angular power distribution obtained 

by EFD method at different locations along the CGW-CGE-68 

fiber for three Gaussian input angles θ0 = 0◦ (solid line), 3° 

(dashed line) and 6° (dotted line) at: (a) z = 700 m ; (b) z = 1500 

m ; (c) z = 1800 m and (d) z = 3100 m. [Drljaca, 2011.]. 

Figure 1. shows normalized far field patterns for different 

lengths and three different launch angles (θ0=0, 3 and 6o) 

obtained by standard EFD method, and analytical solution of 

power flow equation (2) (Drljaca, 2011). In Figure 2. numerical 

solutions obtained by UPFD method are presented. 

As could be seen from Fig. 1 and Fig. 2 that both EFD and 

UPFD methods have a good agreement with analytical solution 

of equation (2). However it could be seen that UPFD scheme is 

less accurate than EFD scheme when compared to analytical 

solution. This is due to additional truncation error that occurs in 

UPFD scheme. 

 

Figure 2. Normalized output angular power distribution obtained 

by UPFD method at different locations along the CGW-CGE-68 

fiber for three Gaussian input angles θ0 = 0◦ (squares), 3° 

(triangles) and 6° (circles) at: (a) z = 700 m ; (b) z = 1500 m ; (c) 

z = 1800 m and (d) z = 3100 m. 

CONCLUSION 

Standard explicit finite difference (EFD) scheme and 

recently reported unconditionally positive finite difference 

(UPFD) scheme for solving parabolic differential equations are 

compared to previously obtained analytical solution of power 

flow equation.  We have shown that this scheme is less accurate, 

even though UPFD scheme guarantees the positivity of the 

solutions for arbitrary step sizes, and is stable. The reason for 

this is additional truncation error in the approximations to the 

first and second derivatives with respect to θ, which are 

evaluated at different lengths, which is contained in the UPFD 

scheme. If the accuracy of the numerical scheme over stability is 

needed we propose usage of EFD scheme before UPFD scheme.  
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