POTENTIALLY GRAPHIC SEQUENCES OF SPLIT GRAPHS

S. PIRZADA¹ AND BILAL A. CHAT²

ABSTRACT. A sequence $\pi=(d_1,d_2,\ldots,d_n)$ of non-negative integers is said to be graphic if it is the degree sequence of a simple G on n vertices, and such a graph G is referred to as a realization of π . The set of all non-increasing non-negative integer sequences $\pi=(d_1,d_2,\ldots,d_n)$ is denoted by NS_n . A sequence $\pi\in NS_n$ is said to be graphic if it is the degree sequence of a graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . A split graph $K_r+\overline{K_s}$ on r+s vertices is denoted by $S_{r,s}$. A graphic sequence π is potentially H-graphic if there is a realization of π containing H as a subgraph. In this paper, we determine the graphic sequences of subgraphs H, where H is $S_{r_1,s_1}+S_{r_2,s_2}+S_{r_3,s_3}+\ldots+S_{r_m,s_m}, S_{r_1,s_1}\vee S_{r_2,s_2}\vee\ldots\vee S_{r_m,s_m}$ and $S_{r_1,s_1}\times S_{r_2,s_2}\times\ldots\times S_{r_m,s_m}$ and +, V and \times denotes the standard join operation, the normal join operation and the cartesian product in these graphs respectively.

1. Introduction

Let G be an undirected simple graph (graph without multiple edges and loops) with n vertices and m edges having vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$. Any undefined notations follows that of Bondy and Murty [1]. Throughout the paper, we denote such a graph by G(n, m). The set of all non-increasing non-negative integer sequences $\pi = (d_1, d_2, \ldots, d_n)$ is denoted by NS_n . There are several famous results, Havel and Hakimi [5, 6] and Erdös and Gallai [3] which give necessary and sufficient conditions for a sequence $\pi = (d_1, d_2, \ldots, d_n)$ to be the degree sequence of a simple graph G. Unfortunately, knowing that a sequence has a realization gives no information about the properties that such a graph might have. In this paper, we explore this question of properties of a graph which is related to work originally introduced by A. R. Rao [9]. A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The sequence

Key words and phrases. Graph, Split graph, Potentially H-graphical sequences.

2010 Mathematics Subject Classification. Primary: 05C07.

Received: November, 19, 2013 Revised: October 24, 2013. $\pi = (d_1, d_2, \dots, d_n)$ is graphic if and only if the sequence π' obtained from π by laying off an element is graphic [7]. Also $d^{r_1 \times r_2}$ means d occurs $r_1 \times r_2$ times in π . The set of all graphic sequences in NS_n is denoted by GS_n . A graphic sequence π is potentially H-graphic if there is a realization of π containing H as a subgraph, while π is forcibly H graphic if every realization of π contains H as a subgraph. If π has a realization in which the r+1 vertices of largest degree induce a clique, then π is said to be potentially A_{r+1} -graphic. The graphic sequence π is potentially K_{k+1} -graphic if and only if π is potentially A_{k+1} -graphic [10]. Let $\sigma(\pi) = d_1 + d_2 + \ldots + d_n$. If G and G_1 are graphs, then $G \bigcup G_1$ is the disjoint union of G and G_1 . If $G = G_1$, we abbreviate $G \bigcup G_1$ as 2G. We denote G + H as the graph with $V(G + H) = V(G) \bigcup V(H)$ and $E(G+H)=E(G)\bigcup E(H)\bigcup \{xy:x\in V(G),y\in V(H)\}.$ Let K_k,C_k,T_k and P_k respectively denote a complete graph on k vertices, a cycle on k vertices, a tree on k+1 vertices and a path on k+1 vertices. Let F_k denote the friendship graph on 2k+1 vertices, that is, the graph of k triangles intersecting in a single vertex. For $0 \le r \le t$, denote the generalized friendship graph on kt - kr + r vertices by $F_{t,r,k}$, where $F_{t,r,k}$ is the graph of k copies of K_t meeting in a common r set.

Given a graph H, what is the maximum number of edges of a graph with n vertices not containing H as subgraph? This number is denoted by ex(n, H), and is known as the Turan number. In terms of graphic sequences, the number 2ex(n, H) + 2 is the minimum even integer l such that every n-term graphic sequence π with $\sigma(\pi) \geq l$ is forcibly H-graphic. Erdös, Jacobson and Lehel [2] first considered the following variant: determine the minimum even integer l such that every n-term graphic sequence π with $\sigma(\pi) \geq l$ is potentially H-graphic. We denote this minimum l by $\sigma(H, n)$. A sequence $\pi = (d_1, d_2, \dots, d_n)$ is said to be potentially K_{r+1} -graphic if there is a realization G of π containing K_{r+1} as a subgraph. If π is a graphic sequence with a realization G containing H as a subgraph, then there is a realization G' of π containing H with the vertices of H having |V(H)| largest degree of π [4]. Let $S_{r,s} = K_r + K_s$ be split graph on r+s vertices, where $\overline{K_s}$ is the complement of K_s and + denotes the standard join operation. As seen in [11], $S_{r,1} = K_{r+1}$ and so the graph $S_{r,s}$ is an extension of the graph K_{r+1} . A sequence $\pi = (d_1, d_2, \dots, d_n)$ is said to be potentially $S_{r,s}$ -graphic if there is a realization G of π containing $S_{r,s}$ as a subgraph. Yin Jain Hua and Haikou [11] obtained a Havel-Hakimi type procedure and a simple sufficient condition for π to be potentially $S_{r,s}$ -graphic. We have the following definitions.

Definition 1.1. [8] For the graphs G_1 , G_2 with disjoint vertex set $V(G_1)$, $V(G_2)$ the cartesian product is a graph $G = G_1 \times G_2$ with vertex set $V(G_1) \times V(G_2)$ and an edge $((u_1, v_1), (u_2, v_2))$ iff $u_1 = u_2$ and v_1v_2 is an edge of G_2 .

Definition 1.2. [11] The standard join of S_{r_1,s_1} , S_{r_2,s_2} is a graph $S = S_{r_1,s_1} \vee S_{r_2,s_2}$ with vertex set $V(S_{r_1,s_1}) \cup V(S_{r_2,s_2})$ and an edge set consisting of all edges of S_{r_1,s_1} and S_{r_2,s_2} together with the edges joining each vertex of K_{r_1} of S_{r_1,s_1} with every vertex of S_{r_2,s_2} and s_1 vertices of S_{r_1,s_1} are joined with only vertices of K_{r_2} in S_{r_2,s_2} .

Definition 1.3. [8] The join (complete product) of G_1 and G_2 is a graph $G = G_1 \vee G_2$ with vertex set $V(G_1) \cup V(G_2)$ and an edge set consisting of all edges of G_1 and G_2 together with the edges joining each vertex of G_1 with every vertex of G_2 .

Definition 1.4. [9] The split graph $K_r + \overline{K_s}$ on r+s vertices is denoted by $S_{r,s}$ where + denotes the standard join operation and $\overline{K_s}$ is the complement of K_s . A non-increasing sequence $\pi = (d_1, d_2, \ldots, d_n)$ of non-negative integers is said to be potentially $S_{r,s}$ -graphic if there exists a realization G of π containing $S_{r,s}$ as a subgraph.

Definition 1.5. If π has a realization G containing K_{r+1} on those vertices having degree $d_1, d_2, \ldots, d_{r+1}$, then π is potentially A_{r+1} -graphic.

Definition 1.6. [10] The tensor product (conjuction), denoted by $G = G_1 \wedge G_2$, is the graph with vertex set $V = V_1 \times V_2$ and for any two vertices $w_1 = (u_1, v_1)$ and $w_2 = (u_2, v_2)$ in V; $u_1, u_2 \in V_1$ and $v_1, v_2 \in V_2$, there is an edge $w_1 w_2 \in E(G)$ if and only if $u_1 u_2 \in E_1$ and $v_1 v_2 \in E_2$.

2. Main Results

We start with the following result.

Theorem 2.1. If $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ is potentially K_{p_1} -graphic and $\pi_2 = (d_1^2, d_2^2, \dots, d_n^2)$ is potentially K_{p_2} -graphic, $p_1 \leq m$ and $p_2 \leq n$, then the graphic sequence π of $G = G_1 \times G_2$ is potentially $p_1 + p_2 - 2$ regular graphic.

Proof. Let $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ and $\pi_2 = (d_1^2, d_2^2, \dots, d_n^2)$ be respectively K_{p_1} -graphic and K_{p_2} -graphic. Then there exists graphs G_1 and G_2 respectively realizing π_1 and π_2 and respectively containing K_{p_1} and K_{p_2} as subgraphs. Let $G = G_1 \times G_2$ be the cartesian product of G_1 and G_2 and let $\pi_3 = (d_{11}, d_{12}, \dots, d_{1m}, d_{21}, d_{22}, \dots, d_{2m}, \dots, d_{m1}, d_{m2}, \dots, d_{mn})$ be the graphic sequence of $G_1 \times G_2$. Then $d_{ij} = d_i^1 + d_j^2$ for $1 \le i \le m$ and $1 \le j \le n$ where d_{ij} is the degree of ij^{th} vertex in G. We have to show that the realization G of π contains $p_1 + p_2 - 2$ as a regular subgraph. To prove this, it is enough to show that sum of degrees of this subgraph is equal to $p_1p_2(p_1 + p_2 - 2)$. Clearly,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} d_i^1 + d_j^2 = (d_1^1 + d_1^2) + \dots + (d_1^1 + d_n^2) + \dots + (d_m^1 + d_n^2).$$

This is true for all m and n. In particular, it holds for $m = p_1$ and $n = p_2$. Therefore

$$\sum_{i=1}^{p_1} \sum_{j=1}^{p_2} d_{ij} = (d_1^1 + d_1^2) + (d_1^1 + d_2^2) + \dots + (d_1^1 + d_{p_2}^2) + \dots + (d_{p_1}^1 + d_{p_2}^2)$$

$$= (p_1 - 1 + p_2 - 1) + (p_1 - 1 + p_2 - 1) + \dots + (p_1 - 1 + p_2 - 1)$$

$$+ \dots + (p_1 - 1 + p_2 - 1)$$

$$= p_1 p_2 (p_1 + p_2 - 2).$$

Theorem 2.1 can be generalized as follows.

Theorem 2.2. If $\pi_i = (d_1^i, d_2^i, \dots, d_{n_j}^i)$ is potentially K_{p_i} -graphic for $i, j = 1, 2, \dots, r$ with $p_i \leq n_j$, then the graphic sequence π of $G = G_1 \times G_2 \times \dots \times G_r$ is a potentially $\sum_{i=1}^r p_i - r$ regular graphic.

Proof. The proof follows by induction on r.

Theorem 2.3. If $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ is potentially K_{p_1} -graphic and $\pi_2 = (d_1^2, d_2^2, \dots, d_n^2)$ is potentially K_{p_2} -graphic, $p_1 \leq m$ and $p_2 \leq n$, then the graphic sequence π of $G = G_1 + G_2$ is potentially $K_{p_1+p_2}$ -graphic.

Proof. Let $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ be potentially K_{p_1} -graphic. Then there exists a graph G_1 which realizes π_1 and will contain K_{p_1} as a subgraph. Let $\pi_2 = (d_1^2, d_2^2, \dots, d_n^2)$ be potentially K_{p_2} - graphic, so there exists a graph G_2 which realizes π_2 and will contain K_{p_2} as a subgraph. Let $G = G_1 + G_2$ be the join of G_1 and G_2 and let $\pi = (d_1, d_2, \dots, d_{m+n})$ be the graphic sequence of $G = G_1 + G_2$. Then we have

(2.1)
$$d_i = d_i^1 + n \text{ for } i = 1, 2, \dots, m$$
$$d_{m+j} = d_i^2 + m \text{ for } j = 1, 2, \dots, n.$$

We have to show that the realization of π contains $K_{p_1+p_2}$ as a subgraph. To prove this it is enough to show that

$$\sum_{i=1}^{p_1} d_i + \sum_{j=1}^{p_2} d_{m+j} = (p_1 + p_2)(p_1 + p_2 - 1).$$

We take the summation to the equations in (2.1) respectively from i = 1, 2, ..., m and j = 1, 2, ..., n and get $\sum_{i=1}^{m} d_i = \sum_{i=1}^{m} d_i^1 + \sum_{i=1}^{m} n$ and $\sum_{j=1}^{m} d_{m+j} = \sum_{j=1}^{n} d_j^2 + \sum_{j=1}^{n} m$. These two equations imply

(2.2)
$$\sum_{i=1}^{m} d_i = \sum_{i=1}^{m} d_i^1 + mn$$

and

(2.3)
$$\sum_{j=1}^{m} d_{m+j} = \sum_{j=1}^{n} d_j^2 + nm.$$

As (2.2) and (2.3) is true for all m and n, therefore, in particular it is true for $m = p_1$ and $n = p_2$. So,

$$\sum_{i=1}^{p_1} d_i + \sum_{i=1}^{p_2} d_{m+j} = \sum_{i=1}^{p_1} d_i^1 + \sum_{i=1}^{p_2} d_{m+j}^2 + 2p_1 p_2$$

$$= d_1^1 + d_2^1 + \dots + d_{p_1}^1 + d_1^2 + d_2^2 + \dots + d_{p_2}^2 + 2p_1 p_2$$

$$= (p_1 - 1) + \dots + (p_1 - 1) + (p_2 - 1) + \dots + (p_2 - 1) + 2p_1 p_2$$

$$= p_1(p_1 - 1) + p_2(p_2 - 1) + p_1 p_2 + p_1 p_2$$

$$= p_1(p_1 + p_2 - 1) + p_2(p_2 + p_1 - 1)$$

$$= (p_1 + p_2)(p_1 + p_2 - 1).$$

Theorem 2.3 can be generalized as follows.

Theorem 2.4. If $\pi_i = (d_1^i, d_2^i, \dots, d_{n_j}^i)$ is potentially K_{p_i} -graphic for $i = 1, 2, \dots, r$ with $p_i \leq n_j$. Then the graphic sequence π of $G = G_1 + G_2 + \dots + G_r$ is potentially $K_{\sum_{i=1}^r p_i}$ -graphic.

Proof. This can be proved by induction on r.

Theorem 2.5. If π_i is potentially S_{r_i,s_i} -graphic for $i=1,2,\ldots,m$, then

- (1) The graphic sequence π of $G = G_1 + G_2 + \ldots + G_m$ is potentially $S_{\sum_{i=1}^m r_i, \sum_{i=1}^m s_i}$ -graphic, where + denotes the standard join operation in S_{r_i, s_i} .
- (2) The graphic sequence of $S_{\sum_{i=1}^{m} r_i, \sum_{i=1}^{m} s_i}$ for $j = 1, 2, \dots, m$ is

$$\pi' = \left(\left(\sum_{i=1}^{m} (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^{m} r_i \right)^{s_j} \right),$$

(3) Also,
$$\sigma(\pi') = \left(\sum_{i=1}^m r_i\right)^2 + 2\left(\sum_{i=1}^m r_i\right)\left(\sum_{i=1}^m s_i\right) - \left(\sum_{i=1}^m r_i\right).$$

Proof. Let π be potentially S_{r_i,s_i} -graphic for $i=1,2,\ldots,m$. Then there exists a graph G_i which realizes π_i and will contain S_{r_i,s_i} as a subgraph. Let $G=G_1+G_2+\ldots+G_m$ be the graph obtained from G_1,G_2,\ldots,G_m by using join operation. Therefore, clearly the graphic sequence π of G is potentially $S_{m\atop \sum_i r_i,\sum_i s_i}$ -graphic follows from Theorem

2.4. To prove part (2), we use induction on m. For k=1, the result is obvious. For k=2, we have $G=G_1+G_2$. Therefore, in particular $S_{r_1+r_2,s_1+s_2}=S_{r_1,s_1}+S_{r_2,s_2}$. Now by Theorem 2.4, we have for every $i=1,2,\ldots,r_1$ and $i=1,2,3,\ldots,r_2$ and $j=1,2,3,\ldots,s_1$ and $j=1,2,3,\ldots,s_2$

$$(2.4) \overline{d_i} = d_i + r_2 + s_1 + s_2$$

and

$$(2.5) \overline{d_j} = r_1 + r_2,$$

where $\overline{d_i}$ and $\overline{d_j}$ are respectively the degree of $\overline{v_i^{th}}$ and $\overline{v_j^{th}}$ vertex in $S_{r_1+r_2,s_1+s_2}$ and d_i is the degree of i^{th} vertex in K_{r_1} . Equations (2.4) and (2.5) hold for every i, j. Thus

$$\pi^{2} = \left(\left(r_{1} + r_{2} + s_{1} + s_{2} - 1 \right)^{r_{1}}, \left(r_{1} + r_{2} + s_{1} + s_{2} - 1 \right)^{r_{2}}, \left(r_{1} + r_{2} \right)^{s_{1}}, \left(r_{1} + r_{2} \right)^{s_{2}} \right)$$

$$= \left(\left(\sum_{i=1}^{2} (r_{i} + s_{i}) \right)^{r_{j}}, \left(\sum_{i=1}^{2} r_{i} \right)^{s_{j}} \right).$$

This shows that the result is true for k = 2. Assume that the result holds for k = m-1, therefore $\pi^{m-1} = \left(\sum_{i=1}^{m-1} (r_i + s_i)^{r_j}, \left(\sum_{i=1}^{m-1} r_i\right)^{s_j}\right)$, for j = 1, 2, ..., m-1. Now for k = m we have that $G = S_{r_1, s_1} + S_{r_2, s_2} + ... + S_{r_{m-1}, s_{m-1}} + S_{r_m, s_m} = A + S_{r_m, s_m}$, where $A = S_{r_1, s_1} + S_{r_2, s_2} + ... + S_{r_{m-1}, s_{m-1}}$.

Since the result is proved for every k = m - 1 and using the fact that the result is proved for each pair and since the result is already proved for k = 2, it follows by induction hypothesis that the result holds for k = m also. That is,

$$\pi = \pi^m = \left(\left(\sum_{i=1}^m (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^m r_i \right)^{s_j} \right).$$

This proves part (2). To prove part (3), we have for j = 1, 2, ..., m that

$$\sigma(\pi') = r_j \left(\sum_{i=1}^m (r_i + s_i - 1) \right) + s_j \left(\sum_{i=1}^m r_i \right)$$

$$= r_j \left(\sum_{i=1}^m (r_i + s_i) \right) - r_j + s_j \left(\sum_{i=1}^m r_i \right)$$

$$= \sum_{j=1}^m r_j \left(\sum_{i=1}^m (r_i + s_i) \right) - \sum_{j=1}^m r_j + \sum_{j=1}^m s_j \sum_{i=1}^m r_i$$

$$= \left(\sum_{i=1}^m r_i \right)^2 + 2 \left(\sum_{i=1}^m r_i \right) \left(\sum_{i=1}^m s_i \right) - \left(\sum_{i=1}^m r_i \right).$$

Theorem 2.6. If $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ is potentially S_{r_1,s_1} -graphic and $\pi_2 = (d_1^2, d_2^2, \dots, d_n^2)$ is potentially S_{r_2,s_2} -graphic. Then

- (1) $\pi_{s_1 \times s_2}$ of $S_1 \times S_2$ is graphic,
- (2) the graphic sequence of $S_1 \times S_2$ is $\pi_{s_1 \times s_2} = (d_{ij}^{r_1 \times r_2}, d_{ij}^{r_1 \times r_2}, d_{ij}^{s_1 \times r_2}, d_{ij}^{s_1 \times s_2})$, where d_{ij} is the degree of ijth vertex in $S_1 \times S_2$.

Proof. Let $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ be potentially S_{r_1,s_1} -graphic. Then there exists a graph G_1 which realizes π_1 and will contain S_{r_1,s_1} as a subgraph. Let π_2 $(d_1^2, d_2^2, \dots, d_n^2)$ be potentially S_{r_2, s_2} -graphic so that there exists a graph G_2 which realizes π_2 and will contain S_{r_2,s_2} as a subgraph. Let $G = G_1 \times G_2$ be the cartesian product of G_1 and G_2 . Then we have $d_{ij} = d_i + d_j$ for $1 \le i \le m$ and $1 \le j \le n$. This relation is true for every vertex of the graph G, therefore it also holds for the graph $S = S_1 \times S_2$. Thus we can write $S = S_{r_1,s_1} \times S_{r_2,s_2}$. We have

(2.6)
$$d_{ij} = d_i + d_j$$
 for $1 \le i \le r_1 + s_1$ and $1 \le j \le r_2 + s_2$.

for $1 \le i \le r_1 + s_1$ and $1 \le j \le r_2 + s_2$.

If d_i is the degree of ith vertex of r_1 in S_{r_1,s_1} and d_j is the degree of jth vertex of r_2 in S_{r_2,s_2} , it can be seen by construction that degree of ijth vertex of $r_1 \times r_2$ in S is d_{ij} , where d_{ij} is defined above and this term occurs in $r_1 \times r_2$ in $\pi_{S_1 \times S_2}$. Similarly other degree terms of the sequence occurs in $r_1 \times s_2$, $s_1 \times r_2$, $s_1 \times s_2$ by using definition of cartesian product of graphs. Thus $\pi_{s_1 \times s_2} = (d_{ij}^{r_1 \times r_2}, d_{ij}^{r_1 \times r_2}, d_{ij}^{s_1 \times r_2}, d_{ij}^{s_1 \times s_2})$. This completes the proof of the theorem.

The following result is a generalization of Theorem 2.6 whose proof follows simply by induction.

Theorem 2.7. If $\pi_i = (d_1^i, d_2^i, \dots, d_{n_i}^i)$ is potentially S_{r_i, s_i} -graphic, then

- (1) the sequence π of $G = S_{r_1,s_1} \times S_{r_2,s_2} \times \ldots \times S_{r_m,s_m}$ is graphic, (2) the graphic sequence of π is $\pi_{s_1 \times s_2 \times \ldots \times s_m} = (d_{ijk\ldots m}^{r_1 \times r_2 \times \ldots \times r_m}, d_{ijk\ldots m}^{r_1 \times r_2 \times \ldots \times r_{m-1} \times s_m}, \ldots, d_{ijk\ldots m}^{s_1 \times s_2 \times s_3 \times \ldots \times s_{m-1} \times r_m}, \ldots, d_{ijk\ldots m}^{s_1 \times s_2 \times s_3 \times \ldots \times s_{m-1} \times r_m}, \ldots, d_{ijk\ldots m}^{s_1 \times s_2 \times \ldots \times s_m})$, where $d_{ijk\ldots m} = d_i + d_j + d_k + \ldots + d_m$.

Proof. This can be proved by induction on r.

Theorem 2.8. If π_i is potentially S_{r_i,s_i} -graphic for $i=1,2,\ldots,m$, then

- (1) the graphic sequence π of $G = G_1 \vee G_2 \vee \ldots \vee G_m$ is potentially $S_{\sum\limits_{i=1}^m r_i, \sum\limits_{i=1}^m s_i}^m$ graphic, where \vee denotes the join operation in G_1, G_2, \ldots, G_n ,
- (2) the graphic sequence of $S_{\sum r_i, \sum s_i}^m$ is

$$\pi' = \left(\left(\sum_{i=1}^{m} (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^{m} r_i + \sum_{i=1, i \neq j}^{m} s_i \right)^{s_j} \right), \text{ for } j = 1, 2, \dots, m,$$

(3) and
$$\sigma(\pi') = \left(\sum_{i=1}^{m} r_i\right)^2 + 2\sum_{i=1}^{m} r_i \sum_{j=1}^{m} s_j + \left(\sum_{i=1}^{m} s_i\right)^2 + \sum_{j=1}^{m} s_j \left(\sum_{i=1, i \neq j}^{m} s_i\right) - \sum_{i=1}^{m} r_i$$
.

Proof. Let π be potentially S_{r_i,s_i} -graphic for $i=1,2,\ldots,m$. Then there exists a graph G_i which realizes π_i and will contain S_{r_i,s_i} as a subgraph. Let $G = G_1 \vee G_2 \vee \ldots \vee G_m$ be the graph obtained from G_1, G_2, \ldots, G_m by using join operation. Therefore, clearly the graphic sequence π of G is potentially $S_{\sum\limits_{i=1}^{m}r_{i},\sum\limits_{i=1}^{m}s_{i}}$ -graphic.

To prove part (2), we use induction on m. For k=1, the result is obvious. For k=2, we have $G=G_1\vee G_2$, therefore, in particular we take the normal join operation between graphs S_{r_1,s_1} and S_{r_2,s_2} . Thus we have $S_{1,2}=S_{r_1,s_1}\vee S_{r_2,s_2}$. Now by Theorem 2.6, we have for every $i=1,2,\ldots,r_1$ and $i=1,2,3,\ldots,r_2$ and $j=1,2,3,\ldots,s_1$ and $j=1,2,3,\ldots,s_2$

$$(2.7) \overline{d_i} = d_i + r_2 + s_1 + s_2$$

and

$$(2.8) \overline{d_j} = r_1 + r_2 + s_2,$$

where $\overline{d_i}$ and $\overline{d_j}$ are respectively the degree of $\overline{v_i^{th}}$ and $\overline{v_j^{th}}$ vertex in $S_{r_1+r_2,s_1+s_2}$ and d_i is the degree of i^{th} vertex in K_{r_1} . Equations (2.7) and (2.8) hold for every i, j. Thus for j = 1, 2

$$\pi^{2} = \left(\left(r_{1} + r_{2} + s_{1} + s_{2} - 1 \right)^{r_{1}}, \left(r_{1} + r_{2} + s_{1} + s_{2} - 1 \right)^{r_{2}}, \right.$$

$$\left. \left(r_{1} + r_{2} + s_{2} \right)^{s_{1}}, \left(r_{1} + r_{2} + s_{1} \right)^{s_{2}} \right)$$

$$= \left(\left(\sum_{i=1}^{2} (r_{i} + s_{i} - 1) \right)^{r_{j}}, \left(\sum_{i=1}^{2} r_{i} + \sum_{i=1, i \neq j}^{2} s_{i} \right)^{r_{j}} \right).$$

This shows that the result is true for k=2. Assume that the result holds for k=m-1, therefore $\pi^{m-1}=\left(\left(\sum\limits_{i=1}^{m-1}(r_i+s_i-1)\right)^{r_j},\left(\sum\limits_{i=1}^{m-1}r_i+\sum\limits_{i=1,i\neq j}^{m-1}s_i\right)^{r_j}\right)$, for all j=1,2,...,m-1. Now for k=m we have that $G=S_{r_1,s_1}\vee S_{r_2,s_2}\vee\ldots\vee S_{r_{m-1},s_{m-1}}\vee S_{r_m,s_m}=A\vee S_{r_m,s_m}$, where $A=S_{r_1,s_1}\vee S_{r_2,s_2}\vee\ldots\vee S_{r_{m-1},s_{m-1}}$.

Since the result is proved for all k = m - 1 and using the fact that the result is proved for each pair and since the result is already proved for k = 2, it follows by induction hypothesis that result holds for k = m also. That is,

$$\pi = \pi^m = \left(\left(\sum_{i=1}^m (r_i + s_i - 1) \right)^{r_j}, \left(\sum_{i=1}^m r_i + \sum_{i=1, i \neq i}^m s_i \right)^{s_j} \right).$$

This proves part (2). To prove part (3), we have for all j = 1, 2, ..., m

$$\sigma(\pi') = r_j \left(\sum_{i=1}^m (r_i + s_i - 1) \right) + s_j \left(\sum_{i=1}^m r_i + \sum_{i=1, i \neq j}^m s_i \right)$$
$$= r_j \left(\sum_{i=1}^m (r_i + s_i) \right) - r_j + s_j \left(\sum_{i=1}^m r_i + \sum_{i=1, i \neq j}^m s_j \right)$$

$$= \left(\sum_{j=1}^{m} r_i\right)^2 + 2\sum_{i=1}^{m} r_i \sum_{i=1}^{m} s_i + \sum_{i=1}^{m} s_j \left(\sum_{i=1, i \neq j}^{m} s_i\right) - \sum_{i=1}^{m} r_i.$$

Remark 2.1. Let $\pi_1 = (d_1^1, d_2^1, \dots, d_m^1)$ be potentially K_{p_1} -graphic $\pi_2 = (d_1^2, d_2^2, \dots, d_m^2)$ be potentially K_{p_2} graphic. Then the graphic sequence π of $G = G_1 \wedge G_2$ is potentially H_p -graphic, where H_p is a p- regular graph and p depends upon p_1 and p_2 . If $p_1 = 3$ and $p_2 = 2$, then π of $G = G_1 \wedge G_2$ is potentially H_2 -graphic. If $p_1 = 3$ and $p_2 = 3$, then π of $G = G_1 \wedge G_2$ is potentially H_4 -graphic. If $p_1 = 4$ and $p_2 = 4$, then π of $G = G_1 \wedge G_2$ is potentially H_9 graphic. If $p_1 = 3$ and $p_2 = 4$, then π of $G = G_1 \wedge G_2$ is potentially H_9 graphic. From this we conclude that p depends upon p_1 and p_2 .

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, The Macmillan Press Ltd, 1976.
- [2] P. Erdos, M. S. Jacobson, J. Lehel, Graphs realising the same degree sequences and their respective clique numbers, Graph Theory, Combinatorics and Applications, 1 (1991) 439–449.
- [3] P. Erdos and T. Gallai, Graphs with prescribed degrees (in Hungarian) Matematikai Lapok, 11 (1960) 264–274.
- [4] R. J. Gould, M. S. Jacobson and J. Lehel, *Potentially G-graphic degree sequences*, Combinatorics, Graph Theory, and Algorithms, 1 (1999) 387–460.
- [5] S. L. Hakimi, On the realizability of a set of Integers as degrees of the vertices of a graph, J. SIAM Appl. Math., 10 (1962) 496–506.
- [6] V. Havel, A Remark on the Existance of finite Graphs, (in Czech) Casopis Pest. Mat. 80 (1955) 477–480.
- [7] D. J. Kleitman and D. L. Wang, Algorithms for constructing graphs and digraphs with given valences and factors, Disc. Math. 6 (1973) 79–88.
- [8] S. Pirzada, An introduction to Graph Theory, Universities Press, Orient Blackswan (2012) India.
- [9] A. R. Rao, An Erdos-Gallai type result on the clique number of a realization of a degree sequence, unpublished.
- [10] A. R. Rao, The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (edÅ. R. Rao), Macmillan and Co. India Ltd, I. S. I. Lecture Notes Series, 4 (1979) 251–267.
- [11] J. H. Yin and Haikou, A sufficient condition for a sequence to be potentially $S_{r,s}$ -graphic, Czech. Math. Journal, **62(137)** (2012) 863–867.

¹Department Of Mathematics,

UNIVERSITY OF KASHMIR,

Srinagar, Kashmir, India

E-mail address: pirzadasd@kashmiruniversity.ac.in

 $E ext{-}mail\ address: sdpirzada@yahoo.co.in}$

²DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF KASHMIR,

Srinagar, Kashmir, India

E-mail address: chatbilal@ymail.com