POTENTIALLY GRAPHIC SEQUENCES OF SPLIT GRAPHS

S. PIRZADA ${ }^{1}$ AND BILAL A. CHAT ${ }^{2}$

Abstract

A sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of non-negative integers is said to be graphic if it is the degree sequence of a simple G on n vertices, and such a graph G is referred to as a realization of π. The set of all non-increasing non-negative integer sequences $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is denoted by $N S_{n}$. A sequence $\pi \in N S_{n}$ is said to be graphic if it is the degree sequence of a graph G on n vertices, and such a graph G is called a realization of π. The set of all graphic sequences in $N S_{n}$ is denoted by $G S_{n}$. A split graph $K_{r}+\overline{K_{s}}$ on $r+s$ vertices is denoted by $S_{r, s}$. A graphic sequence π is potentially H-graphic if there is a realizaton of π containing H as a subgraph. In this paper, we determine the graphic sequences of subgraphs H, where H is $S_{r_{1}, s_{1}}+S_{r_{2}, s_{2}}+S_{r_{3}, s_{3}}+\ldots+S_{r_{m}, s_{m}}, S_{r_{1}, s_{1}} \vee S_{r_{2}, s_{2}} \vee \ldots \vee S_{r_{m}, s_{m}}$ and $S_{r_{1}, s_{1}} \times S_{r_{2}, s_{2}} \times \ldots \times S_{r_{m}, s_{m}}$ and,$+ V$ and \times denotes the standard join operation, the normal join operation and the cartesian product in these graphs respectively.

1. Introduction

Let G be an undirected simple graph (graph without multiple edges and loops) with n vertices and m edges having vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Any undefined notations follows that of Bondy and Murty [1]. Throughout the paper, we denote such a graph by $G(n, m)$. The set of all non-increasing non-negative integer sequences $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is denoted by $N S_{n}$. There are several famous results, Havel and Hakimi [5, 6] and Erdös and Gallai [3] which give necessary and sufficient conditions for a sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ to be the degree sequence of a simple graph G. Unfortunately, knowing that a sequence has a realization gives no information about the properties that such a graph might have. In this paper, we explore this question of properties of a graph which is related to work originally introduced by A. R. Rao [9]. A sequence $\pi \in N S_{n}$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π. The sequence

[^0]$\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if and only if the sequence π^{\prime} obtained from π by laying off an element is graphic [7]. Also $d^{r_{1} \times r_{2}}$ means d occurs $r_{1} \times r_{2}$ times in π. The set of all graphic sequences in $N S_{n}$ is denoted by $G S_{n}$. A graphic sequence π is potentially H-graphic if there is a realization of π containing H as a subgraph, while π is forcibly H graphic if every realization of π contains H as a subgraph. If π has a realization in which the $r+1$ vertices of largest degree induce a clique, then π is said to be potentially A_{r+1}-graphic. The graphic sequence π is potentially K_{k+1}-graphic if and only if π is potentially A_{k+1}-graphic [10]. Let $\sigma(\pi)=d_{1}+d_{2}+\ldots+d_{n}$. If G and G_{1} are graphs, then $G \bigcup G_{1}$ is the disjoint union of G and G_{1}. If $G=G_{1}$, we abbreviate $G \bigcup G_{1}$ as $2 G$. We denote $G+H$ as the graph with $V(G+H)=V(G) \bigcup V(H)$ and $E(G+H)=E(G) \bigcup E(H) \bigcup\{x y: x \in V(G), y \in V(H)\}$. Let K_{k}, C_{k}, T_{k} and P_{k} respectively denote a complete graph on k vertices, a cycle on k vertices, a tree on $k+1$ vertices and a path on $k+1$ vertices. Let F_{k} denote the friendship graph on $2 k+1$ vertices, that is, the graph of k triangles intersecting in a single vertex. For $0 \leq r \leq t$, denote the generalized friendship graph on $k t-k r+r$ vertices by $F_{t, r, k}$, where $F_{t, r, k}$ is the graph of k copies of K_{t} meeting in a common r set.

Given a graph H, what is the maximum number of edges of a graph with n vertices not containing H as subgraph? This number is denoted by $e x(n, H)$, and is known as the Turan number. In terms of graphic sequences, the number $2 e x(n, H)+2$ is the minimum even integer l such that every n-term graphic sequence π with $\sigma(\pi) \geq l$ is forcibly H-graphic. Erdös, Jacobson and Lehel [2] first considered the following variant: determine the minimum even integer l such that every n-term graphic sequence π with $\sigma(\pi) \geq l$ is potentially H-graphic. We denote this minimum l by $\sigma(H, n)$. A sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is said to be potentially K_{r+1}-graphic if there is a realization G of π containing K_{r+1} as a subgraph. If π is a graphic sequence with a realization G containing H as a subgraph, then there is a realization G^{\wedge} of π containing H with the vertices of H having $|V(H)|$ largest degree of π [4]. Let $S_{r, s}=K_{r}+\bar{K}_{s}$ be split graph on $r+s$ vertices, where $\overline{K_{s}}$ is the complement of K_{s} and + denotes the standard join operation. As seen in [11, $S_{r, 1}=K_{r+1}$ and so the graph $S_{r, s}$ is an extension of the graph K_{r+1}. A sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is said to be potentially $S_{r, s^{-}}$graphic if there is a realization G of π containing $S_{r, s}$ as a subgraph. Yin Jain Hua and Haikou [11] obtained a Havel-Hakimi type procedure and a simple sufficient condition for π to be potentially $S_{r, s}$-graphic. We have the following definitions.

Definition 1.1. [8] For the graphs G_{1}, G_{2} with disjoint vertex set $V\left(G_{1}\right), V\left(G_{2}\right)$ the cartesian product is a graph $G=G_{1} \times G_{2}$ with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and an edge $\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)$ iff $u_{1}=u_{2}$ and $v_{1} v_{2}$ is an edge of G_{2}.

Definition 1.2. [11] The standard join of $S_{r_{1}, s_{1}}, S_{r_{2}, s_{2}}$ is a graph $S=S_{r_{1}, s_{1}} \vee S_{r_{2}, s_{2}}$ with vertex set $V\left(S_{r_{1}, s_{1}}\right) \cup V\left(S_{r_{2}, s_{2}}\right)$ and an edge set consisting of all edges of $S_{r_{1}, s_{1}}$ and $S_{r_{2}, s_{2}}$ together with the edges joining each vertex of $K_{r_{1}}$ of $S_{r_{1}, s_{1}}$ with every vertex of $S_{r_{2}, s_{2}}$ and s_{1} vertices of $S_{r_{1}, s_{1}}$ are joined with only vertices of $K_{r_{2}}$ in $S_{r_{2}, s_{2}}$.

Definition 1.3. [8] The join (complete product) of G_{1} and G_{2} is a graph $G=G_{1} \vee G_{2}$ with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and an edge set consisting of all edges of G_{1} and G_{2} together with the edges joining each vertex of G_{1} with every vertex of G_{2}.
Definition 1.4. 9 The split graph $K_{r}+\overline{K_{s}}$ on $r+s$ vertices is denoted by $S_{r, s}$ where + denotes the standard join operation and $\overline{K_{s}}$ is the complement of K_{s}. A non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of non-negative integers is said to be potentially $S_{r, s^{-}}$ graphic if there exists a realization G of π containing $S_{r, s}$ as a subgraph.

Definition 1.5. If π has a realization G containing K_{r+1} on those vertices having degree $d_{1}, d_{2}, \ldots, d_{r+1}$, then π is potentially A_{r+1}-graphic.
Definition 1.6. 10 The tensor product (conjuction), denoted by $G=G_{1} \wedge G_{2}$, is the graph with vertex set $V=V_{1} \times V_{2}$ and for any two vertices $w_{1}=\left(u_{1}, v_{1}\right)$ and $w_{2}=\left(u_{2}, v_{2}\right)$ in $V ; u_{1}, u_{2} \in V_{1}$ and $v_{1}, v_{2} \in V_{2}$, there is an edge $w_{1} w_{2} \in E(G)$ if and only if $u_{1} u_{2} \in E_{1}$ and $v_{1} v_{2} \in E_{2}$.

2. Main Results

We start with the following result.
Theorem 2.1. If $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{m}^{1}\right)$ is potentially $K_{p_{1}}$-graphic and $\pi_{2}=$ $\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{n}^{2}\right)$ is potentially $K_{p_{2}}$-graphic, $p_{1} \leq m$ and $p_{2} \leq n$, then the graphic sequence π of $G=G_{1} \times G_{2}$ is potentially $p_{1}+p_{2}-2$ regular graphic.
Proof. Let $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{m}^{1}\right)$ and $\pi_{2}=\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{n}^{2}\right)$ be respectively $K_{p_{1}}$-graphic and $K_{p_{2}}$-graphic. Then there exists graphs G_{1} and G_{2} respectively realizing π_{1} and π_{2} and respectively containing $K_{p_{1}}$ and $K_{p_{2}}$ as subgraphs. Let $G=G_{1} \times G_{2}$ be the cartesian product of G_{1} and G_{2} and let $\pi_{3}=\left(d_{11}, d_{12}, \ldots, d_{1 m}, d_{21}, d_{22}, \ldots, d_{2 m}, \ldots, d_{m 1}\right.$, $\left.d_{m 2}, \ldots, d_{m n}\right)$ be the graphic sequence of $G_{1} \times G_{2}$. Then $d_{i j}=d_{i}^{1}+d_{j}^{2}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$ where $d_{i j}$ is the degree of $i j^{\text {th }}$ vertex in G. We have to show that the realization G of π contains $p_{1}+p_{2}-2$ as a regular subgraph. To prove this, it is enough to show that sum of degrees of this subgraph is equal to $p_{1} p_{2}\left(p_{1}+p_{2}-2\right)$. Clearly,

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j}=\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i}^{1}+d_{j}^{2}=\left(d_{1}^{1}+d_{1}^{2}\right)+\ldots+\left(d_{1}^{1}+d_{n}^{2}\right)+\ldots+\left(d_{m}^{1}+d_{n}^{2}\right)
$$

This is true for all m and n. In particular, it holds for $m=p_{1}$ and $n=p_{2}$. Therefore

$$
\begin{aligned}
\sum_{i=1}^{p_{1}} \sum_{j=1}^{p_{2}} d_{i j}= & \left(d_{1}^{1}+d_{1}^{2}\right)+\left(d_{1}^{1}+d_{2}^{2}\right)+\ldots+\left(d_{1}^{1}+d_{p_{2}}^{2}\right)+\ldots+\left(d_{p_{1}}^{1}+d_{p_{2}}^{2}\right) \\
= & \left(p_{1}-1+p_{2}-1\right)+\left(p_{1}-1+p_{2}-1\right)+\ldots+\left(p_{1}-1+p_{2}-1\right) \\
& +\ldots+\left(p_{1}-1+p_{2}-1\right) \\
= & p_{1} p_{2}\left(p_{1}+p_{2}-2\right) .
\end{aligned}
$$

Theorem 2.1 can be generalized as follows.
Theorem 2.2. If $\pi_{i}=\left(d_{1}^{i}, d_{2}^{i}, \cdots, d_{n_{j}}^{i}\right)$ is potentially $K_{p_{i}}$-graphic for $i, j=1,2, \ldots, r$ with $p_{i} \leq n_{j}$, then the graphic sequence π of $G=G_{1} \times G_{2} \times \ldots \times G_{r}$ is a potentially $\sum_{i=1}^{r} p_{i}-r$ regular graphic.

Proof. The proof follows by induction on r.
Theorem 2.3. If $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{m}^{1}\right)$ is potentially $K_{p_{1}}$-graphic and $\pi_{2}=$ $\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{n}^{2}\right)$ is potentially $K_{p_{2}}$-graphic, $p_{1} \leq m$ and $p_{2} \leq n$, then the graphic sequence π of $G=G_{1}+G_{2}$ is potentially $K_{p_{1}+p_{2}}$-graphic.

Proof. Let $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{m}^{1}\right)$ be potentially $K_{p_{1}}$-graphic. Then there exists a graph G_{1} which realizes π_{1} and will contain $K_{p_{1}}$ as a subgraph. Let $\pi_{2}=\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{n}^{2}\right)$ be potentially $K_{p_{2}}-$ graphic, so there exists a graph G_{2} which realizes π_{2} and will contain $K_{p_{2}}$ as a subgraph. Let $G=G_{1}+G_{2}$ be the join of G_{1} and G_{2} and let $\pi=\left(d_{1}, d_{2}, \ldots, d_{m+n}\right)$ be the graphic sequence of $G=G_{1}+G_{2}$. Then we have

$$
\begin{align*}
d_{i}=d_{i}^{1}+n \text { for } i & =1,2, \ldots, m \\
d_{m+j}=d_{j}^{2}+m \text { for } j & =1,2, \ldots, n . \tag{2.1}
\end{align*}
$$

We have to show that the realization of π contains $K_{p_{1}+p_{2}}$ as a subgraph. To prove this it is enough to show that

$$
\sum_{i=1}^{p_{1}} d_{i}+\sum_{j=1}^{p_{2}} d_{m+j}=\left(p_{1}+p_{2}\right)\left(p_{1}+p_{2}-1\right)
$$

We take the summation to the equations in (2.1) respectively from $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$ and get $\sum_{i=1}^{m} d_{i}=\sum_{i=1}^{m} d_{i}^{1}+\sum_{i=1}^{m} n$ and $\sum_{j=1}^{m} d_{m+j}=\sum_{j=1}^{n} d_{j}^{2}+\sum_{j=1}^{n} m$. These two equations imply

$$
\begin{equation*}
\sum_{i=1}^{m} d_{i}=\sum_{i=1}^{m} d_{i}^{1}+m n \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{m} d_{m+j}=\sum_{j=1}^{n} d_{j}^{2}+n m \tag{2.3}
\end{equation*}
$$

As (2.2) and (2.3) is true for all m and n, therefore, in particular it is true for $m=p_{1}$ and $n=p_{2}$. So,

$$
\begin{aligned}
\sum_{i=1}^{p_{1}} d_{i}+\sum_{i=1}^{p_{2}} d_{m+j} & =\sum_{i=1}^{p_{1}} d_{i}^{1}+\sum_{i=1}^{p_{2}} d_{m+j}^{2}+2 p_{1} p_{2} \\
& =d_{1}^{1}+d_{2}^{1}+\ldots+d_{p_{1}}^{1}+d_{1}^{2}+d_{2}^{2}+\ldots+d_{p_{2}}^{2}+2 p_{1} p_{2} \\
& =\left(p_{1}-1\right)+\ldots+\left(p_{1}-1\right)+\left(p_{2}-1\right)+\ldots+\left(p_{2}-1\right)+2 p_{1} p_{2} \\
& =p_{1}\left(p_{1}-1\right)+p_{2}\left(p_{2}-1\right)+p_{1} p_{2}+p_{1} p_{2} \\
& =p_{1}\left(p_{1}+p_{2}-1\right)+p_{2}\left(p_{2}+p_{1}-1\right) \\
& =\left(p_{1}+p_{2}\right)\left(p_{1}+p_{2}-1\right) .
\end{aligned}
$$

Theorem 2.3 can be generalized as follows.
Theorem 2.4. If $\pi_{i}=\left(d_{1}^{i}, d_{2}^{i}, \ldots, d_{n_{j}}^{i}\right)$ is potentially $K_{p_{i}}$-graphic for $i=1,2, \ldots, r$ with $p_{i} \leq n_{j}$. Then the graphic sequence π of $G=G_{1}+G_{2}+\ldots+G_{r}$ is potentially $K_{\sum_{i=1}^{r} p_{i}}$-graphic.

Proof. This can be proved by induction on r.
Theorem 2.5. If π_{i} is potentially $S_{r_{i}, s_{i}}$-graphic for $i=1,2, \ldots, m$, then
(1) The graphic sequence π of $G=G_{1}+G_{2}+\ldots+G_{m}$ is potentially $S_{i=1}^{m} r_{i}, \sum_{i=1}^{m} s_{i}$-graphic, where + denotes the standard join operation in $S_{r_{i}, s_{i}}$.
(2) The graphic sequence of $S_{\sum_{i=1}^{m}} r_{i}, \sum_{i=1}^{m} s_{i}$ for $j=1,2, \ldots, m$ is

$$
\pi^{\prime}=\left(\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}-1\right)\right)^{r_{j}},\left(\sum_{i=1}^{m} r_{i}\right)^{s_{j}}\right)
$$

(3) Also, $\sigma\left(\pi^{\prime}\right)=\left(\sum_{i=1}^{m} r_{i}\right)^{2}+2\left(\sum_{i=1}^{m} r_{i}\right)\left(\sum_{i=1}^{m} s_{i}\right)-\left(\sum_{i=1}^{m} r_{i}\right)$.

Proof. Let π be potentially $S_{r_{i}, s_{i}}$-graphic for $i=1,2, \ldots, m$. Then there exists a graph G_{i} which realizes π_{i} and will contain $S_{r_{i}, s_{i}}$ as a subgraph. Let $G=G_{1}+G_{2}+\ldots+G_{m}$ be the graph obtained from $G_{1}, G_{2}, \ldots, G_{m}$ by using join operation. Therefore, clearly the graphic sequence π of G is potentially $S_{\sum_{i=1}^{m}} r_{i}, \sum_{i=1}^{m} s_{i}$-graphic follows from Theorem 2.4. To prove part (2), we use induction on m. For $k=1$, the result is obvious. For $k=2$, we have $G=G_{1}+G_{2}$. Therefore, in particular $S_{r_{1}+r_{2}, s_{1}+s_{2}}=S_{r_{1}, s_{1}}+S_{r_{2}, s_{2}}$. Now by Theorem [2.4, we have for every $i=1,2, \ldots, r_{1}$ and $i=1,2,3, \ldots, r_{2}$ and $j=1,2,3, \ldots, s_{1}$ and $j=1,2,3, \ldots, s_{2}$

$$
\begin{equation*}
\overline{d_{i}}=d_{i}+r_{2}+s_{1}+s_{2} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{d_{j}}=r_{1}+r_{2}, \tag{2.5}
\end{equation*}
$$

where $\overline{d_{i}}$ and $\overline{d_{j}}$ are respectively the degree of $\overline{v_{i}^{t h}}$ and $\overline{v_{j}^{t h}}$ vertex in $S_{r_{1}+r_{2}, s_{1}+s_{2}}$ and d_{i} is the degree of $i^{\text {th }}$ vertex in $K_{r_{1}}$. Equations (2.4) and (2.5) hold for every i, j. Thus

$$
\begin{aligned}
\pi^{2} & =\left(\left(r_{1}+r_{2}+s_{1}+s_{2}-1\right)^{r_{1}},\left(r_{1}+r_{2}+s_{1}+s_{2}-1\right)^{r_{2}},\left(r_{1}+r_{2}\right)^{s_{1}},\left(r_{1}+r_{2}\right)^{s_{2}}\right) \\
& =\left(\left(\sum_{i=1}^{2}\left(r_{i}+s_{i}\right)\right)^{r_{j}},\left(\sum_{i=1}^{2} r_{i}\right)^{s_{j}}\right)
\end{aligned}
$$

This shows that the result is true for $k=2$. Assume that the result holds for $k=m-1$, therefore $\pi^{m-1}=\left(\left(\sum_{i=1}^{m-1}\left(r_{i}+s_{i}\right)\right)^{r_{j}},\left(\sum_{i=1}^{m-1} r_{i}\right)^{s_{j}}\right)$, for $j=1,2, \ldots, m-1$. Now for $k=m$ we have that $G=S_{r_{1}, s_{1}}+S_{r_{2}, s_{2}}+\ldots+S_{r_{m-1}, s_{m-1}}+S_{r_{m}, s_{m}}=A+S_{r_{m}, s_{m}}$, where $A=S_{r_{1}, s_{1}}+S_{r_{2}, s_{2}}+\ldots+S_{r_{m-1}, s_{m-1}}$.

Since the result is proved for every $k=m-1$ and using the fact that the result is proved for each pair and since the result is already proved for $k=2$, it follows by induction hypothesis that the result holds for $k=m$ also. That is,

$$
\pi=\pi^{m}=\left(\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}-1\right)\right)^{r_{j}},\left(\sum_{i=1}^{m} r_{i}\right)^{s_{j}}\right)
$$

This proves part (2). To prove part (3), we have for $j=1,2, \ldots, m$ that

$$
\begin{aligned}
\sigma\left(\pi^{\prime}\right) & =r_{j}\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}-1\right)\right)+s_{j}\left(\sum_{i=1}^{m} r_{i}\right) \\
& =r_{j}\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}\right)\right)-r_{j}+s_{j}\left(\sum_{i=1}^{m} r_{i}\right) \\
& =\sum_{j=1}^{m} r_{j}\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}\right)\right)-\sum_{j=1}^{m} r_{j}+\sum_{j=1}^{m} s_{j} \sum_{i=1}^{m} r_{i} \\
& =\left(\sum_{i=1}^{m} r_{i}\right)^{2}+2\left(\sum_{i=1}^{m} r_{i}\right)\left(\sum_{i=1}^{m} s_{i}\right)-\left(\sum_{i=1}^{m} r_{i}\right) .
\end{aligned}
$$

Theorem 2.6. If $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{m}^{1}\right)$ is potentially $S_{r_{1}, s_{1}}$-graphic and $\pi_{2}=$ $\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{n}^{2}\right)$ is potentially $S_{r_{2}, s_{2}}$-graphic. Then
(1) $\pi_{s_{1} \times s_{2}}$ of $S_{1} \times S_{2}$ is graphic,
(2) the graphic sequence of $S_{1} \times S_{2}$ is $\pi_{s_{1} \times s_{2}}=\left(d_{i j}^{r_{1} \times r_{2}}, d_{i j}^{r_{1} \times s_{2}}, d_{i j}^{s_{1} \times r_{2}}, d_{i j}^{s_{1} \times s_{2}}\right)$, where $d_{i j}$ is the degree of ijth vertex in $S_{1} \times S_{2}$.

Proof. Let $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{m}^{1}\right)$ be potentially $S_{r_{1}, s_{1}}$-graphic. Then there exists a graph G_{1} which realizes π_{1} and will contain $S_{r_{1}, s_{1}}$ as a subgraph. Let $\pi_{2}=$ $\left(d_{1}^{2}, d_{2}^{2}, \ldots, d_{n}^{2}\right)$ be potentially $S_{r_{2}, s_{2}}$-graphic so that there exists a graph G_{2} which realizes π_{2} and will contain $S_{r_{2}, s_{2}}$ as a subgraph. Let $G=G_{1} \times G_{2}$ be the cartesian product of G_{1} and G_{2}. Then we have $d_{i j}=d_{i}+d_{j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. This relation is true for every vertex of the graph G, therefore it also holds for the graph $S=S_{1} \times S_{2}$. Thus we can write $S=S_{r_{1}, s_{1}} \times S_{r_{2}, s_{2}}$. We have

$$
\begin{equation*}
d_{i j}=d_{i}+d_{j} \quad \text { for } \quad 1 \leq i \leq r_{1}+s_{1} \quad \text { and } \quad 1 \leq j \leq r_{2}+s_{2} . \tag{2.6}
\end{equation*}
$$

for $1 \leq i \leq r_{1}+s_{1}$ and $1 \leq j \leq r_{2}+s_{2}$.
If d_{i} is the degree of i th vertex of r_{1} in $S_{r_{1}, s_{1}}$ and d_{j} is the degree of $j t h$ vertex of r_{2} in $S_{r_{2}, s_{2}}$, it can be seen by construction that degree of $i j t h$ vertex of $r_{1} \times r_{2}$ in S is $d_{i j}$, where $d_{i j}$ is defined above and this term occurs in $r_{1} \times r_{2}$ in $\pi_{S_{1} \times S_{2}}$. Similarly other degree terms of the sequence occurs in $r_{1} \times s_{2}, s_{1} \times r_{2}, s_{1} \times s_{2}$ by using definition of cartesian product of graphs. Thus $\pi_{s_{1} \times s_{2}}=\left(d_{i j}^{r_{1} \times r_{2}}, d_{i j}^{r_{1} \times s_{2}}, d_{i j}^{s_{1} \times r_{2}}, d_{i j}^{s_{1} \times s_{2}}\right)$. This completes the proof of the theorem.

The following result is a generalization of Theorem 2.6 whose proof follows simply by induction.

Theorem 2.7. If $\pi_{i}=\left(d_{1}^{i}, d_{2}^{i}, \ldots, d_{n_{j}}^{i}\right)$ is potentially $S_{r_{i}, s_{i}}$-graphic, then
(1) the sequence π of $G=S_{r_{1}, s_{1}} \times S_{r_{2}, s_{2}} \times \ldots \times S_{r_{m}, s_{m}}$ is graphic,
(2) the graphic sequence of π is $\pi_{s_{1} \times s_{2} \times \ldots \times s_{m}}=\left(d_{i j k \ldots m}^{r_{1} \times r_{2} \times \ldots \times r_{m}}, d_{i j k \ldots m}^{r_{1} \times r_{2} \times \ldots \times r_{m-1} \times s_{m}}, \ldots\right.$, $\left.d_{i j k \ldots m}^{s_{1} \times s_{2} \times s_{3} \times \ldots \times s_{m-1} \times r_{m}}, \ldots, d_{i j k \ldots m}^{s_{1} \times s_{2} \times \ldots \times s_{m}}\right)$, where $d_{i j k \ldots m}=d_{i}+d_{j}+d_{k}+\ldots+d_{m}$.
Proof. This can be proved by induction on r.
Theorem 2.8. If π_{i} is potentially $S_{r_{i}, s_{i}}$-graphic for $i=1,2, \ldots, m$, then
(1) the graphic sequence π of $G=G_{1} \vee G_{2} \vee \ldots \vee G_{m}$ is potentially $S_{\sum_{i=1}^{m}} r_{i}, \sum_{i=1}^{m} s_{i}$ graphic, where \vee denotes the join operation in $G_{1}, G_{2}, \ldots, G_{n}$,
(2) the graphic sequence of $S_{i=1}^{m} r_{i}, \sum_{i=1}^{m} s_{i}$ is

$$
\pi^{\prime}=\left(\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}-1\right)\right)^{r_{j}},\left(\sum_{i=1}^{m} r_{i}+\sum_{i=1, i \neq j}^{m} s_{i}\right)^{s_{j}}\right), \text { for } j=1,2, \ldots, m
$$

(3) and $\sigma\left(\pi^{\prime}\right)=\left(\sum_{i=1}^{m} r_{i}\right)^{2}+2 \sum_{i=1}^{m} r_{i} \sum_{j=1}^{m} s_{j}+\left(\sum_{i=1}^{m} s_{i}\right)^{2}+\sum_{j=1}^{m} s_{j}\left(\sum_{i=1, i \neq j}^{m} s_{i}\right)-\sum_{i=1}^{m} r_{i}$.

Proof. Let π be potentially $S_{r_{i}, s_{i}}$-graphic for $i=1,2, \ldots, m$. Then there exists a graph G_{i} which realizes π_{i} and will contain $S_{r_{i}, s_{i}}$ as a subgraph. Let $G=G_{1} \vee G_{2} \vee \ldots \vee G_{m}$ be the graph obtained from $G_{1}, G_{2}, \ldots, G_{m}$ by using join operation. Therefore, clearly the graphic sequence π of G is potentially $S \sum_{i=1}^{m} r_{i}, \sum_{i=1}^{m} s_{i}$-graphic.

To prove part (2), we use induction on m. For $k=1$, the result is obvious. For $k=2$, we have $G=G_{1} \vee G_{2}$, therefore, in particular we take the normal join operation between graphs $S_{r_{1}, s_{1}}$ and $S_{r_{2}, s_{2}}$. Thus we have $S_{1,2}=S_{r_{1}, s_{1}} \vee S_{r_{2}, s_{2}}$. Now by Theorem 2.6, we have for every $i=1,2, \ldots, r_{1}$ and $i=1,2,3, \ldots, r_{2}$ and $j=1,2,3, \ldots, s_{1}$ and $j=1,2,3, \ldots, s_{2}$

$$
\begin{equation*}
\overline{d_{i}}=d_{i}+r_{2}+s_{1}+s_{2} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{d_{j}}=r_{1}+r_{2}+s_{2}, \tag{2.8}
\end{equation*}
$$

where $\overline{d_{i}}$ and $\overline{d_{j}}$ are respectively the degree of $\overline{v_{i}^{\text {th }}}$ and $\overline{v_{j}^{t h}}$ vertex in $S_{r_{1}+r_{2}, s_{1}+s_{2}}$ and d_{i} is the degree of $i^{\text {th }}$ vertex in $K_{r_{1}}$. Equations (2.7) and (2.8) hold for every i, j. Thus for $j=1,2$

$$
\begin{aligned}
\pi^{2}= & \left(\left(r_{1}+r_{2}+s_{1}+s_{2}-1\right)^{r_{1}},\left(r_{1}+r_{2}+s_{1}+s_{2}-1\right)^{r_{2}}\right. \\
& \left.\left(r_{1}+r_{2}+s_{2}\right)^{s_{1}},\left(r_{1}+r_{2}+s_{1}\right)^{s_{2}}\right) \\
= & \left(\left(\sum_{i=1}^{2}\left(r_{i}+s_{i}-1\right)\right)^{r_{j}},\left(\sum_{i=1}^{2} r_{i}+\sum_{i=1, i \neq j}^{2} s_{i}\right)^{r_{j}}\right)
\end{aligned}
$$

This shows that the result is true for $k=2$. Assume that the result holds for $k=m-1$, therefore $\pi^{m-1}=\left(\left(\sum_{i=1}^{m-1}\left(r_{i}+s_{i}-1\right)\right)^{r_{j}},\left(\sum_{i=1}^{m-1} r_{i}+\sum_{i=1, i \neq j}^{m-1} s_{i}\right)^{r_{j}}\right)$, for all $j=1,2, \ldots, m-1$. Now for $k=m$ we have that $G=S_{r_{1}, s_{1}} \vee S_{r_{2}, s_{2}} \vee \ldots \vee S_{r_{m-1}, s_{m-1}} \vee$ $S_{r_{m}, s_{m}}=A \vee S_{r_{m}, s_{m}}$, where $A=S_{r_{1}, s_{1}} \vee S_{r_{2}, s_{2}} \vee \ldots \vee S_{r_{m-1}, s_{m-1}}$.

Since the result is proved for all $k=m-1$ and using the fact that the result is proved for each pair and since the result is already proved for $k=2$, it follows by induction hypothesis that result holds for $k=m$ also. That is,

$$
\pi=\pi^{m}=\left(\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}-1\right)\right)^{r_{j}},\left(\sum_{i=1}^{m} r_{i}+\sum_{i=1, i \neq j}^{m} s_{i}\right)^{s_{j}}\right)
$$

This proves part (2). To prove part (3), we have for all $j=1,2, \ldots, m$

$$
\begin{aligned}
\sigma\left(\pi^{\prime}\right) & =r_{j}\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}-1\right)\right)+s_{j}\left(\sum_{\cdot i=1}^{m} r_{i}+\sum_{i=1, i \neq j}^{m} s_{i}\right) \\
& =r_{j}\left(\sum_{i=1}^{m}\left(r_{i}+s_{i}\right)\right)-r_{j}+s_{j}\left(\sum_{i=1}^{m} r_{i}+\sum_{i=1, i \neq j}^{m} s_{j}\right)
\end{aligned}
$$

$$
=\left(\sum_{j=1}^{m} r_{i}\right)^{2}+2 \sum_{i=1}^{m} r_{i} \sum_{i=1}^{m} s_{i}+\sum_{i=1}^{m} s_{j}\left(\sum_{i=1, i \neq j}^{m} s_{i}\right)-\sum_{i=1}^{m} r_{i}
$$

Remark 2.1. Let $\pi_{1}=\left(d_{1}^{1}, d_{2}^{1} \ldots, d_{m}^{1}\right)$ be potentially $K_{p_{1}}$-graphic $\pi_{2}=\left(d_{1}^{2}, d_{2}^{2} \cdots, d_{m}^{2}\right)$ be potentially $K_{p_{2}}$ graphic. Then the graphic sequence π of $G=G_{1} \wedge G_{2}$ is potentially H_{p}-graphic, where H_{p} is a p - regular graph and p depends upon p_{1} and p_{2}. If $p_{1}=3$ and $p_{2}=2$, then π of $G=G_{1} \wedge G_{2}$ is potentially H_{2}-graphic. If $p_{1}=3$ and $p_{2}=3$, then π of $G=G_{1} \wedge G_{2}$ is potentially H_{4}-graphic. If $p_{1}=4$ and $p_{2}=4$, then π of $G=G_{1} \wedge G_{2}$ is potentially H_{9} graphic. If $p_{1}=3$ and $p_{2}=4$, then π of $G=G_{1} \wedge G_{2}$ is potentially H_{6}-graphic. From this we conclude that p depends upon p_{1} and p_{2}.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, The Macmillan Press Ltd, 1976.
[2] P. Erdos, M. S. Jacobson, J. Lehel, Graphs realising the same degree sequences and their respective clique numbers, Graph Theory, Combinatorics and Applications, 1 (1991) 439-449.
[3] P. Erdos and T. Gallai, Graphs with prescribed degrees (in Hungarian) Matematikai Lapok, 11 (1960) 264-274.
[4] R. J. Gould, M. S. Jacobson and J. Lehel, Potentially G-graphic degree sequences, Combinatorics, Graph Theory, and Algorithms, 1 (1999) 387-460.
[5] S. L. Hakimi, On the realizability of a set of Integers as degrees of the vertices of a graph, J. SIAM Appl. Math., 10 (1962) 496-506.
[6] V. Havel, A Remark on the Existance of finite Graphs, (in Czech) Casopis Pest. Mat. 80 (1955) 477-480.
[7] D. J. Kleitman and D. L. Wang, Algorithms for constructing graphs and digraphs with given valences and factors, Disc. Math. 6 (1973) 79-88.
[8] S. Pirzada, An introduction to Graph Theory, Universities Press, Orient Blackswan (2012) India.
[9] A. R. Rao, An Erdos-Gallai type result on the clique number of a realization of a degree sequence, unpublished.
[10] A. R. Rao, The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (edȦ. R. Rao), Macmillan and Co. India Ltd, I. S. I. Lecture Notes Series, 4 (1979) 251-267.
[11] J. H. Yin and Haikou, A sufficient condition for a sequence to be potentially $S_{r, s}$-graphic, Czech. Math. Journal, 62(137) (2012) 863-867.
${ }^{1}$ Department Of Mathematics,
University of Kashmir,
Srinagar, Kashmir, India
E-mail address: pirzadasd@kashmiruniversity.ac.in
E-mail address: sdpirzada@yahoo.co.in
${ }^{2}$ Department of Mathematics, University of Kashmir,
Srinagar, Kashmir, India
E-mail address: chatbilal@ymail.com

[^0]: Key words and phrases. Graph, Split graph, Potentially H-graphical sequences.
 2010 Mathematics Subject Classification. Primary: 05C07.
 Received: November, 19, 2013
 Revised: October 24, 2013.

