Kragujevac Journal of Mathematics Volume 38(1) (2014), Pages 163–170.

THE LAPLACIAN SPECTRUM OF CORONA OF TWO GRAPHS

QUN LIU 1,2

ABSTRACT. Let G_1, G_2 be two connected graphs. Denote the corona and the edge corona of G_1 , G_2 by $G_1 \circ G_2$ and $G = G_1 \diamond G_2$, respectively. In this paper, we compute the Laplacian spectrum of the corona $G \circ H$ of two arbitrary graphs G and H and the edge corona of a connected regular graph G_1 and an arbitrary graph G_2 .

1. Introduction

Throughout this paper, we consider only simple graphs. Let G = (V(G), E(G)) be a graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$. The adjacency matrix of G denoted by A(G) is defined as $A(G) = (a_{ij})$, where $(a_{ij}) = 1$ if vertices i and j are adjacent in G and G otherwise. The Laplacian matrix of G, denoted by G(G) is defined as G(G) - G(G), where G(G) is the diagonal degree matrix of G. The Laplacian spectrum of G(G) is defined as $G(G) = (\mu_1(G), \mu_2(G), \ldots, \mu_n(G))$ where $G(G) = \mu_1(G) \le \mu_2(G) \le \cdots \le \mu_n(G)$ are the eigenvalues of G(G). There is extensively literature available on works related to Laplacian spectrum of a graph. See G(G) and the references therein to know more.

The following two definitions come frow [2,9]. Let G_1 and G_2 be two graphs on disjoint sets of n_1 and n_2 vertices, m_1 and m_2 edges, respectively. The corona $G_1 \circ G_2$ of G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 and n_1 copies of G_2 , and then joining the ith vertex of G_1 to every vertex in the ith copy of G_2 . The edge corona $G_1 \diamond G_2$ of G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 and G_2 and then joining two end-vertices of the ith edge of G_1 to every vertex in the i-th copy of G_2 .

Received: May 3, 2013

Revised: October 6, 2013.

 $Key\ words\ and\ phrases.$ Laplacian matrix, Laplacian spectrum, Corona, edge corona, Kronecker product.

²⁰¹⁰ Mathematics Subject Classification. Primary: 05C. Secondary: 05C12.

Note that the corona $G_1 \circ G_2$ has $n_1(n_2+1)$ vertices and $m_1 + n_1(m_2 + n_2)$ edges, and that the edge corona $G_1 \diamond G_2$ has $n_1 + m_1n_2$ vertices and $m_1 + m_1(m_2 + 2n_2)$ edges.

There have been some results on the corona and the edge corona of two graphs. Barik et al. [1] provided complete information about the adjacency spectrum of $G_1 \circ G_2$ for a connected graph G_1 and a regular graph G_2 , and complete information about the Laplacian spectrum of $G_1 \circ G_2$ using the spectrum (and the Laplacian spectrum, respectively) of G_1 and G_2 . In 2010, Hou and Shiu [7] considered the adjacency spectrum of $G_1 \diamond G_2$ for a connected regular graph G_1 and a regular graph G_2 and the Laplacian spectrum of $G_1 \diamond G_2$ for a connected regular graph G_1 and a graph G_2 . Recently, McLeman and McNicholas [3], by introducing a new invariant called the coronal of a graph, also discussed the spectrum of $G_1 \circ G_2$.

Motivated by these researches, we discuss the Laplacian spectrum of $G_1 \circ G_2$ and $G_1 \diamond G_2$. We also consider the spectrum of $G_1 \diamond G_2$ when G_1 is regular. This paper is organized as follows. In Section 3, we introduce a new invariant, the L-coronal of a Laplacian matrix, and use it to compute the characteristic polynomial of the Laplacian matrix of $G_1 \circ G_2$. Using this result, we give a complete description of the Laplacian eigenvalues of $G_1 \circ G_2$ when G_1 is an arbitrary graph and G_2 is also an arbitrary graph. In Section 4, we give the characteristic polynomials of the Laplacian matrix of $G_1 \diamond G_2$ for a regular graph G_1 and any graph G_2 . Using these results, we give a complete description of Laplacian eigenvalues of $G_1 \diamond G_2$ when G_1 is an r_1 -regular graph and G_2 is an arbitrary graph.

2. Preliminaries

The Kronecker product of matrices $A = (a_{ij})$ and B, denoted by $A \otimes B$, is defined to be the partition matrix $(a_{ij}B)$. See [8]. In cases where each multiplication makes sense, we have $M_1M_2 \otimes M_3M_4 = (M_1 \otimes M_3)(M_2 \otimes M_4)$.

This implies that for nonsingular matrix M and N, $(M \otimes N)^{-1} = M^{-1} \otimes N^{-1}$, Recall also that for square matrices M and N of order k and s, respectively. $det(M \otimes N) = (det M)^k (det N)^s$

If M_4 is invertible, then

$$det\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix} = det(M_4)det(M_1 - M_2M_4^{-1}M_3).$$

Let j_n be the column vector of size n with all entries equal to one, 0_n a column zero vector of size n, and I_n the identity matrix of order n. Let e_i be the i-th unit column vector of size n_1 for $i = 1, 2, \dots, n_1$. For a vertex u of a graph G, let $d_G(u)$ be the degree of vertex u in G. For vertices u and v in a graph, $u \sim v$ means that v is adjacent to u.

For graphs G_1 with n_1 vertices and G_2 with n_2 vertices we have

(2.1)
$$L(G_1) = (\mu_1, \mu_2, \dots, \mu_{n_1}), L(G_2) = (\delta_1, \delta_2, \dots, \delta_{n_2}).$$

3. The Laplacian spectrum of corona

In [3], McLeman and McNicholas introduced a new invariant, the coronal of a graph G of order n. It is defined to be the sum of the entries of the matrix $(\lambda I_n - A)^{-1}$, where I_n and A are the identity matrix of order n and the adjacency matrix of G, respectively. Now we shall generalize this concept to Laplacian matrix of graph G.

For a graph G on n vertices, the Laplacian characteristic polynomial of G is $f_G(\lambda) = det(\lambda I_n - L(G))$.

Definition 3.1. Let G be a graph on n vertices, with the Laplacian matrix L(G). Note that, viewed as a matrix over the field of rational functions $C(\lambda)$, the characteristic matrix $((\lambda-1)I_n-L(G))$ is invertible since its determinant $det((\lambda-1)I_n-L(G))=f_G(\lambda-1)\neq 0$, The L-coronal $\chi_H(\lambda)\in C(\lambda)$ of G is defined to be the sum of the entries of the matrix. Note this can be calculated as $\chi_G(\lambda)=j_n^T((\lambda-1)I_n-L(G))^{-1}j_n$.

Our main theorem is that, beyond the spectra of G and H, only the coronal of H is needed to compute the spectrum of $G = G \circ H$.

Let G_1 be a graph with $V(G_1) = \{1, 2, \dots, n_1\}$ and G_2 be a graph with n_2 vertices. Let $G = G_1 \circ G_2$. Then

$$A(G) = \begin{pmatrix} A(G_1) & j_{n_2}^T \otimes I_{n_1} \\ (j_{n_2}^T \otimes I_{n_1})^T & A(G_2) \otimes I_{n_1} \end{pmatrix}$$

$$L(G) = \begin{pmatrix} L(G_1) + n_2 I_{n_1} & -j_{n_2}^T \otimes I_{n_1} \\ -(j_{n_2}^T \otimes I_{n_1})^T & (I_{n_2} + L(G_2) \otimes I_{n_1} \end{pmatrix}$$

Theorem 3.1. Let G_1 be a graph with n_1 vertices, G_2 be a graph with n_2 vertices. Let $\chi_{G_2}(\lambda)$ be the L-coronal of G_2 . Then

$$f_{G_1 \circ G_2}(\lambda) = (f_{G_2}(\lambda - 1))^{n_1} f_{G_1}(\lambda - n_2 - \chi_{G_2}(\lambda)).$$

In particular, the Laplacian characteristic polynomial of $G_1 \circ G_2$ is completely determined by the Laplacian characteristic polynomials $f_{G_1}(\lambda)$ and $f_{G_2}(\lambda)$ and the L-coronal of $\chi_{G_2}(\lambda)$.

Proof. It is easily seen that

$$f_{G_{1}\circ G_{2}}(\lambda) = \det(\lambda I_{n_{1}(n_{2}+1)} - L(G_{1}\circ G_{2}))$$

$$= \det\begin{pmatrix} \lambda I_{n_{1}} - L(G_{1}) - n_{2}I_{n_{1}} & j_{n_{2}}^{T}\otimes I_{n_{1}} \\ (j_{n_{2}}^{T}\otimes I_{n_{1}})^{T} & \lambda I_{n_{1}n_{2}} - (I_{n_{2}} + L(G_{2}))\otimes I_{n_{1}} \end{pmatrix}$$

$$= \det\begin{pmatrix} \lambda I_{n_{1}} - L(G_{1}) - n_{2}I_{n_{1}} & j_{n_{2}}^{T}\otimes I_{n_{1}} \\ (j_{n_{2}}^{T}\otimes I_{n_{1}})^{T} & (\lambda I_{n_{2}} - (I_{n_{2}} + L(G_{2}))\otimes I_{n_{1}} \end{pmatrix}$$

$$= \det((\lambda I_{n_{2}} - (I_{n_{2}} + L(G_{2})))\otimes I_{n_{1}}) \times \det(\lambda I_{n_{1}} - L(G_{1}) - n_{2}I_{n_{1}} - (j_{n_{2}}^{T}\otimes I_{n_{1}})((\lambda I_{n_{2}} - (I_{n_{2}} + L(G_{2})))\otimes I_{n_{1}})^{-1}(j_{n_{2}}^{T}\otimes I_{n_{1}})^{T}$$

$$= det((\lambda - 1)I_{n_2} - L(G_2))^{n_1} \times det(\lambda I_{n_1} - L(G_1) - n_2 I_{n_1} - (j_{n_2}^T (\lambda I_{n_2} - I_{n_2} - L(G_2))^{-1})j_{n_2}) \otimes I_{n_1})$$

$$= det((\lambda - 1)I_{n_2} - L(G_2))^{n_1} det((\lambda - \chi_{G_2}(\lambda) - n_2)I_{n_1} - L(G_1))$$

$$= (f_{G_2}(\lambda - 1))^{n_1} f_{G_1}(\lambda - n_2 - \chi_{G_2}(\lambda)),$$

as desired. \Box

The following Theorem 3.2, first addressed in [1], is an immediate consequence of Theorem 3.1. We remark that here our method is straight-forward and different from that of Theorem 2.4.

Theorem 3.2. Let G_1 be any graph with n_1 vertices, m_1 edges and G_2 be any graph with n_2 vertices, m_2 edges. Suppose that $L(G_1) = (\mu_1, \mu_2, \ldots, \mu_{n_1})$ and $L(G_2) = (\delta_1, \delta_2, \ldots, \delta_{n_2})$. Then the Laplacian spectrum of $G_1 \circ G_2$ is given by

- (i) The eigenvalue $\delta_j + 1$ with multiplicity n_1 for every eigenvalue $\delta_j (j = 2, ..., n_2)$ of $L(G_2)$,
- (ii) Two multiplicity-one eigenvalues $\frac{(\mu_i+n_2+1)\pm\sqrt{(n_2+1+\mu_i)^2-4\mu_i}}{2}$ for each eigenvalue $\mu_i(i=1,2,\ldots,n_1)$ of $L(G_1)$.

Proof. Since the sum of all entries on every row of Laplacian matrix is zero, we have $L(G_2)j_{n_2}=0j_{n_2}$, and then $((\lambda-1)I_{n_2}-L(G_2))j_{n_2}=(\lambda-1)j_{n_2}$. Thus

$$\chi_{G_2}(\lambda) = j_{n_2}^T ((\lambda - 1)I_{n_2} - L(G_2))^{-1} j_{n_2} = \frac{j_{n_2}^T j_{n_2}}{\lambda - 1} = \frac{n_2}{\lambda - 1}$$

The only pole of $\chi_{G_2}(\lambda)$ is $\lambda = 1$. By Theorem 3.1, $\delta_j + 1$ is an eigenvalue of $L(G_1 \circ G_2)$ with multiplicity of n_1 for $j = 2, \ldots, n_2$. The remaining $2n_1$ eigenvalues are obtained by solving $\lambda - n_2 - \frac{n_2}{\lambda - 1} = \mu_i$, the theorem is proved.

Now, we give an alternative proof of the above theorem by an idea from [10].

Theorem 3.3. Let G_1 be a graph with n_1 vertices and G_2 be a graph with n_2 vertices, and their Laplacian spectrum are as in (2.1). Let

$$\lambda_i, \overline{\lambda_i} = \frac{(\mu_i + n_2 + 1) \pm \sqrt{(n_2 + 1 + \mu_i)^2 - 4\mu_i}}{2}$$

for $i = 1, 2, \ldots, n_1$. Then L(G) is

where entries in the first row are the eigenvalues with the multiplicities written below.

Proof. Let $Z_1, Z_2, \ldots, Z_{n_2}$ be the orthogonal of $L(G_2)$ corresponding to the eigenvalue $0 = \delta_1, \delta_2, \ldots, \delta_{n_2}$, respectively. Then for $i = 1, 2, \ldots, n_1$ and for $k = 2, \ldots, n_2$, we

have

$$L(G)\begin{pmatrix} 0_{n_1} \\ Z_k \otimes e_i \end{pmatrix} = \begin{pmatrix} 0_{n_1} \\ (I_{n_2} + L(G_2)) \otimes I_{n_1})(Z_k \otimes e_i) \end{pmatrix}$$
$$= \begin{pmatrix} 0_{n_1} \\ (I_{n_2} + L(G_2))Z_k \otimes I_{n_1}e_i \end{pmatrix}$$
$$= (\delta_k + 1) \begin{pmatrix} 0_{n_1} \\ Z_k \otimes e_i \end{pmatrix}$$

and thus we obtain $n_1(n_2-1)$ eigenvalues and corresponding eigenvectors of L(G). Let $X_1, X_2, \ldots, X_{n_1}$ be the orthogonal eigenvectors of $L(G_1)$ corresponding to the eigenvalues u_1, u_2, \ldots, u_n respectively. Let $F_i = (X^T, \frac{X_i^T}{2}, \dots, \frac{X_i^T}{2})$ for i = 1

the eigenvalues $\mu_1, \mu_2, \ldots, \mu_{n_1}$, respectively. Let $F_i = (X_i^T, \frac{X_i^T}{1-\lambda_i}, \ldots, \frac{X_i^T}{1-\lambda_i})$ for $i = 1, 2, \ldots, n_1$. For any vertex u in the s-th copy of G_2 , $F_i(u) = \frac{X_i(s)}{1-\lambda_i}$, and thus

$$d_G(u)F_i(u) - \sum_{v \sim u} F_i(v) = (d_{G_2}(u) + 1)F_i(u) - X_i(s) - d_{G_2}(u)\frac{X_i(s)}{1 - \lambda_i} = \lambda_i F_i(u).$$

For any vertex u in G_1 , we have $d_{G_1}(u)X_i(u) - \sum_{v \sim u, v \in V(G_1)} X_i(v) = \mu_i X_i(u)$, thus

$$d_{G}(u)F_{i}(u) - \sum_{v \sim u} F_{i}(v) = (d_{G_{1}}(u) + n_{2})X_{i}(u) - \sum_{v \sim u, v \in V(G_{1})} X_{i}(v) - \frac{n_{2}}{1 - \lambda_{i}}X_{i}(v)$$

$$= (d_{G_{1}}(u) + n_{2})F_{i}(u) - \sum_{v \sim u, v \in V(G_{1})} F_{i}(v) - \sum_{v \sim u, v \notin V(G_{1})} F_{i}(v)$$

$$= (d_{G_{1}}(u) + n_{2} - \frac{n_{2}}{1 - \lambda_{i}})X_{i}(u) + (\mu_{i} - d_{G_{1}}(u))X_{i}(u)$$

$$= \lambda_{i}X_{i}(u) = \lambda_{i}F_{i}(u)$$

It follows that $d_{G_1}(u)F_i(u) - \sum_{v \sim u} F_i(v) = \lambda_i F_i(u)$ for every vertex u in G. Similarly, if $\overline{F_i} = (X_i^T, \frac{X_i^T}{1 - \overline{\lambda_i}}, \dots, \frac{X_i^T}{1 - \overline{\lambda_i}})$, then $d_G(u)\overline{F_i(u)} - \sum_{v \sim u} F_i(u) = \mu_i F_i(u)$ for every vertex u in G. Therefore we obtain $2n_1$ eigenvalues $\lambda_i, \overline{\lambda_i}$ and corresponding eigenvectors F_i and $\overline{F_i}$ of L(G) for $i = 1, 2, \dots, n_1$.

Now we have obtained $n_1(n_2 + 1)$ eigenvalues and corresponding eigenvectors of L(G) and it is easy to see that these eigenvectors of L(G) are linearly independent. Hence, the proof is completed.

4. The spectrum and Laplacian spectrum of $G_1 \diamond G_2$

Let G_1 be a r_1 - regular graph with n_1 vertices, m_1 edges and G_2 be any graph with n_2 vertices, m_2 edges. Also let $L(G_1)$ and $L(G_2)$ be the Laplacian matrices of the graphs G_1 and G_2 , respectively. Then the Laplacian matrix of $G = G_1 \diamond G_2$ is

$$L(G) = \begin{pmatrix} L(G_1) + r_1 n_2 I_{n_1} & -R(G_1) \otimes j_{n_2} \\ -(R(G_1) \otimes j_{n_2})^T & I_{n_1} \otimes (2I_{n_2} + L(G_2) \end{pmatrix}$$

where $R(G_1) = (r_{ij})$ is the vertex-edge incident matrix with entry $r_{ij} = 1$ if the vertex i is incident the edge e_i and 0 otherwise.

Theorem 4.1. Let G_1 be an r_1 - regular graph with n_1 vertices, m_1 edges and G_2 be any graph with n_2 vertices, m_2 edges. Also let $\chi_{G_2}(\lambda)$ be the L-coronal of G_2 . Then

$$f_G(\lambda) = \left[f_{G_2}(\lambda - 2) \right]^{m_1} f_{G_1} \left(\frac{\lambda - r_1 n_2 - 2r_1 \chi_{G_2}(\lambda - 1)}{1 - \chi_{G_2}(\lambda - 1)} \right) \left[1 - \chi_{G_2}(\lambda - 1) \right]^{n_1}.$$

In particular, the Laplacian characteristic polynomial of $G_1 \diamond G_2$ is completely determined by the characteristic polynomials $f_{G_1}(\lambda)$ and $f_{G_2}(\lambda)$ and the L-coronal of $\chi_{G_2}(\lambda)$.

Proof. Note that, viewed as a matrix over the field of rational functions $C(\lambda)$, the following equalities make sense. If λ is not a pole of $\chi_{G_2}(\lambda - 1)$, then

$$f_{G_{1} \diamond G_{2}}(\lambda) = \det(\lambda I_{n_{1}+m_{1}n_{2}} - L(G_{1} \diamond G_{2}))$$

$$= \det\begin{pmatrix} \lambda I_{n_{1}} - (L(G_{1}) + r_{1}n_{2}I_{n_{1}}) & R(G_{1}) \otimes j_{n_{2}} \\ (R(G_{1}) \otimes j_{n_{2}})^{T} & \lambda I_{m_{1}n_{2}} - (I_{m_{1}} \otimes (2I_{n_{2}} + L(G_{2})) \end{pmatrix}$$

$$= \det\begin{pmatrix} (\lambda - r_{1}n_{2})I_{n_{1}} - L(G_{1}) & R(G_{1}) \otimes j_{n_{2}} \\ (R(G_{1}) \otimes j_{n_{2}})^{T} & I_{m_{1}} \otimes ((\lambda - 2)I_{n_{2}} - L(G_{2})) \end{pmatrix}$$

$$= \det(I_{m_{1}} \otimes ((\lambda - 2)I_{n_{2}} - L(G_{2})) \times \det B,$$

where $B = (\lambda I_{n_1+m_1n_2} - L(G_1)/(I_{m_1} \otimes ((\lambda-2)I_{n_2} - L(G_2)))$ is the Schur complement with respect to $I_{m_1} \otimes ((\lambda-2)I_{n_2} - L(G_2))$. Using many elementary results of Kronecker product of matrices, one has $det(I_{m_1} \otimes ((\lambda-2)I_{n_2} - L(G_2)) = ((\lambda-2)I_{n_2} - L(G_2))^{m_1}$ and

$$detB = det[(\lambda I_{n_1+m_1n_2} - L(G_1)/(I_{m_1} \otimes ((\lambda - 2)I_{n_2} - L(G_2))]$$

$$= det\{(\lambda - r_1n_2)I_{n_1} - L(G_1) - (R(G_1) \otimes j_{n_2})$$

$$[(I_{m_1}^{-1} \otimes ((\lambda - 2)I_{n_2} - L(G_2)]^{-1}(R(G_1) \otimes j_{n_2})^T\}$$

$$= det\{(\lambda - r_1n_2)I_{n_1} - L(G_1) - (R(G_1)I_{m_1}R(G_1)^T)$$

$$\otimes (j_{n_2}((\lambda - 2)I_{n_2} - L(G_2))^{-1}j_{n_2}^T)\}$$

$$= det\{(\lambda - r_1n_2)I_{n_1} - L(G_1) - (2r_1I_{n_1} - L(G_1)) \otimes \chi_{G_2}(\lambda - 1)\}$$

$$= det\{(\lambda - r_1n_2 - 2r_1\chi_{G_2}(\lambda - 1))I_{n_1} - (1 - \chi_{G_2}(\lambda - 1))L(G_1)\}$$

$$= f_{G_1}(\frac{\lambda - r_1n_2 - 2r_1\chi_{G_2}(\lambda - 1)}{1 - \chi_{G_2}(\lambda - 1)})[1 - \chi_{G_2}(\lambda - 1)]^{n_1},$$

where $R(G_1)R(G_1)^T = 2r_1I_{n_1} - L(G_1)$. Hence, the Laplacian characteristic polynomial of G is $f_G(\lambda) = [f_{G_2}(\lambda - 2)]^{m_1} f_{G_1}(\frac{\lambda - r_1 n_2 - 2r_1 \chi_{G_2}(\lambda - 1)}{1 - \chi_{G_2}(\lambda - 1)})[1 - \chi_{G_2}(\lambda - 1)]^{n_1}$.

The following Theorem 4.2, first addressed in [9], is an immediate consequence of Theorem 4.1. We remark that here our method is straight-forward and different from that of Theorem 2.4.

Theorem 4.2. Let G_1 be an r_1 - regular graph with n_1 vertices, m_1 edges and G_2 be any graph with n_2 vertices, m_2 edges. Suppose that $L(G_1) = (\mu_1, \mu_2, \dots, \mu_{n_1})$, $L(G_2) = (\delta_1, \delta_2, \dots, \delta_{n_2})$. Then the Laplacian spectrum of $G = G_1 \diamond G_2$ is given by

- (i) The eigenvalue $\delta_j + 2$ with multiplicity m_1 for every non-maximum eigenvalue $\delta_i (j = 2, ..., n_2)$ of $L(G_2)$,
- (ii) Two multiplicity-one eigenvalues $\frac{r_1n_2+\mu_i+2\pm\sqrt{(r_1n_2+\mu_i+2)^2-4(n_i+2)\mu_i}}{2}$ for each eigenvalue $\mu_i(i=1,2,\ldots,n_1)$ of $L(G_1)$ and
- (iii) The eigenvalue 2 with multiplicity $m_1 n_1$ (if possible).

Proof. Since the sum of all entries on every row of Laplacian matrix is zero, we have $L(G_2)j_{n_2}=0j_{n_2}$, and then $\chi_{G_2}(\lambda)=\frac{n_2}{\lambda-1}$. The only pole of $\chi_{G_2}(\lambda)$ is $\lambda=1$, which is equivalent to the minimial Laplacian eigenvalue $\lambda-2=0$ of G_2 .

Suppose that λ is not the only pole of $\chi_{G_2}(\lambda)$. By theorem 4.1, one has:

- (i) The $m_1(n_2-1)$ eigenvalues are δ_j+2 with multiplicity m_1 for every non-minnimal eigenvalue δ_j $(j=2,\ldots,n_2)$ of $L(G_1)$
- (ii) The $2n_1$ eigenvalues are obtained by solving $\lambda r_1n_2 2r_1\frac{n_2}{\lambda 2} = \mu_i(1 \frac{n_2}{\lambda 2})$ for each eigenvalue $\mu_i(i = 1, \dots, n_1)$.
- (iii) Now we obtain $m_1(n_2-1)+2n_1$ Laplacian eigenvalues of G. The other $n_1+m_1n_2-m_1(n_2-1)-2n_1=m_1-n_1$ Laplacian eigenvalues of G must come from the only pole $\lambda=2$ of $\chi_{G_2}(\lambda-1)$. This completes the proof of the theorem.

Acknowledgment: I am grateful to the anonymous referees for some friendly and helpful revising suggestions.

References

- [1] S. Barik, S. Pati, B. K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 24 (2007), 47–56.
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading, PA, 1969.
- [3] C. McLeman, E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011), 998–1007.
- [4] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
- [5] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197/198 (1994), 143–176.
- [6] B. Mohar, *The Laplacian spectrum of graphs*, Graph Theory, Combinatorics and Applications John Wiley, New York, pp. 871–898, 1991.
- [7] Y. Hou, W.-C. Shiu, *The spectrum of the edge corona of two graphs*, Electron. J. Linear Algebra **20** (2010), 586–594.
- [8] R. A. Horn and C. R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.
- [9] Y. Hou, W.-C. Shiu, *The spectrum of the edge corona of two graphs*, Electron. J. Linear Algebra **20** (2010), 586–594.
- [10] S.-L. B. Zhou, The signless Laplacian spectra of the corona and edge corona of two graphs, Linear and Multilinear Algebra 20 (2012), 1–8.

¹DEPARTMENT OF MATHEMATICS AND STATISTICS, HEXI UNIVERSITY, ZHANGYE, GANSU, P. R. CHINA *E-mail address*: Liuqun09@yeah.net

²Qun Liu Department of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, P. R. China *E-mail address*: Liuqun09@yeah.net