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THE LAPLACIAN SPECTRUM OF CORONA OF TWO GRAPHS

QUN LIU 1,2

Abstract. Let G1,G2 be two connected graphs. Denote the corona and the edge
corona of G1, G2 by G1 ◦ G2 and G = G1 � G2, respectively. In this paper, we
compute the Laplacian spectrum of the corona G◦H of two arbitrary graphs G and
H and the edge corona of a connected regular graph G1 and an arbitrary graph G2.

1. Introduction

Throughout this paper, we consider only simple graphs. Let G = (V (G), E(G)) be
a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}.
The adjacency matrix of G denoted by A(G) is defined as A(G) = (aij), where (aij) =
1 if vertices i and j are adjacent in G and 0 otherwise. The Laplacian matrix of G,
denoted by L(G) is defined as D(G)−A(G), where D(G) is the diagonal degree matrix
ofG. The Laplacian spectrum of L(G) is defined as L(G) = (µ1(G), µ2(G), . . . , µn(G))
where 0 = µ1(G) ≤ µ2(G) ≤ · · · ≤ µn(G) are the eigenvalues of L(G). There is
extensively literature available on works related to Laplacian spectrum of a graph.
See [4, 5, 6] and the references therein to know more.

The following two definitions come frow [2, 9]. Let G1 and G2 be two graphs on
disjoint sets of n1 and n2 vertices, m1 and m2 edges, respectively. The corona G1 ◦G2

of G1 and G2 is defined as the graph obtained by taking one copy of G1 and n1 copies
of G2, and then joining the ith vertex of G1 to every vertex in the ith copy of G2.
The edge corona G1 �G2 of G1 and G2 is defined as the graph obtained by taking one
copy of G1 and m1 copies of G2, and then joining two end-vertices of the ith edge of
G1 to every vertex in the i-th copy of G2.
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Note that the corona G1 ◦G2 has n1(n2 + 1) vertices and m1 + n1(m2 + n2) edges,
and that the edge corona G1 � G2 has n1 + m1n2 vertices and m1 + m1(m2 + 2n2)
edges.

There have been some results on the corona and the edge corona of two graphs.
Barik et al. [1] provided complete information about the adjacency spectrum of G1◦G2

for a connected graph G1 and a regular graph G2, and complete information about
the Laplacian spectrum of G1 ◦G2 using the spectrum (and the Laplacian spectrum,
respectively) of G1 and G2. In 2010, Hou and Shiu [7] considered the adjacency
spectrum of G1 � G2 for a connected regular graph G1 and a regular graph G2 and
the Laplacian spectrum of G1 �G2 for a connected regular graph G1 and a graph G2.
Recently, McLeman and McNicholas [3], by introducing a new invariant called the
coronal of a graph, also discussed the spectrum of G1 ◦G2.

Motivated by these researches, we discuss the Laplacian spectrum of G1 ◦ G2 and
G1 � G2. We also consider the spectrum of G1 � G2 when G1 is regular. This paper
is organized as follows. In Section 3, we introduce a new invariant, the L-coronal
of a Laplacian matrix, and use it to compute the characteristic polynomial of the
Laplacian matrix of G1 ◦G2. Using this result, we give a complete description of the
Laplacian eigenvalues of G1 ◦ G2 when G1 is an arbitrary graph and G2 is also an
arbitrary graph. In Section 4, we give the characteristic polynomials of the Laplacian
matrix of G1 � G2 for a regular graph G1 and any graph G2. Using these results,
we give a complete description of Laplacian eigenvalues of G1 � G2 when G1 is an
r1-regular graph and G2 is an arbitrary graph.

2. Preliminaries

The Kronecker product of matrices A = (aij) and B, denoted by A⊗B, is defined
to be the partition matrix (aijB). See [8]. In cases where each multiplication makes
sense, we have M1M2 ⊗M3M4 = (M1 ⊗M3)(M2 ⊗M4).

This implies that for nonsingular matrix M and N , (M⊗N)−1 = M−1⊗N−1, Recall
also that for square matrices M and N of order k and s, respectively. det(M ⊗N) =
(detM)k(detN)s

If M4 is invertible, then

det

(
M1 M2

M3 M4

)
= det(M4)det(M1 −M2M

−1
4 M3).

Let jn be the column vector of size n with all entries equal to one, 0n a column
zero vector of size n, and In the identity matrix of order n. Let ei be the i-th unit
column vector of size n1 for i = 1, 2, · · ·, n1. For a vertex u of a graph G, let dG(u)
be the degree of vertex u in G. For vertices u and v in a graph, u ∼ v means that v
is adjacent to u.

For graphs G1 with n1 vertices and G2 with n2 vertices we have

(2.1) L(G1) = (µ1, µ2, · · ·, µn1), L(G2) = (δ1, δ2, · · ·, δn2).
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3. The Laplacian spectrum of corona

In [3], McLeman and McNicholas introduced a new invariant, the coronal of a graph
G of order n. It is defined to be the sum of the entries of the matrix (λIn − A)−1,
where In and A are the identity matrix of order n and the adjacency matrix of G,
respectively. Now we shall generalize this concept to Laplacian matrix of graph G.

For a graph G on n vertices, the Laplacian characteristic polynomial of G is fG(λ) =
det(λIn − L(G)).

Definition 3.1. Let G be a graph on n vertices, with the Laplacian matrix L(G).
Note that, viewed as a matrix over the field of rational functions C(λ), the characteris-
tic matrix ((λ−1)In−L(G)) is invertible since its determinant det((λ−1)In−L(G)) =
fG(λ−1) 6= 0, The L-coronal χH(λ) ∈ C(λ) of G is defined to be the sum of the entries
of the matrix. Note this can be calculated as χG(λ) = jTn ((λ− 1)In − L(G))−1jn.

Our main theorem is that, beyond the spectra of G and H, only the coronal of H
is needed to compute the spectrum of G = G ◦H.

Let G1 be a graph with V (G1) = {1, 2, · · ·, n1} and G2 be a graph with n2 vertices.
Let G = G1 ◦G2. Then

A(G) =

(
A(G1) jTn2

⊗ In1

(jTn2
⊗ In1)

T A(G2)⊗ In1

)
L(G) =

(
L(G1) + n2In1 −jTn2

⊗ In1

−(jTn2
⊗ In1)

T (In2 + L(G2)⊗ In1

)
Theorem 3.1. Let G1 be a graph with n1 vertices, G2 be a graph with n2 vertices.
Let χG2(λ) be the L-coronal of G2. Then

fG1◦G2(λ) = (fG2(λ− 1))n1fG1(λ− n2 − χG2(λ)).

In particular, the Laplacian characteristic polynomial of G1 ◦ G2 is completely de-
termined by the Laplacian characteristic polynomials fG1(λ) and fG2(λ) and the L-
coronal of χG2(λ).

Proof. It is easily seen that

fG1◦G2(λ) = det(λIn1(n2+1) − L(G1 ◦G2))

= det

(
λIn1 − L(G1)− n2In1 jTn2

⊗ In1

(jTn2
⊗ In1)

T λIn1n2 − (In2 + L(G2))⊗ In1

)
= det

(
λIn1 − L(G1)− n2In1 jTn2

⊗ In1

(jTn2
⊗ In1)

T (λIn2 − (In2 + L(G2))⊗ In1

)
= det((λIn2 − (In2 + L(G2)))⊗ In1)× det(λIn1 − L(G1)− n2In1

− (jTn2
⊗ In1)((λIn2 − (In2 + L(G2)))⊗ In1)

−1(jTn2
⊗ In1)

T
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= det((λ− 1)In2 − L(G2))
n1 × det(λIn1 − L(G1)− n2In1

− (jTn2
(λIn2 − In2 − L(G2))

−1)jn2)⊗ In1)

= det((λ− 1)In2 − L(G2))
n1det((λ− χG2(λ)− n2)In1 − L(G1))

= (fG2(λ− 1))n1fG1(λ− n2 − χG2(λ)),

as desired. �

The following Theorem 3.2, first addressed in [1], is an immediate consequence of
Theorem 3.1. We remark that here our method is straight-forward and different from
that of Theorem 2.4.

Theorem 3.2. Let G1 be any graph with n1vertices, m1 edges and G2 be any graph
with n2 vertices, m2 edges. Suppose that L(G1) = (µ1, µ2, . . . , µn1) and L(G2) =
(δ1, δ2, . . . , δn2). Then the Laplacian spectrum of G1 ◦G2 is given by

(i) The eigenvalue δj+1 with multiplicity n1 for every eigenvalue δj(j = 2, . . . , n2)
of L(G2),

(ii) Two multiplicity-one eigenvalues
(µi+n2+1)±

√
(n2+1+µi)2−4µi
2

for each eigenvalue
µi(i = 1, 2, . . . , n1) of L(G1).

Proof. Since the sum of all entries on every row of Laplacian matrix is zero, we have
L(G2)jn2 = 0jn2 , and then ((λ− 1)In2 − L(G2))jn2 = (λ− 1)jn2 . Thus

χG2(λ) = jTn2
((λ− 1)In2 − L(G2))

−1jn2 =
jTn2
jn2

λ− 1
=

n2

λ− 1

The only pole of χG2(λ) is λ = 1. By Theorem 3.1, δj + 1 is an eigenvalue of
L(G1 ◦ G2) with multiplicity of n1 for j = 2, . . . , n2. The remaining 2n1 eigenvalues
are obtained by solving λ− n2 − n2

λ−1 = µi, the theorem is proved. �

Now, we give an alternative proof of the above theorem by an idea from [10].

Theorem 3.3. Let G1 be a graph with n1 vertices and G2 be a graph with n2 vertices,
and their Laplacian spectrum are as in (2.1). Let

λi, λi =
(µi + n2 + 1)±

√
(n2 + 1 + µi)2 − 4µi
2

for i = 1, 2, . . . , n1. Then L(G) is(
δ1 + 1, δ2 + 1, . . . δn2−1 + 1, λ1, λ1, . . . λn1 , λn1

n1, n1, . . . n1, 1, 1, . . . 1, 1

)
,

where entries in the first row are the eigenvalues with the multiplicities written below.

Proof. Let Z1, Z2, . . . , Zn2 be the orthogonal of L(G2) corresponding to the eigenvalue
0 = δ1, δ2, . . . , δn2 , respectively. Then for i = 1, 2, . . . , n1 and for k = 2, . . . , n2 , we
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have

L(G)

(
0n1

Zk ⊗ ei

)
=

(
0n1

(In2 + L(G2))⊗ In1)(Zk ⊗ ei)

)
=

(
0n1

(In2 + L(G2))Zk ⊗ In1ei

)
= (δk + 1)

(
0n1

Zk ⊗ ei

)
and thus we obtain n1(n2 − 1) eigenvalues and corresponding eigenvectors of L(G).

Let X1, X2, . . . , Xn1 be the orthogonal eigenvectors of L(G1) corresponding to

the eigenvalues µ1, µ2, . . . , µn1 , respectively. Let Fi = (XT
i ,

XT
i

1−λi , . . . ,
XT

i

1−λi ) for i =

1, 2, . . . , n1. For any vertex u in the s-th copy of G2, Fi(u) = Xi(s)
1−λi , and thus

dG(u)Fi(u)−
∑
v∼u

Fi(v) = (dG2(u) + 1)Fi(u)−Xi(s)− dG2(u)
Xi(s)

1− λi
= λiFi(u).

For any vertex u in G1, we have dG1(u)Xi(u)−
∑

v∼u,v∈V (G1)
Xi(v) = µiXi(u), thus

dG(u)Fi(u)−
∑
v∼u

Fi(v) = (dG1(u) + n2)Xi(u)−
∑

v∼u,v∈V (G1)

Xi(v)− n2

1− λi
Xi(v)

= (dG1(u) + n2)Fi(u)−
∑

v∼u,v∈V (G1)

Fi(v)−
∑

v∼u,v /∈V (G1)

Fi(v)

= (dG1(u) + n2 −
n2

1− λi
)Xi(u) + (µi − dG1(u))Xi(u)

= λiXi(u) = λiFi(u)

It follows that dG1(u)Fi(u) −
∑

v∼u Fi(v) = λiFi(u) for every vertex u in G. Sim-

ilarly, if Fi = (XT
i ,

XT
i

1−λi
, . . . ,

XT
i

1−λi
) , then dG(u)Fi(u) −

∑
v∼u Fi(u) = µiFi(u) for

every vertex u in G. Therefore we obtain 2n1 eigenvalues λi, λi and corresponding
eigenvectors Fi and Fi of L(G) for i = 1, 2, . . . , n1.

Now we have obtained n1(n2 + 1) eigenvalues and corresponding eigenvectors of
L(G) and it is easy to see that these eigenvectors of L(G) are linearly independent.
Hence, the proof is completed. �

4. The spectrum and Laplacian spectrum of G1 �G2

Let G1 be a r1− regular graph with n1 vertices, m1 edges and G2 be any graph
with n2 vertices, m2 edges. Also let L(G1) and L(G2) be the Laplacian matrices of
the graphs G1 and G2, respectively. Then the Laplacian matrix of G = G1 �G2 is

L(G) =

(
L(G1) + r1n2In1 −R(G1)⊗ jn2

−(R(G1)⊗ jn2)
T In1 ⊗ (2In2 + L(G2)

)



168 Q. LIU

where R(G1) = (rij) is the vertex-edge incident matrix with entry rij = 1 if the vertex
i is incident the edge ej and 0 otherwise.

Theorem 4.1. Let G1 be an r1− regular graph with n1 vertices, m1 edges and G2 be
any graph with n2 vertices, m2 edges. Also let χG2(λ) be the L-coronal of G2. Then

fG(λ) = [fG2(λ− 2)]m1fG1(
λ− r1n2 − 2r1χG2(λ− 1)

1− χG2(λ− 1)
)[1− χG2(λ− 1)]n1 .

In particular, the Laplacian characteristic polynomial of G1 � G2 is completely de-
termined by the characteristic polynomials fG1(λ) and fG2(λ) and the L-coronal of
χG2(λ).

Proof. Note that, viewed as a matrix over the field of rational functions C(λ), the
following equalities make sense. If λ is not a pole of χG2(λ− 1), then

fG1�G2(λ) = det(λIn1+m1n2 − L(G1 �G2))

= det

(
λIn1 − (L(G1) + r1n2In1) R(G1)⊗ jn2

(R(G1)⊗ jn2)
T λIm1n2 − (Im1 ⊗ (2In2 + L(G2))

)
= det

(
(λ− r1n2)In1 − L(G1) R(G1)⊗ jn2

(R(G1)⊗ jn2)
T Im1 ⊗ ((λ− 2)In2 − L(G2))

)
= det(Im1 ⊗ ((λ− 2)In2 − L(G2))× detB,

where B = (λIn1+m1n2 −L(G1)/(Im1 ⊗ ((λ− 2)In2 −L(G2)) is the Schur complement
with respect to Im1⊗((λ−2)In2−L(G2)). Using many elementary results of Kronecker
product of matrices, one has det(Im1 ⊗ ((λ− 2)In2 −L(G2)) = ((λ− 2)In2 −L(G2))

m1

and

detB = det[(λIn1+m1n2 − L(G1)/(Im1 ⊗ ((λ− 2)In2 − L(G2))]

= det{(λ− r1n2)In1 − L(G1)− (R(G1)⊗ jn2)

[(I−1m1
⊗ ((λ− 2)In2 − L(G2)]

−1(R(G1)⊗ jn2)
T}

= det{(λ− r1n2)In1 − L(G1)− (R(G1)Im1R(G1)
T )

⊗ (jn2((λ− 2)In2 − L(G2))
−1jTn2

)}
= det{(λ− r1n2)In1 − L(G1)− (2r1In1 − L(G1))⊗ χG2(λ− 1)}
= det{(λ− r1n2 − 2r1χG2(λ− 1))In1 − (1− χG2(λ− 1))L(G1)}

= fG1(
λ− r1n2 − 2r1χG2(λ− 1)

1− χG2(λ− 1)
)[1− χG2(λ− 1)]n1 ,

where R(G1)R(G1)
T = 2r1In1 − L(G1). Hence, the Laplacian characteristic polyno-

mial of G is fG(λ) = [fG2(λ− 2)]m1fG1(
λ−r1n2−2r1χG2

(λ−1)
1−χG2

(λ−1) )[1− χG2(λ− 1)]n1 . �

The following Theorem 4.2, first addressed in [9], is an immediate consequence of
Theorem 4.1. We remark that here our method is straight-forward and different from
that of Theorem 2.4.
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Theorem 4.2. Let G1 be an r1− regular graph with n1vertices, m1 edges and G2

be any graph with n2 vertices, m2 edges. Suppose that L(G1) = (µ1, µ2, · · ·, µn1),
L(G2) = (δ1, δ2, · · ·, δn2). Then the Laplacian spectrum of G = G1 �G2 is given by

(i) The eigenvalue δj + 2 with multiplicity m1 for every non-maximum eigenvalue
δj(j = 2, . . . , n2) of L(G2),

(ii) Two multiplicity-one eigenvalues
r1n2+µi+2±

√
(r1n2+µi+2)2−4(ni+2)µi

2
for each eigen-

value µi(i = 1, 2, . . . , n1) of L(G1) and
(iii) The eigenvalue 2 with multiplicity m1 − n1(if possible).

Proof. Since the sum of all entries on every row of Laplacian matrix is zero, we have
L(G2)jn2 = 0jn2 , and then χG2(λ) = n2

λ−1 . The only pole of χG2(λ) is λ = 1, which is
equivalent to the minimial Laplacian eigenvalue λ− 2 = 0 of G2.

Suppose that λ is not the only pole of χG2(λ). By theorem 4.1, one has:
(i) The m1(n2−1) eigenvalues are δj+2 with multiplicity m1 for every non-minnimal

eigenvalue δj (j = 2, . . . , n2) of L(G1)
(ii) The 2n1 eigenvalues are obtained by solving λ − r1n2 − 2r1

n2

λ−2 = µi(1 − n2

λ−2)
for each eigenvalue µi(i = 1, . . . , n1).

(iii) Now we obtain m1(n2 − 1) + 2n1 Laplacian eigenvalues of G. The other n1 +
m1n2 −m1(n2 − 1)− 2n1 = m1 − n1 Laplacian eigenvalues of G must come from the
only pole λ = 2 of χG2(λ− 1). This completes the proof of the theorem. �

Acknowledgment: I am grateful to the anonymous referees for some friendly and
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