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ABSTRACT MULTI-TERM FRACTIONAL DIFFERENTIAL
EQUATIONS

C.-G. LI1, M. KOSTIĆ2, AND M. LI3

Abstract. The present paper is an addendum to our recent work on abstract
time-fractional equations of the following form:

Dαn
t u(t) +

n−1∑
i=1

AiD
αi
t u(t) = ADα

t u(t) + f(t), t > 0,

u(k)(0) = uk, k = 0, · · ·, dαne − 1,

(0.1)

where n ∈ N \ {1}, A and A1, · · ·, An−1 are closed linear operators on a sequentially
complete locally convex space X, 0 ≤ α1 < · · · < αn, 0 ≤ α < αn, f(t) is an
X-valued function, and Dα

t denotes the Caputo fractional derivative of order α [2].
We analyze the existence and uniqueness of solutions of the equation (0.1), and
prove a Ljubich type uniqueness theorem in this context.

1. Introduction and Preliminaries

During the past three decades or so, there has been an explosion of interest in
fractional differential equations and fractional dynamics, primarily from their invalu-
able importance in modeling of various phenomena appearing in physics, chemistry,
mathematical biology and engineering. After significant research of E. Bazhlekova
[2], it became clear that the abstract Volterra integro-differential equations provide
a general framework for the analysis of a large class of abstract time-fractional equa-
tions with Caputo derivatives. For more details about fractional differential equations
and Volterra integro-differential equations, the reader may consult the monographs
by K. Diethelm [8], V. Kiryakova [13] and K. S. Miller-B. Ross, I. Podlubny, J. Prüss
[28]-[30].
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In this paper, we continue the analysis of the abstract multi-term fractional dif-
ferential equation (0.1); cf. also [2]-[4] and [14]-[27]. The most important subcase of
(0.1) is, without any doubt, the abstract Cauchy problem (ACPn):

(ACPn) :

{
u(n)(t) + An−1u

(n−1)(t) + · · ·+ A1u
′(t) + A0u(t) = 0, t ≥ 0,

u(k)(0) = uk, k = 0, · · ·, n− 1,

whose qualitative properties have been studied in a series of papers by T.-J. Xiao and
J. Liang (cf. the monograph [31] for a comprehensive exposition of results). As some
other very important subcases of (0.1), we quote the abstract Basset-Boussinesq-
Oseen equation

(1.1) u′(t)− ADα
t u(t) + u(t) = f(t), t ≥ 0 (α ∈ (0, 1)),

which describes the unsteady motion of a particle accelerating in a viscous fluid under
the action of the gravity, and the equation

(1.2) u′′(t) + ADα
t u(t) + u(t) = f(t), t ≥ 0 (α ∈ (1, 2)),

which models an oscillation process with fractional damping term. The study of
equations (1.1)-(1.2) has been initiated by C. Lizama in his joint papers with H. Prado
[26] and A. Karczewska [27] (cf. [19] and [22] for more details on the C-wellposedness
of equations (1.1)-(1.2) in some classes of Banach or Fréchet spaces). Of importance
is also to stress that H. Jiang, F. Liu, I. Turner and K. Burrage have recently analyzed
in [11] the following scalar multi-term time-space Caputo-Riesz fractional advection
diffusion equation

Dαn
t u(t, x) +

n−1∑
j=1

cjD
αj
t u(t, x) = kβ

∂βu(t, x)

∂|x|β
+ kγ

∂γu(t, x)

∂|x|γ
,(1.3)

for t ≥ 0, 0 ≤ x ≤ L, where n ∈ N \ {1}, c1, · · ·, cn−1 ∈ C, 0 ≤ α1 < · · · <
αn ≤ 2, 0 < β < 1, 1 < γ ≤ 2, kβ, kγ > 0, L > 0 and ∂βu(t,x)

∂|x|β denotes the Riesz

fractional operator of order β (cf. [5] for various evolution models of equation (1.3)
and its backwards analogue); concerning abstract (multi-term) fractional differential
equations involving Riemann-Liouville or Liouville-Grünwald fractional derivatives,
the reader may consult [3], [9]-[10], [12] and [25]. Finally, there is no need to say that
it would be really difficult to include all the relevant subcases of (0.1) not mentioned
so far; thus we will refer the reader to [15] and the references cited there for further
information on the subject.

The organization of paper is as follows. In the first part of Section 2, we shall
recall some known definitions and assertions necessary for our further work [20]. In
Theorem 2.1-Theorem 2.2 and Remark 2.1, we investigate mutual relations between
k-regularized (C1, C2)-existence and uniqueness propagation families (k-regularized
C-resolvent propagation families) and k-regularized (C1, C2)-existence and unique-
ness families (k-regularized C-resolvent families). The analysis of these relations is
very complicated in the general case, so that we must focus our attention on the
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case in which Aj = cjI for all i ∈ Nn−1. If so, then we will be able to express
any single operator family (Ri(t))t∈[0,τ) of a locally equicontinuous k-regularized C-
resolvent propagation family ((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)) for (0.1) in terms of
(R0(t))t∈[0,τ) (cf. Remark 2.1(ii), and [31, pp. 116-119] for a slightly different ap-
proach in the case of the abstract Cauchy problem (ACPn)). Further on, we would
like to note that perturbations of existence and uniqueness families for the abstract
Cauchy problem (0.1) have not been well-studied in the corresponding literature [6-7,
20, 23-24, 33–34], even in the case of equations of integer order. In Theorem 2.3, we
transfer results of R. deLaubenfels [7, Section VI] to existence and uniqueness fam-
ilies for the equation (0.1); as an application, we consider in Example 2.1 bounded
perturbations of a damped Klein-Gordon equation in Lp-spaces [33, 20]. Notice also
that T.-J. Xiao and J. Liang [32] have considered Desch-Schappacher multiplicative
and additive perturbation type theorems for C1-existence families for the abstract
Cauchy problem u(n)(t) = Au(t) (t ≥ 0); u(k)(0) = uk (0 ≤ k ≤ n), in the setting
of Banach spaces. We shall examine the possibility of extension of their results to
the abstract multi-term fractional differential equations in a separate paper. The
existence and uniqueness of solutions of the equation (0.1) are analyzed in the third
section of paper.

Unless stated otherwise, X denotes a Hausdorff sequentially complete locally convex
space over the field of complex numbers, SCLCS for short, and the abbreviation~X , or
simply ~, stands for the fundamental system of seminorms which defines the topology
of X. By L(X) we denote the space of all continuous linear mappings from X into X.
Let B be the family of bounded subsets of E and let pB(T ) := supx∈B p(Tx), p ∈ ~,
B ∈ B, T ∈ L(X). Then pB(·) is a seminorm on L(X) and the system (pB)(p,B)∈~×B
induces the Hausdorff locally convex topology on L(X). Henceforth A denotes a closed
linear operator acting on X, C ∈ L(X) is an injective operator, and the convolution

like mapping ∗ is given by f ∗ g(t) :=
∫ t
0
f(t − s)g(s) ds. The domain, resolvent set,

range, point spectrum and adjoint operator of A are denoted by D(A), ρ(A), R(A),
σp(A) and A∗, respectively. Since no confusion seems likely, we will identify A with
its graph. Recall that the C-resolvent set of A, denoted by ρC(A), is defined by

ρC(A) :=
{
λ ∈ C ; λ− A is injective and (λ− A)−1C ∈ L(X)

}
.

Suppose now that Y is also a sequentially complete locally convex space over the
field of complex numbers. Then we denote by L(Y,X) the space which consists of all
bounded linear operators from Y into X. By ~Y and I we denote the fundamental
system of seminorms which defines the topology on Y, and the identity operator on X,
respectively. If 0 < τ ≤ ∞, then a strongly continuous operator family (W (t))t∈[0,τ) ⊆
L(Y,X) is said to be locally equicontinuous iff, for every T ∈ (0, τ) and for every
p ∈ ~X , there exist qp ∈ ~Y and cp > 0 such that p(W (t)y) ≤ cpqp(y), y ∈ Y,
t ∈ [0, T ].

Given s ∈ R in advance, set bsc := sup{l ∈ Z : s ≥ l} and dse := inf{l ∈ Z : s ≤ l}.
The Gamma function is denoted by Γ(·) and the principal branch is always used to
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take the powers. Set Nl := {1, · · ·, l}, N0
l := {0, 1, · · ·, l}, 0ζ := 0, gζ(t) := tζ−1/Γ(ζ)

(ζ > 0, t > 0) and g0 := the Dirac δ-distribution; the symbol δkl denotes the Kronecker
delta. If ω > 0, then we say that a function f : (ω,∞) → X belongs to the class
LT−X, if there exists a function h(·) ∈ C([0,∞) : X) such that, for every p ∈ ~, there
exists Mp > 0 satisfying p(h(t)) ≤ Mpe

ωt, t ≥ 0, and f(t) =
∫∞
0
e−λth(t) dt, λ > ω.

We assume henceforth that A and A1, · · ·, An−1 are closed linear operators on X as
well as that 0 ≤ α1 < · · · < αn and 0 ≤ α < αn. Set mj := dαje, 1 ≤ j ≤ n,
m := m0 := dαe, A0 := A and α0 := α.

Let α > 0, let β ∈ R, and let the Mittag-Leffler function Eα,β(z) be defined by
Eα,β(z) :=

∑∞
n=0 z

n/Γ(αn + β), z ∈ C; here we assume that 1/Γ(αn + β) = 0 if
αn + β ∈ −N0. Set, for short, Eα(z) := Eα,1(z), z ∈ C. Then we define the Wright
function Φγ(t) by Φγ(t) := L−1(Eγ(−λ))(t), t ≥ 0, where L−1 denotes the inverse
Laplace transform (cf. [2, Section 1.3] for more details about the Mittag-Leffler and
Wright functions).

Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0, a ∈ L1
loc([0, τ)) and a 6= 0. We refer the

reader to [17]-[20] and [23] for the notions of various types of (local) (a, k)-regularized
(C1, C2)-existence and uniqueness families, (a, k)-regularized C-resolvent families and
their subgenerators.

2. Further Results on the C-Wellposedness of (0.1)

The notions of strong solutions of the abstract Cauchy problem (0.1), and its C-
wellposedness, are understood in the sense of [20, Definition 2.1]. If u(t) ≡ u(t;u0, · ·
·, umn−1), t ≥ 0 is a strong solution of (0.1), with f(t) ≡ 0 and initial values u0, · ·
·, umn−1 ∈ R(C), then we can integrate both sides of (0.1) αn-times, and make use of
the equality [2, (1.21)]. In such a way, we get that the function u(t), t ≥ 0 satisfies
the following integral equation:

u(·)−
mn−1∑
k=0

ukgk+1

(
·
)

+
n−1∑
j=1

gαn−αj ∗ Aj

[
u(·)−

mj−1∑
k=0

ukgk+1

(
·
)]

= gαn−α ∗ A

[
u(·)−

m−1∑
k=0

ukgk+1

(
·
)]
.(2.1)

The following definition can be compared with Definition 2.2 of [21].

Definition 2.1. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C1 ∈ L(Y,X), and C2 ∈ L(X)
is injective.

(i) A strongly continuous operator family (E(t))t∈[0,τ) ⊆ L(Y,X) is said to be
a (local, if τ < ∞) (k, C1)-existence family for (0.1) iff, for every y ∈ Y
and t ∈ [0, τ), the following holds: Aj(gαn−αj ∗ E)(·)y ∈ C([0, τ) : X) for
0 ≤ j ≤ n− 1, and
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(2.2) E(t)y +
n−1∑
j=1

Aj
(
gαn−αj ∗ E

)
(t)y − A

(
gαn−α ∗ E

)
(t)y = k(t)C1y.

(ii) A strongly continuous operator family (U(t))t∈[0,τ) ⊆ L(X) is said to be a
(local, if τ <∞) (k, C2)-uniqueness family for (0.1) iff, for every t ∈ [0, τ) and
x ∈

⋂
0≤j≤n−1D(Aj), the following holds:

(2.3) U(t)x+
n−1∑
j=1

(
gαn−αj ∗ U(·)Ajx

)
(t)−

(
gαn−α ∗ U(·)Ax

)
(t)x = k(t)C2x.

(iii) Suppose X = Y. Then a strongly continuous family ((E(t))t∈[0,τ), (U(t))t∈[0,τ))
⊆ L(X) × L(X) is said to be a (local, if τ < ∞) (k, C1, C2)-existence and
uniqueness family for (0.1) iff (E(t))t∈[0,τ) is a (k, C1)-existence family for (0.1),
and (U(t))t∈[0,τ) is a (k, C2)-uniqueness family for (0.1).

(iv) Suppose C = C1 = C2. Then a strongly continuous operator family (R(t))t∈[0,τ)
⊆ L(X) is said to be a (local, if τ < ∞) (k, C)-resolvent family for (0.1)
iff (R(t))t∈[0,τ) is a (k, C)-uniqueness family for (0.1), R(t)Aj ⊆ AjR(t), for
0 ≤ j ≤ n − 1 and t ∈ [0, τ), as well as R(t)C = CR(t), t ∈ [0, τ), and
CAj ⊆ AjC, for 0 ≤ j ≤ n− 1.

The notion of (exponential) analyticity of various types of (C1, C2)-existence and
uniqueness families for (0.1) is taken in the sense of [20, Definition 1.2(ii)]. We refer
the reader to [20, Definition 3.1] for the notions of k-regularized (C1, C2)-existence
and uniqueness families and k-regularized C-resolvent families for (0.1); if k(t) = 1,
t ∈ [0, τ), then any such operator family is simply called a (C1, C2)-existence and
uniqueness family for (0.1) (C-resolvent family for (0.1)). Notice that the following
assertions hold:

(i) Suppose (E(t))t∈[0,τ) ⊆ L(Y,X) is a strongly continuous operator family. Then
(E(t))t∈[0,τ) is a (local) (k, C1)-existence family for (0.1) iff ((gmn−1∗E)(t))t∈[0,τ)
is a k-regularized C1-existence family for (0.1).

(ii) Suppose (U(t))t∈[0,τ) ⊆ L(X) is a strongly continuous operator family. Then
(U(t))t∈[0,τ) is a (local) (k∗gmn−1, C2)-uniqueness family for (0.1) iff (U(t))t∈[0,τ)
is a (local) k-regularized C2-uniqueness family for (0.1).

The reader may consult [20, Definition 2.7] for the notions of strong (mild) solutions
of the following inhomogeneous Volterra equation:

u(t) +
n−1∑
j=1

(
gαn−αj ∗ Aju

)
(t) = f(t) +

(
gαn−α ∗ Au

)
(t), t ∈ [0, T ].(2.4)

One can similarly define the notion of a strong (mild) solution of the problem (2.1).
Given i ∈ N0

mn−1 in advance, set Di := {j ∈ Nn−1 : mj − 1 ≥ i}.
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Definition 2.2. Suppose 0 < τ ≤ ∞, k ∈ C([0, τ)), C, C1, C2 ∈ L(X), C and C2

are injective. A sequence ((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)) of strongly continuous
operator families in L(X) is called a (local, if τ <∞):

(i) k-regularized C1-existence propagation family for (0.1) iff Ri(0) = (k∗gi)(0)C1

and the following holds:[
Ri(·)x−

(
k ∗ gi

)
(·)C1x

]
+
∑
j∈Di

Aj

[
gαn−αj ∗

(
Ri(·)x−

(
k ∗ gi

)
(·)C1x

)]
+

∑
j∈Nn−1\Di

Aj
(
gαn−αj ∗Ri

)
(·)x

=

{
A
(
gαn−α ∗Ri

)
(·)x, m− 1 < i, x ∈ X,

A
[
gαn−α ∗

(
Ri(·)x−

(
k ∗ gi

)
(·)C1x

)]
(·), m− 1 ≥ i, x ∈ X,(2.5)

for any i = 0, · · ·,mn − 1.
(ii) k-regularized C2-uniqueness propagation family for (0.1) iff Ri(0) = (k ∗

gi)(0)C2 and[
Ri(·)x−

(
k ∗ gi

)
(·)C2x

]
+
∑
j∈Di

gαn−αj ∗
[
Ri(·)Ajx−

(
k ∗ gi

)
(·)C2Ajx

]
+

∑
j∈Nn−1\Di

(
gαn−αj ∗Ri(·)Ajx

)
(·)

=

{ (
gαn−α ∗Ri(·)Ax

)
(·), m− 1 < i,

gαn−α ∗
[
Ri(·)Ax−

(
k ∗ gi

)
(·)C2Ax

]
(·), m− 1 ≥ i,

(2.6)

for any x ∈
⋂

0≤j≤n−1D(Aj) and i ∈ N0
mn−1.

(iii) k-regularized C-resolvent propagation family for (0.1), in short k-regularized
C-propagation family for (0.1), if ((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)) is a k-
regularized C-uniqueness propagation family for (0.1), and if for every t ∈
[0, τ), i ∈ N0

mn−1 and j ∈ N0
n−1, one has Ri(t)Aj ⊆ AjRi(t), Ri(t)C = CRi(t)

and CAj ⊆ AjC.

As mentioned in the introductory part, the case in which the operator Aj is a
scalar multiple of the identity operator for all j ∈ Nn−1 (cf. [21] for more details)
is very specific. In the subsequent theorems, we shall prove certain relations be-
tween (k, C1, C2)-existence and uniqueness families ((k, C)-resolvent families) and
k-regularized (C1, C2)-existence and uniqueness propagation families (k-regularized
C-resolvent propagation families).

Theorem 2.1. (i) Let C, C1 ∈ L(X), and let C be injective. Suppose that Aj ∈
L(X) and AjAl = AlAj for 1 ≤ j, l ≤ n−1 and AjA ⊆ AAj for 1 ≤ j ≤ n−1.
Suppose (E(t))t∈[0,τ) is a (k, C1)-existence family for (0.1), and (R(t))t∈[0,τ) is
a (k, C)-resolvent family for (0.1). Put, for every x ∈ X, t ∈ [0, τ), and
i = m, · · · ,mn − 1,
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Ei(t)x :=
(
gi ∗ E

)
(t)x+

∑
j∈Di

Aj
(
gαn−αj+i ∗ E

)
(t)x,

and, for every x ∈ X, t ∈ [0, τ), and i = 0, · · · ,m− 1,

Ei(t)x :=
(
k ∗ gi

)
(t)C1x−

∑
j∈Nn−1\Di

Aj
(
gαn−αj+i ∗ E

)
(t)x.

Define also Ri(t)x by replacing respectively E(t) and C1 with R(t) and C in the
above formulae. Then ((E0(t))t∈[0,τ), ···, (Emn−1(t))t∈[0,τ)) is a k-regularized C1-
existence propagation family for (0.1) and ((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ))
is a k-regularized C-resolvent propagation family for (0.1). Furthermore, (2.5)
holds for ((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)), provided that (2.2) holds for
(R(t))t∈[0,τ).

(ii) Let the following condition hold:

(2.7) cj ∈ C and Aj = cjI for all j ∈ Nn−1.

Suppose ((R0(t))t∈[0,τ), ···, (Rmn−1(t))t∈[0,τ)) is a k-regularized C1-existence prop-
agation family for (0.1), resp. k-regularized C2-uniqueness propagation family
for (0.1) (k-regularized C-resolvent propagation family for (0.1)), and m = 0.
Define, for every t > 0,

b(t) := L−1

((
1 +

∑
j∈D0

cjλ
αj−αn

)−1
− 1

)
(t),

and R(t)x := R0(t)x +
(
b ∗ R0

)
(t)x, t ∈ [0, τ), x ∈ X. Then (R(t))t∈[0,τ) is

a (k, C1)-existence family for (0.1), resp. (k, C2)-uniqueness family for (0.1)
((k, C)-resolvent family for (0.1)). Furthermore, if (2.5) holds for
((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)), then (2.2) holds with (R(t))t∈[0,τ) in place
of (E(t))t∈[0,τ).

Proof. We wil only prove the assertion (i) in the case of existence families. Suppose
first i ∈ N0

mn−1 and m − 1 < i. Then it is clear that (E1,i(t))t∈[0,τ) is a strongly
continuous operator family. Using the definition of (E1,i(t))t∈[0,τ) and (E(t))t∈[0,τ),
as well as the equalities AjAl = AlAj for 1 ≤ j, l ≤ n − 1 and AjA ⊆ AAj for
1 ≤ j ≤ n− 1, we get that, for every t ∈ [0, τ) and x ∈ X,

A
(
gαn−α ∗ E1,i

)
(t)x = gi ∗

[
E1(·)x− k(·)C1x+

n−1∑
j=1

Aj
(
gαn−αj ∗ E1

)
(·)x

]
(t)

+ A

(∑
j∈Di

Aj
(
gαn−αj+i+αn−α ∗ E1

)
(t)x

)
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= gi ∗

[
E1(·)x− k(·)C1x+

n−1∑
j=1

Aj
(
gαn−αj ∗ E1

)
(·)x

]
(t)

+
∑
j∈Di

Aj

(
gαn−αj+i ∗

[
R1(·)− k(·)C1 +

n−1∑
l=1

Al
(
gαn−αl ∗R1

)
(·)

])
(t)x

=
[
R1,i(·)x−

(
k ∗ gi

)
(·)C1x

]
(t) +

∑
j∈N\Di

Aj

(
gαn−αj ∗

[
gi ∗R1

])
(t)x

+
∑
j∈Di

Aj

(
gαn−αj+i ∗

[
R1(·)− k(·)C1 +

n−1∑
l=1

Al
(
gαn−αl ∗R1

)
(·)

])
(t)x

=
[
R1,i(·)x−

(
k ∗ gi

)
(·)C1x

]
(t)

+
∑

j∈N\Di

Aj

(
gαn−αj ∗

[
R1,i(·)−

∑
l∈Di

Al
(
gαn−αj+i ∗R1

)
(·)
])

(t)x

+
∑
j∈Di

(
gαn−αj ∗

[
R1,i(·)x−

∑
l∈Di

Al
(
gαn−αj+i ∗R1

)
(·)x−

(
k ∗ gi

)
(·)C1x

]

+ gαn−αj+i ∗
n−1∑
l=1

Al
(
gαn−αl ∗R1

)
(·)x

)
(t).

Since, for every t ∈ [0, τ) and x ∈ X,

−
∑

j∈N\Di

∑
l∈Di

AjAl
(
gαn−αl+i+αn−αj ∗R1

)
(t)x−

∑
j∈Di

∑
l∈Di

AjAl
(
gαn−αl+i+αn−αj ∗R1

)
(t)x

=
n−1∑
l=1

∑
j∈Di

AjAl
(
gαn−αl+i+αn−αj ∗R1

)
(t)x,

(apply the substitution (j, l) ↪→ (l, j)), the above implies (2.5), with (Ri(t))t∈[0,τ)
replaced by (E1,i(t))t∈[0,τ). The proof in case m − 1 ≥ i is similar and therefore
omitted. �

Let (2.7) hold. Then the relations between k-regularized C-resolvent propagation
families and (k, C)-resolvent families are not clear in the casem > 0.Here we recognize
the following subcases:

(a) There exists i ∈ N0
mn−1 such that i > m− 1. Then the consideration is trivial

provided that, for such an index i, one has Di = ∅ (cf. Theorem 2.1); because
of that, we shall assume in the further analysis of this subcase that Di 6= ∅.
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(b) m = mn and, for every i ∈ N0
mn−1, one has Nn−1 \Di = ∅. That is the worst

case possible and here we have hat the function u(t) =
∑mn−1

k=0 ukgk+1(t), t ≥ 0

is a strong solution of (0.1) since Dβ
t gγ(t) ≡ 0, provided β > γ − 1 > 0.

(c) m = mn, and there exists i ∈ N0
mn−1 such that Nn−1 \Di 6= ∅.

The proof of following theorem, which considers the cases (a) and (c) in more detail,
is omitted for the sake of brevity.

Theorem 2.2. (i) Let m > 0, and let i ∈ N0
mn−1 satisfy i > m − 1 and Di 6= ∅.

Suppose l ∈ N and there exists j ∈ Nn−1 \ Di such that αj − αn + l > i. Let
((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)) be a k-regularized C1-existence propaga-
tion family for (0.1), resp. k-regularized C2-uniqueness propagation family for
(0.1) (k-regularized C-resolvent propagation family for (0.1)). Suppose, addi-

tionally, that for every x ∈ X and p ∈ ~, the mapping t 7→ R
(l)
i (t)x, t ∈ [0, τ)

is continuous with R
(j)
i (0)x = 0 for all j ∈ N0

l−1, and that, for every p ∈ ~ and

t ∈ [0, τ), there exist cp,t > 0 and qp,t ∈ ~ such that p
(
R

(l)
i (t)x

)
≤ cp,tqp,t(x),

x ∈ X. Put, for every t ∈ [0, τ) and x ∈ X,

R(t)x :=

[
L−1

(
1

λl−i +
∑

j∈Di cjλ
αj−αn−i+l

)
∗R(l)

i (·)

]
(t)x.

Then (R(t))t∈[0,τ) is a (k, C1)-existence family for (0.1), resp. (k, C2)-unique-
ness family for (0.1) ((k, C)-resolvent propagation family for (0.1)). Further-
more, if (2.5) holds for ((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)), then (2.2) holds
with (R(t))t∈[0,τ) in place of (E(t))t∈[0,τ).

(ii) Let m = mn, and let i ∈ N0
mn−1 be such that Nn−1 \ Di 6= ∅. Suppose

((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)) is a k-regularized C1-existence propaga-
tion family for (0.1), resp. k-regularized C2-uniqueness propagation family for
(0.1) (k-regularized C-resolvent propagation family for (0.1)). Let l ∈ N, let

c(t) ∈ C([0, τ)) satisfy c̃(λ) = k̃(λ)
∑

j∈Nn−1\Di
cjλ

αj−αn , for λ sufficiently large,

and let there exist j ∈ Nn−1 \Di such that αj − αn + l > i. Suppose, addition-

ally, that for every x ∈ X and p ∈ ~, the mapping t 7→ R
(l)
i (t)x, t ∈ [0, τ) is

continuous with R
(j)
i (0)x = 0 for all j ∈ N0

l−1 and that, for every p ∈ ~ and

t ∈ [0, τ), there exist cp,t > 0 and qp,t ∈ ~ such that p
(
R

(l)
i (t)x

)
≤ cp,tqp,t(x),

x ∈ X. Put, for every t ∈ [0, τ) and x ∈ X,

(2.8) R(t)x := c(t)Cx−

[
L−1

(
1∑

j∈Nn−1\Di cjλ
αj−αn−i+l

)
∗R(l)

i (·)

]
(t)x.

Then (R(t))t∈[0,τ) is a (k, C1)-existence family for (0.1), resp. (k, C2)-unique-
ness family for (0.1) ((k, C)-resolvent family for (0.1)). Furthermore, if (2.5)
holds for ((R0(t))t∈[0,τ), · · ·, (Rmn−1(t))t∈[0,τ)), then (2.2) holds with (R(t))t∈[0,τ)
in place of (E(t))t∈[0,τ).
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Remark 2.1. Let (2.7) hold.

(i) Let m = 0. Then it is checked at once that there exist M ≥ 1 and ω ≥ 0

such that
∫ t
0
|b(s)| ds ≤ Meωt, t ≥ 0, which implies that the properties of (q)-

exponential equicontinuity and local equicontinuity are stable under passing
from k-regularized C1-existence propagation families (C2-uniqueness propa-
gation families, C-resolvent propagation families) to (k, C1)-existence fami-
lies ((k, C2)-uniqueness families, (k, C)-resolvent families). Suppose now that
((R0(t))t≥0, · · ·, (Rmn−1(t))t≥0) is an exponentially equicontinuous, analytic k-
regularized C1-existence family (C2-uniqueness family, C-resolvent propaga-
tion family) of angle δ ∈ (0, π/2]. Owing to [18, Theorem 3.4(i)], we have that
(R(t))t≥0 is an exponentially equicontinuous, analytic (k, C1)-existence family
((k, C2)-uniqueness family, (k, C)-resolvent family) of angle δ.

(ii) Let ((R0(t))t∈[0,τ), ···, (Rmn−1(t))t∈[0,τ)) be a locally equicontinuous k-regularized
C-resolvent propagation family for (0.1), and let m = 0. Then it is not difficult
to see, with the help of Theorem 2.1-Theorem 2.2, that the following equality
holds, for every x ∈ D(A), i ∈ N0

mn−1 and t ∈ [0, τ),

Ri(t)x =gi ∗
[
R0(·)x+

(
b ∗R0

)
(·)x

]
(t)

+
∑
j∈Di

cj

[
gαn−αj+i ∗

(
R0(·)x+

(
b ∗R0(·)x

))]
(t)x;(2.9)

furthermore, (2.9) holds for every x ∈ X, i ∈ N0
mn−1 and t ∈ [0, τ), provided

(2.5).
(iii) Consider the situation of [20, Example 5.1(b)]. Then there exists an exponen-

tially equicontinuous, analytic k1-regularized I-resolvent propagation family
((R0(t))t≥0, · · ·, (Rmn−1(t))t≥0) for the corresponding problem (0.1), with k1(t)
being defined by k1(t) = L−1(exp(−a1λb1))(t), t ≥ 0 for certain positive real
numbers a1 > 0 and b1 ∈ (0, 1). Under some additional assumptions (very
natural in the theory of convoluted operator families), we may apply Theorem
2.2 in the construction of an exponentially equicontinuous, analytic (k1, I)-
resolvent family for (0.1).

The following proposition is very similar to [20, Proposition 3.2] and [23, Proposi-
tion 2.7]. Because of that, we shall omit the proof.

Proposition 2.1. Suppose (2.7) holds, ((R1,0(t))t∈[0,τ), · · ·, (R1,mn−1(t))t∈[0,τ)) is a k-
regularized C1-existence propagation family for (0.1), Nn−1\Di 6= ∅ provided m−1 ≥ i,
and ((R2,0(t))t∈[0,τ), · · ·, (R2,mn−1(t))t∈[0,τ)) is a locally equicontinuous k-regularized
C2-uniqueness propagation family for (0.1). Then, for every i ∈ N0

mn−1, one has
C2R1,i(t) = R2,i(t)C1, t ∈ [0, τ).

Before discussing some perturbation properties of (0.1), we would like to observe
that Proposition 2.1 can be proved under slightly weakened assumptions (see e.g. the
formulation of [20, Proposition 2.3]). Consider now the abstract Cauchy problem



ABSTRACT MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS 61

Dαn
t u(t) +

n−1∑
i=1

(
Ai +Bi

)
Dαi
t u(t) = (A+B)Dα

t u(t) + f(t), t > 0,

u(k)(0) = uk, k = 0, · · ·, dαne − 1,

(2.10)

where B and B1, · · ·, Bn−1 are closed linear operators on E. Put B0 := B.
The following theorem is an important extension of [7, Theorem 6.2-Theorem 6.3].

Theorem 2.3. (i) Suppose Y = X, (E(t))t∈[0,τ) ⊆ L(X) is a (local) C1-existence
family for (0.1), Dj ∈ L(E) and Bj = C1Dj (j ∈ N0

n−1). Suppose that the
following conditions hold:
(a) For every p ∈ ~X and for every T ∈ (0, τ), there exists cp,T > 0 such that

p
(
E(mn−1)(t)x

)
≤ cp,Tp(x), x ∈ E, t ∈ [0, T ].

(b) For every p ∈ ~X , there exists cp > 0 such that p
(
Djx

)
≤ cpp(x),

j ∈ N0
n−1, x ∈ E.

(c) αn − αn−1 ≥ 1 and αn − α ≥ 1.
Then there exists a (local) C1-existence propagation family (R(t))t∈[0,τ) for
(2.10). If τ = ∞ and if, for every p ∈ ~X , there exist M ≥ 1 and ω ≥ 0
such that

(2.11) p
(
E(mn−1)(t)x

)
≤Meωtp(x), t ≥ 0, x ∈ E,

then (R(t))t≥0 is exponentially equicontinuous, and moreover, (R(t))t≥0 also
satisfies the condition (2.11), with possibly different numbers M ≥ 1 and
ω > 0.

(ii) Suppose Y = X, (U(t))t∈[0,τ) ⊆ L(X) is a (local) (1, C2)-uniqueness family for
(0.1), Dj ∈ L(E) and Bj = DjC2 (j ∈ N0

n−1) Suppose that (b)-(c) hold, and

that (a) holds with (E(mn−1)(t))t∈[0,τ) replaced by (U(t))t∈[0,τ) therein. Then
there exists a (local) (1, C2)-uniqueness family (W (t))t∈[0,τ) for (2.10). If τ =
∞ and if, for every p ∈ ~X , there exist M ≥ 1 and ω ≥ 0 such that (2.11)
holds, then (W (t))t≥0 is exponentially equicontinuous, and moreover, (W (t))t≥0
also satisfies the condition (2.11), with possibly different numbers M ≥ 1 and
ω > 0.

Proof. We will only outline the main details of proof. Put

K0(t)x := −

{
E(mn−1) ∗

[
n−1∑
j=1

gαn−αjDj + gαn−αD

]}
(t)x, t ∈ [0, τ), x ∈ X.

Then the assumption (c) implies that, for every fixed x ∈ X, one has K0(·)x ∈
C1([0, τ) : X) and

K ′0(t)x := −

{
E(mn−1) ∗

[
n−1∑
j=1

gαn−αj−1Dj + gαn−α−1D

]}
(t)x, t ∈ [0, τ).
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Denote by f ∗,k(t) the kth convolution power of a function f(t). By assumptions (a)-
(b), we have that, for every t ∈ [0, τ) and x ∈ X, the series

L(t)x := −
[
K0(t)x+

(
K0 ∗K ′0

)
(t)x+ · · ·+

(
K0 ∗K ′,∗k0

)
(t)x+ · · ·

]
converges, uniformly on compacts of [0, τ). Furthermore, the operator family
(L(t))t∈[0,τ) ⊆ L(X) is strongly continuous and, for every x ∈ X, the unique solu-
tion of the following integral equation:

(2.12) Rmn−1(t)x = E(mn−1)(t)x+

t∫
0

K ′0(t− s)Rmn−1(s)x ds, t ∈ [0, τ),

is given by

(2.13) Rmn−1(t)x = E(mn−1)(t)x+

t∫
0

L′(t− s)E(mn−1)(s)x ds, t ∈ [0, τ);

cf. also [30, Theorem 0.5, Corollary 0.3]. It is not difficult to prove that (Rmn−1(t))t∈[0,τ)
is a strongly continuous operator family in L(X). Define now R(t)x := (gmn−1 ∗
Rmn−1)(t)x, t ∈ [0, τ), x ∈ X. Applying the functional equation for (E(t))t∈[0,τ) twice,
it is checked at once that (R(t))t∈[0,τ) satisfies

R(mn−1)(t)x+
n−1∑
j=1

(
Aj +Bj

)(
gαn−αj ∗R(mn−1)

)
(t)x

−
(
A+B

)(
gαn−α ∗R(mn−1)

)
(t)x = C1x, t ∈ [0, τ), x ∈ X,

if we prove that, for every t ∈ [0, τ) and x ∈ X,(
dK0 ∗Rmn−1

)
(t)x+

(
E(mn−1) ∗

n−1∑
j=0

gαn−αj−1(·)Dj ∗Rmn−1

)
(t)x

+

(
C1 ∗

n−1∑
j=0

gαn−αj−1(·)Dj ∗Rmn−1

)
(t)x

+
n−1∑
j=1

Bj

(
gαn−αj ∗Rmn−1

)
(t)x−B

(
gαn−α ∗Rmn−1

)
(t)x = 0.

But, the last equality is an immediate consequence of (2.12). In the case that
(E(mn−1)(t))t≥0 satisfies (2.11), then it is not difficult to see, with the help of (2.12)-
(2.13), that (R(t))t∈[0,τ) also satisfies the same condition, with possibly different num-
bers M ≥ 1 and ω > 0. The proof of (ii) is quite similar. Define, for every t ∈ [0, τ)
and x ∈ X,

Q0(t)x := −

{[
n−1∑
j=1

gαn−αjDj + gαn−αD

]
∗ U

}
(t)x,
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and Z(t)x := −
[
Q0(t)x+

(
Q0 ∗Q′0

)
(t)x+ · · ·+

(
Q0 ∗Q′,∗k0

)
(t)x+ · · ·

]
.

The resulting (1, C2)-uniqueness family (W (t))t∈[0,τ) is the unique solution of the
following integral equation:

W (t)x = U(t)x+

t∫
0

W (t− s)Q′(s)x ds, t ∈ [0, τ), x ∈ X,

which is given by W (t)x = U(t)x+
t∫
0

U(t− s)Z ′(s)x ds, t ∈ [0, τ), x ∈ X. The proof

is completed through a routine argument. �

The analysis of persistence of differential and analytical properties under pertur-
bations described in Theorem 2.3 will appear elsewhere.

Remark 2.2. (i) It is worth noting that the proof of the preceding theorem is a
slight modification of the corresponding proofs of [30, Theorem 6.1] and [24,
Theorem 2.12], established for abstract Volterra equations of non-scalar type.
Using the method given in the proofs of aforementioned theorems, one can
similarly clarify some results on time-dependent perturbations of (0.1).

(ii) It is not clear how one can prove an analogue of Theorem 2.3(ii) in the case
of a (local) C2-uniqueness family for (0.1).

Example 2.1. Suppose 1 ≤ p ≤ ∞, X := Lp(R), a ∈ R, r > 0, ϑ(·) ∈ W 1,∞(R),
1/2 < γ ≤ 1, T > 0, χ ∈ C([0, T ] : X), and d

dt
(g2γ−1 ∗ d

dx
χ(t, ·)) ∈ C([0, T ] : X). Put

A1 := ad/dx and Au := r∆u − ϑ(·)u with maximal distributional domain. In [20,
Example 5.3], we have recently considered the following fractional analogue of the
damped Klein-Gordon equation:

D2γ
t u(t, x) + a

∂

∂x
Dγ
t u(t, x)− r∆xu(t, x) + ϑ(x)u(t, x) = χ(t, x),(2.14)

where t > 0, x ∈ R, and u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R, continuing the
analysis of T.-J. Xiao and J. Liang [33, Example 4.1], in which it has been assumed
that γ = 1. Since α2−α1 = γ < 1 for 1/2 < γ < 1, it is clear that Theorem 2.3 cannot
be applied in this case, unfortunately. If γ = 1, then Theorem 2.3 is applicable and
we shall consider, as an illustration, the following perturbed problem of (2.14):

∂2u(t, x)

∂t2
+ a

∂2u(t, x)

∂x∂t
+

+∞∫
−∞

f(x− y)
∂u(s, y)

∂s
dy

− r∂
2u(t, x)

∂x2
+ ϑ(x)u(t, x) +

+∞∫
−∞

g(x− y)u(t, y) dy = 0, t > 0, x ∈ R,

(2.15)

where u(0, x) = φ(x), ut(0, x) = ψ(x), x ∈ R, with f, g ∈ W 1,1(R). Making use
of Theorem 2.3 and the corresponding result with f = g = 0, we get that for each
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µ0 ∈ ρ(A1) there exists a global exponentially bounded (µ0 − A1)
−1-existence family

for (2.15). By [20, Theorem 3.7], it readily follows that, for every φ ∈ W 3,p(R) and
ψ ∈ W 3,p(R), there exists a strong solution u(t, x) of the problem (2.15) as well as that
there exist M ≥ 1 and ω ≥ 0 such that the following estimate holds for each t ≥ 0 :∥∥u(t, x)

∥∥
Lp(R) ≤Meωt

[∥∥φ∥∥
W 1,p(R) +

∥∥ψ∥∥
W 1,p(R)

]
. To prove the uniqueness of solutions

to (2.15), notice that there exist a number ω ≥ 0 and a strongly continuous operator

family (U(t))t≥0 ⊆ L(Lp(R)) such that, for every h ∈ W 2,p(R),
∞∫
0

e−λtU(t)h dt =(
λ2 + λA1 + A0

)−1
h, <λ > ω; cf. [33, Example 4.1]. Let B0 ∈ L(Lp(R)) and

B1 ∈ L(Lp(R)) be defined by B0h = f ∗ h and B0h = g ∗ h for any h ∈ Lp(R).
Suppose, for the time being, that ||f ||L1(R) is a sufficiently small positive real number.
Making use of the complex characterization theorem for the Laplace transform and
[31, Theorem 1.1.11], in this case we obtain that there exist a sufficiently large number
ω′ > ω and a strongly continuous operator family (U1(t))t≥0 ⊆ L(Lp(R)) such that
the operator (λ2 + λ(A1 +B1) + (A0 +B0))

−1 exists in L(Lp(R)) for any λ ∈ C with
<λ > ω′, and that

λ−2
(
λ2 + λ

(
A1 +B1

)
+
(
A0 +B0

))−1
h

= λ−2

(
I +

(
λ2 + λA1 + A0

)−1(
λB1 +B0

))−1(
λ2 + λA1 + A0

)−1
h

=

∞∫
0

e−λtU1(t)h dt, <λ > ω′, h ∈ Lp(R).

Therefore, if ||f ||L1(R) is sufficiently small, then we may apply [20, Theorem 3.5(iii)]
in order to see that there exists a global exponentially bounded g3-regularized I-
uniqueness family for the perturbed problem (2.10). The final conclusion now follows
from [20, Theorem 3.4(ii)] and the fact that, for every (sufficiently small) c > 0, the
function v(t, x) := u(ct, x), t ≥ 0, x ∈ R satisfies the equation

∂2v(t, x)

∂t2
+ ac

∂2v(t, x)

∂x∂t
+

+∞∫
−∞

cf(x− y)
∂v(s, y)

∂s
dy

− rc2∂
2u(t, x)

∂x2
+ c2ϑ(x)v(t, x) +

+∞∫
−∞

c2g(x− y)v(t, y) dy = 0, t > 0, x ∈ R,

where v(0, x) = 0, vt(0, x) = 0, x ∈ R, provided that u(t, x) satisfies (2.15) with
φ = ψ = 0. Finally, we would like to mention that the slightly better results on
the C-wellposedness of equation (2.15) can be obtained in the case that the function
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ϑ(·) is a positive constant (cf. [15]), and that Theorem 2.3 can be also applied to
differential operators considered in [23, Example 2.11-Example 2.12].

3. Existence and Uniqueness of Solutions to (0.1)

We start this section by stating the following existence type theorem.

Theorem 3.1. Suppose A, A1, · · ·, An−1 are closed linear operators on X, ω > 0,
L(X) 3 C is injective and u0, · · ·, umn−1 ∈ X. Set Pλ := λαn−α +

∑n−1
j=1 λ

αj−αAj −A,
λ ∈ C \ {0}. Let the following conditions hold:

(i) The operator Pλ is injective for λ > ω and D(P−1λ C) = X, λ > ω.
(ii) If 0 ≤ j ≤ n− 1, 0 ≤ k ≤ mn − 1, m− 1 < k, 1 ≤ l ≤ n− 1, ml − 1 ≥ k and

λ > ω, then Cuk ∈ D(P−1λ Al),

Aj

{
λαj

[
λαn−α−k−1P−1λ Cuk +

∑
l∈Dk

λαl−α−k−1P−1λ AlCuk

]

−
mj−1∑
l=0

δklλ
αj−1−lCuk

}
∈ LT −X(3.1)

and

λαn

[
λαn−α−k−1P−1λ Cuk +

∑
l∈Dk

λαl−α−k−1P−1λ AlCuk

]
−λαn−1−kCuk ∈ LT −X.

(iii) If 0 ≤ j ≤ n− 1, 0 ≤ k ≤ mn − 1, m− 1 ≥ k, Nn−1 \Dk 6= ∅, s ∈ Nn−1 \Dk

and λ > ω, then Cuk ∈ D(As),
∑

l∈Nn−1\Dk
λαl−α−k−1AlCuk ∈ D(P−1λ ),

Aj

{
λαj

[
λ−k−1Cuk − P−1λ

∑
l∈Nn−1\Dk

λαl−α−k−1AlCuk

]

−
mj−1∑
l=0

δklλ
αj−1−lCuk

}
∈ LT −X(3.2)

and

λαn

[
λ−k−1Cuk − P−1λ

∑
l∈Nn−1\Dk

λαl−α−k−1AlCuk

]
−λαn−1−kCuk ∈ LT −X.(3.3)

Then the abstract Cauchy problem (0.1) has a strong solution, with uk replaced by
Cuk (0 ≤ k ≤ mn − 1).

Proof. Suppose, for the time being, 0 ≤ k ≤ mn − 1 and m − 1 < k. Denote by
Fk,n : (ω,∞)→ X the function satisfying that, for every p ∈ ~, there exists Mp > 0
such that p(Fk,n(t)) ≤Mpe

ωt, t ≥ 0, and
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∞∫
0

e−λtFk,n(t) dt = λαn

[
λαn−α−k−1P−1λ Cuk

+
∑
l∈Dk

λαl−α−k−1P−1λ AlCuk

]
−λαn−1−kCuk.(3.4)

Then it is straightforward to see that there exists a function uk : (ω,∞) → X such
that, for every p ∈ ~, there exists M ′

p > 0 satisfying p(uk(t)) ≤M ′
pe
ωt, t ≥ 0, and

∞∫
0

e−λtuk(t) dt = λαn−α−k−1P−1λ Cuk +
∑
l∈Dk

λαl−α−k−1P−1λ AlCuk, λ > ω.

The Laplace transform can be used to prove that:

(3.5)
(
gmn ∗ Fk,n

)
(t) =

[
gmn−αn ∗

(
uk(·)− gk+1(·)Cuk

)]
(t), t ≥ 0.

This implies
(
gαn ∗ Fk,n

)
(t) = uk(t)− gk+1(t)Cuk, t ≥ 0, u ∈ Cmn−1([0,∞) : X) and

u
(j)
k (0) = δkjCuk for 0 ≤ j ≤ mn−1. Due to (3.5), we have Dαn

t uk(t) = Fk,n(t), t ≥ 0.
It is not difficult to show that, for every j ∈ N0

n−1, D
αj
t uk is defined as well as that

∞∫
0

e−λtD
αj
t uk(t) dt = λαj

∞∫
0

e−λtuk(t) dt−
mj−1∑
l=0

u
(l)
k (0)λαj−1−l, λ > ω.

Notice now that the condition (3.1) in combination with [31, Theorem 1.1.10] implies
that the mapping t 7→ AjD

αj
t uk(t), t ≥ 0 is well defined, continuous as well as that

∞∫
0

e−λtAjD
αj
t uk(t) dt = Aj

[
λαj

∞∫
0

e−λtuk(t) dt−
mj−1∑
l=0

u
(l)
k (0)λαj−1−l

]
, λ > ω.(3.6)

Having in mind (3.4), (3.6) and the definition of Pλ, a simple calculation yields that:

∞∫
0

e−λt
[
Dαn
t uk(t) + An−1D

αn−1

t uk(t) + · · ·+ A1D
α1
t uk(t)− ADα

t uk(t)
]
dt = 0,

which implies that uk(·) is a strong solution of the problem (0.1) with u
(j)
k (0) = δkjCuk.

Suppose now 0 ≤ k ≤ mn − 1 and m − 1 ≥ k. Then one can similarly prove, with
the help of conditions (3.2)-(3.3), that the function t 7→ uk(t) := L−1(λ−k−1Cuk −
P−1λ

∑
l∈Nn−1\Dk λ

αl−α−l−1AlCuk)(t), t ≥ 0, is a strong solution of the problem (0.1)

with u
(j)
k (0) = δkjCuk. Define u(t) :=

∑mn−1
k=0 uk(t), t ≥ 0. Then it is clear that u(·) is

a strong solution of the abstract Cauchy problem (0.1). �
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Remark 3.1. (i) Let 0 ≤ k ≤ mn− 1 and m− 1 < k. Then Theorem 3.1 continues
to hold if we replace the term λαn−α−k−1P−1λ Cuk +

∑
l∈Dk

λαl−α−k−1P−1λ AlCuk

i.e., the Laplace transform of uk(t), in (3.1) by

λ−k−1Cuk −
∑

l∈Nn−1\Dk

λαl−α−k−1P−1λ AlCuk + λ−k−1P−1λ ACuk;

in this case, one has to assume that Cuk ∈ D(P−1λ Al), provided 0 ≤ l ≤ n− 1,
k > ml − 1 and λ > ω. Notice also that a similar modification can be made in
the case 0 ≤ k ≤ mn − 1 and m− 1 ≥ k. As a matter of fact, one can replace
the term λ−k−1Cuk−P−1λ

∑
l∈Nn−1\Dk

λαl−α−k−1AlCuk i.e., the Laplace transform

of uk(t), in (3.2)-(3.3) by

λαn−α−k−1P−1λ Cuk +
∑
l∈Dk

λαl−α−k−1P−1λ AlCuk − λ−k−1P−1λ ACuk;

in this case, one has to assume that Cuk ∈ D(P−1λ Al), provided 0 ≤ l ≤ n− 1,
ml − 1 ≥ k and λ > ω.

(ii) Consider now the situation of the abstract Cauchy problem (ACPn), i.e., sup-
pose that αj = j, j ∈ N0

n. Keeping in mind the proof of [31, Lemma 2.2.1, pp.
54-55], it readily follows that the condition:

λjAjP
−1
λ Cun−1, λjAj

k∑
i=0

λi−k−1P−1λ AiCuk ∈ LT −X,

for any k ∈ N0
n−2 and j ∈ N0

n−1, implies (3.1). Therefore, Theorem 3.1 can be
viewed as a generalization of the above-mentioned result.

Now we shall state and prove the Ljubich uniqueness theorem for abstract time-
fractional equations of the form (0.1).

Theorem 3.2. Let λ > 0, let L(X) 3 C be injective, and let D(P−1nλ C) = X, n ∈ N.
Suppose, additionally, that for every positive real number σ > 0 and for every null
sequence (xn)n∈N in X, one has:

(3.7) lim
n→∞

e−nλσP−1nλ Cxn = 0.

Then, for every u0, · · ·, umn−1 ∈ X, the abstract Cauchy problem (0.1) has at most
one strong (integral) solution.

Proof. Clearly, it suffices to show the uniqueness of integral solutions of the abstract
Cauchy problem (0.1) with u(k)(0) = uk = 0, k ∈ N0

mn−1. Let u(t) be such a solution.
Then, for every n ∈ N and t ≥ 0, one has:
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Pnλ

t∫
0

enλ(t−s)Cu(s) ds

=
(
nλ
)αn−α t∫

0

enλ(t−s)

[(
gαn−α ∗ CAu

)
(s)−

n−1∑
j=1

(
gαn−αj ∗ CAju

)
(s)

]
ds

+
n−1∑
j=1

(
nλ
)αj−αCAj t∫

0

enλ(t−s)u(s) ds− CA
t∫

0

enλ(t−s)u(s) ds

=

[(
nλ
)αn−α t∫

0

enλ(t−s)
(
gαn−α ∗ CAu

)
(s) ds− CA

t∫
0

enλ(t−s)u(s) ds

]
(3.8)

+
n−1∑
j=1

(
nλ
)αj−αCAj t∫

0

enλ(t−s)u(s) ds

−
(
nλ
)αn−α t∫

0

enλ(t−s)
(
gαn−αj ∗ CAju

)
(s) ds.

Keeping in mind [31, Lemma 1.5.5, p. 23] and its proof, we obtain that there exist
numbers M0, · · ·,Mn−1 ≥ 1 and k0, · · ·, kn−1 ∈ N such that, for every p ∈ ~, t ≥ 0,
n ∈ N and j ∈ N0

n−1,

p

((
nλ
)αn−α t∫

0

enλ(t−s)
(
gαn−α ∗ Au

)
(s) ds− A

t∫
0

enλ(t−s)u(s) ds

)

= p

((
nλ
)αn−α t∫

0

( ∞∫
0

(
snλ+ ς

)αn−α−1
Γ(αn − α)

e−ς dς

)
Au(t− s) ds

)
(3.9)

≤M0

(
1 + n+ |λ|

)k0 t∫
0

p(Au(s)) ds,(3.10)

and

p

((
nλ
)αj−αAj t∫

0

enλ(t−s)u(s) ds−
(
nλ
)αn−α t∫

0

enλ(t−s)
(
gαn−αj ∗ Aju

)
(s) ds

)
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= p

((
nλ
)αn−α t∫

0

[∫ s

0

enλ(s−r)gαn−αj(r) dr − enλs
(
nλ
)αj−αn]Aju(t− s) ds

)
(3.11)

≤Mj

(
1 + n+ |λ|

)kj t∫
0

p
(
Aju(s)

)
ds.(3.12)

Using (3.8)-(3.12), it is not difficult to see that, for every σ > 0 and t ≥ 0, we

have limn→∞ e
−nλσ ∫ t

0
enλ(t−s)Cu(s) ds = 0. Since limn→∞

∫ t
t−σ e

nλ(t−s−σ)Cu(s) ds = 0

for 0 ≤ σ ≤ t, we obtain that limn→∞
∫ t−σ
0

enλ(t−s−σ)Cu(s) ds = 0. By [16, Lemma
3.5(iii)], one gets Cu(t) = 0, t ≥ 0, which completes the proof by the injectivity of
C. �

If αn − αj ∈ N, j ∈ N0
n−1, then the formulae (3.9) and (3.11) imply that it suffices

to suppose (instead of a slightly stronger condition (3.7)) that, for every σ > 0 and
x ∈ X, one has limn→∞ e

−nλσP−1nλ Cx = 0; keeping this observation in mind, it readily
follows that Theorem 3.2 provides a generalization of [14, Theorem 2.3.23] and [31,
Lemma 2.3.1, pp. 67-68]. Notice also that the analysis given in [18, Remark 2.2]
enables one to see that Theorem 3.2 provides a proper generalization of [16, Theorem
3.6] in barreled spaces.
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[2] E. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Dissertation, Eindhoven
University of Technology, 2001.

[3] Yu. V. Bogacheva, Resolution’s Problems of Initial Problems for Abstract Differential Equations
with Fractional Derivatives. Ph.D. Dissertation, Belgorod, 2006.

[4] C. Chen, M. Li, On fractional resolvent operator functions, Semigroup Forum 80 (2010), 121–
142.
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21125 Novi Sad,
Serbia
E-mail address: marco.s@verat.net

3Department of Mathematics,
Sichuan University,
Chengdu 610064,
China
E-mail address: mli@scu.edu.cn


