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ABSTRACT 

This paper addresses the first-order outage statistics of asymmetrical radio frequency (RF)-optical wireless (OW) 

relay systems over non turbulent-induced-fading (nTIF) and turbulent-induced-fading (TIF) channels. We rely on 

dual-hop amplify-and-forward relay (AFR) scheme and provide detailed mathematical development for derivation 

of novel exact analytical as well as novel closed form approximative expressions for:  i). cumulative distribution 

function, ii.) outage probability, and iii.) average bit-error-rate. The system under consideration is modeled as the 

product of independent Nakagmi-m and double squared Nakagami-m (also known as Gamma-Gamma) random 

processes. The obtained results of the proposed system are graphically presented for RF -OW TIF and nTIF 

channel sets of parameters. Moreover, the detailed comparisons of exact and approximated numerical results 

whose derivation resorts on exponential Laplace approximation method (LAM) are provided and thoroughly 

examined for the considered RF-OW statistical measures.  

Keywords: Gamma-Gamma, Laplace approximation, Nakagami-m, Outage statistics, RF-FSO relay systems. 

INTRODUCTION 

Optical wireless (OW) communicationsas well as 

asymmetrical radio frequency (RF)-OW communications are 

relevant research topic within academia and industry for future 

5G and even beyond 5G (B5G) network deployments (Hamza et 

al., 2018; Khalighi & Uysal, 2014; Illi et al., 2017; Douik et al., 

2016). The OW communications are primarily intended to speed 

up the transmission rate and ensure higher capacity and wider 

bandwidth compared to RF links. Moreover, OW 

communications, especially free space optical (FSO) 

communications which operates at near infrared part of the 

spectrum are i.) cost effective, ii.) spectrum license free, iii.) 

channel interference free. On the other hand, one of the main 

FSO system performance impairments is the impact of 

atmospheric turbulence due to the small- and large-scales 

atmospheric cells. Weather conditions as well as misalignment of 

the system’s transmitter-receiver apparatus can cause further 

degradation of the system performance stability. 

The relay system techniques represent efficient way to 

speed up data-rate, extend coverage and save energy but also to 

efficiently merge different wireless technologies (Zedini et al., 

2014; Anees & Bhatnagar, 2015; Petkovic et al., 2017; Zedini et 

al., 2015; Stefanovic et al., 2019a). Moreover, amplify-and-

forward relay (AFR) scheme plays an important role in all-RF, 

RF-FSO and all-FSO relay systems (Stefanovic, 2017; Karimi & 

Masoumeh, 2011; Petkovic & Trpovski, 2018) and in some cases 
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the signal envelope, signal-to-interference ratio (SIR) and signal-

to-noise ratio (SNR) can be modeled as the product of two or 

more random processes (RPs) (Zlatanov et al., 2008; Stefanovic 

et al., 2018; Milosevic et al., 2018; Stefanovic et al., 2019b; 

Talha & Pätzold, 2007; Issaid & Alouini, 2019). 

Namely, Nakagami-m (Nm) RP can address RF links over 

non turbulence induced fading (nTIF) channels (Nakagami, 

1960) while double squared Nakagami-m (d-sNm), also known 

as gamma-gamma RP can address FSO links over moderate to 

strong turbulence induced fading (TIF) channels (Andrews & 

Phillips, 2005; Vetelino et al., 2007; Al-Ahmadi, 2014). The 

papers (Zedini et al., 2014; Anees & Bhatnagar, 2015; Petkovic 

et al., 2017) address mixed RF-FSO relay systems over Nm nTIF 

channels and d-sNm TIF channels and provide closed form 

analytical results for the first order statistical measures expressed 

through Meijer’s G function. In paper (Zedini et al., 2015), Nm 

nTIF and d-sNm TIF are used to address cooperative mixed RF-

FSO relay link and obtained analytical results are given in terms 

of H-fox and Meijer’s G functions. Moreover, in (Stefanovic et 

al., 2019a) the closed form analytical expressions for second 

order statistics of the products of Nm, d-sNm and Nm RPs are 

derived by Laplace approximation method (LAM) and efficiently 

applied to address TIF and nTIF channels of mixed triple-hop 

RF-FSO-RF vehicle-to-vehicle (V2V) AFR communications. 

It is important to note that LAM already plays an important 

role in performance analysis of wireless communicationsystems 

(Stefanovic et al., 2019a; Stefanovic, 2017; Zlatanov et al., 2008; 

Stefanovic et al., 2018; Milosevic et al., 2018; Stefanovic et al., 

2019b; Hajri et al., 2018). Moreover, LAM can provide precise 
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approximations by solving complex many-folded integrals and 

significantly decrease computational time of complex analytical 

expressions. The proofs that LAM is able to provide precise 

results even under sub-asymptotic conditions is provided in 

(Butler & Wood, 2002). Another remark of the LAM is its 

generality and simplicity of application, which in many cases can 

provide fast computing closed form accurate approximations 

derived from latent Gaussian models (Wang, 2010). 

In this paper we provide comprehensive mathematical 

development for computing novel exact expressions as well as 

novel closed form approximative expressions for i.) cumulative 

distribution function, ii.) outage probability, iii.) and average bit 

error rate of the product of Nm and d-sNm RPs. Moreover, we 

rely on exponential LAM for derivation of closed form analytical 

expressions for the first order statistical measures. The obtained 

results are further used to address asymmetrical RF-FSO dual-

hop AFR system in the case when nTIF (fading over RF channel) 

and TIF (turbulence induced fading over FSO channel) are the 

main cause of the system model performance degradation. 

To the best of author’s knowledge there is no paper in open 

technical literature that applies exponential LAM for derivation 

of the first order outage statistics of RF-FSO AFR system over 

Nm nTIF and d-sNm TIF channels. 

SYSTEM MODEL OF RF-FSO DUAL-HOP AFR 

COMMUNICATIONS  

We model the mixed RF-FSO dual-hop AFR system as the 

product of the independent Nm random process (RP), 
1Nmy

 

and 

gamma-gamma (GG) RP, yGG. Further, we express GG as double 

squared Nakagami-m (d-sNm) RP, 
2 3

2 2

GG Nm Nmy y y . Thus, we 

model the output signal envelope xout as the product of the 

independent RPs, 
 1 1 2 3
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whose average powers and fading severity parameters of RF Nm 

and FSO d-sNm RPs are, respectively, Ω1= ΩRF, m1= mRF. 
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where α and β are small-scale and large-scale cells related to 

atmospheric conditions, respectively, 
2 2 7 6 11 60.5 nC k L   is the 

Rytov variance and 2 4d kD L  is the optical wave number. 

Further, 2

nC  is Refractive index, k=2π/λ is wave-number (λ-

wavelength), D is receiver aperture diameter and L is 

propagation distance. 

FIRST ORDER STATISTICS OF RF-FSO DUAL-HOP 

AFR COMMUNICATIONS 

Probability Density Function (PDF) 

The PDF of xout can be expressed through joint and 

conditional probabilities as: 
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Cumulative Distribution Function (CDF) 

The CDF of xout can be calculated by using (Simon & 

Alouini, 2000; Gradshteyn & Ryzhik, 2000, Equation 3.381.1 

and Equation 8.352.1), respectively for the case where mRF is 

positive integer, 
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where, 
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The integral J1 in (6) can be solved by applying exponential 

LAM for two folded integrals (Zlatanov et al., 2008, Equation 

I.3).  
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It has been shown in (Butler & Wood, 2002) that accurate 

results can be obtained for real value parameter, T=1. Further, the 

LAM, also known as exponential LAM for constant multivariate 

function f1 and variable multivariate function f2 is considered in 

58



 

MATHEMATICS, COMPUTER SCIENCE AND MECHANICS 

(Harding & Hausman, 2007). Accordingly, the arguments in Eq. 

7 are, respectively, T=1,  
20 301 , 1,Nm Nmf y y   
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Further, the Hessian matrix H in Eq. 7 is, 
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while, 
20Nmy and 

30Nmy are real and positive values obtained from 

the following equations, 
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Outage Probability (Pout) 

The Pout of RF-FSO AFR proposed system is defined as 

the probability that the output signal goes below the outage 

threshold 
,th RF FSOx 

 ( Simon & Alouini, 2000): 
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Average Bit Error Rate (BER) 

The average BER, BERRF-FSO by definition for different 

binary modulations can be evaluated with (Anees & Bhatnagar, 

2015, Equation 23): 
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By substituting (5) in (Anees & Bhatnagar, 2015, Equation 

23), we obtain: 
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where, 
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where p and q denote parameters for different binary modulation 

such as: 

 coherent binary frequency shift keying (CBFSK) for 

p=0.5 and q=0.5, 

 coherent binary phase shift keying (CBPSK) for p=0.5 

and q=1, 

 non-coherent binary frequency shift keying (NBFSK) 

for p=1, q=0.5, 

 differential binary phase shift keying (DBPSK) for p=1, 

q=1. 

The closed form approximation for BERRF-FSO can be 

obtained by evaluating J2 in Eq. (13) by using exponential LAM 

for three folded integrals (Zlatanov et al., 2008, Equation I.3): 
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where the parameters in Eq. 15 are, respectively, T=1, 
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Further, 
20 30 0, ,Nm Nm outy y x  and H in Eq. 14 can be evaluated 

from the following equations, respectively, 
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NUMERICAL RESULTS 

In numerical results we provide performance analysis as 

well as comparison of exact and approximated results of the first 

order outage statistics under weak, moderate and strong nTIF and 

TIF conditions of the RF-FSO dual-hop AFR system.  

First order Statistics 

The FSO section of dual-hop RF- FSO AFR relay link is 

modeled with d-sNmRP, where numerical results are evaluated 

for different optical fading severity parameters  ,   and for 

different values of irradiance variance 2

1 1 1
.

md sN


  
    

The RF section of dual-hop RF-FSO AFR is modeled with Nm 

RP and evaluated for RF fading severity parameter mRF. 

 Outage Probability 

The  ,out th RF FSOP x 
 for normalized ΩRF=1 under weak 

(α=4, β=4, mRF=4), moderate to weak (α=3, β=3, mRF=3), 

moderate to strong (α=2, β=2, mRF=2) and strong (α=1, β=1, 

mRF=1) nTIF and TIF channel conditions is shown in Figure 1. It 

can be seen that  ,out th RF FSOP x 
 approximated by exponential 

LAM for the considered nTIF and TIF severity values fits well 

with exact analytical expression (Eq. 6) especially for higher 

 ,out th RF FSOP x 
 dB values. It is evident that the system 

performance improvement can be achieved by increasing TIF 

and nTIF severity parameters since  ,out th RF FSOP x 
 decreases. 

 

Figure 1. Comparison of exact and approximated results for Pout 

under weak, moderate and strong TIF and nTIF channel 

conditions.     

 Average Bit Error Rate 

The average bit error rate versus ΩRF for different binary 

modulation schemes under weak (α=3, β=3, mRF=3) , moderate 

(α=2, β=2, mRF=2) and strong (α=1, β=1, mRF=1) nTIF and TIF 

channel conditions is presented in Figure 2. As expected, under 

moderate and weak TIF and nTIF channel conditions, BER 

noticeably decreases what can enable RF-FSO AFR system 

performance improvement.  

Moreover, it can be seen that nTIF and TIF severity 

parameters (α, β, mRF) have stronger impact on BERRF-FSO than 

considered binary modulations. In most of the observed range 

and under considered nTIF and TIF channel conditions the best 

performance results relating to BERRF-FSO can be achieved for 

CBPSK. The comparison of exact analytical expression and 

approximated closed form expression for BERRF-FSO of DBPSK 

modulated signal are provided in Figure 3. It can be noticed that 

exponential LAM fails to match approximation with exact 

analytical results for higher ΩRF  dB values. 

 

Figure 2. BER versus ΩRF under weak, moderate and strong TIF 

and nTIF channel conditions and for different binary modulation 

schemes. 

 

Figure 3. Comparison of exact and approximated results for 

BER versus ΩRF under weak, moderate and strong TIF and nTIF 

channel conditions. 
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CONCLUSION 

This paper addresses the first -order outage statistics of the 

RF-FSO AFR dual-hop relay link. In particular, we provide 

closed form analytical expressions for i.) cumulative distribution 

function, ii.) outage probability and iii.) average bit error rate of 

the product of Nm and d-sNmRPs. Moreover, we provide 

comparison of novel exact analytical and LAM approximated 

closed form expressions under weak, strong and moderate nTIF 

and TIF channel conditions. Numerical examples show that 

exponential LAM approximations fit well with exact expressions 

for cumulative distribution function especially for higher output 

threshold dB values. On the other hand, exponential LAM fails 

to perform well in the case of BERRF-FSO, especially in higher RF 

average power dB regime. In general, nTIF and TIF severity 

parameters have more dominant impact on first order statistics 

then other observed parameters such as: type of binary 

modulation in case of BERRF-FSO. Our future works are going to 

include cooperative RF-FSO AFR relay systems. 
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