LAPLACIAN ENERGY OF UNION AND CARTESIAN PRODUCT
AND LAPLACIAN EQUIENERGETIC GRAPHS

HARISHCHANDRA S. RAMANE1, GOURAMMA A. GUDODAGI1, AND IVAN GUTMAN2

ABSTRACT. The Laplacian energy of a graph G with n vertices and m edges is defined as $\text{LE}(G) = \sum_{i=1}^{n} |\mu_i - 2m/n|$, where $\mu_1, \mu_2, \ldots, \mu_n$ are the Laplacian eigenvalues of G. If two graphs G_1 and G_2 have equal average vertex degrees, then $\text{LE}(G_1 \cup G_2) = \text{LE}(G_1) + \text{LE}(G_2)$. Otherwise, this identity is violated. We determine a term Ξ, such that $\text{LE}(G_1) + \text{LE}(G_2) - \Xi \leq \text{LE}(G_1 \cup G_2) \leq \text{LE}(G_1) + \text{LE}(G_2) + \Xi$ holds for all graphs. Further, by calculating LE of the Cartesian product of some graphs, we construct new classes of Laplacian non-cospectral, Laplacian equienergetic graphs.

1. Introduction

Let G be a finite, simple, undirected graph with n vertices v_1, v_2, \ldots, v_n and m edges. In what follows, we say that G is an (n,m)-graph. Let $A(G)$ be the adjacency matrix of G and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues.

Let $D(G)$ be the diagonal matrix whose (i,i)-th entry is the degree of a vertex v_i. The matrix $C(G) = D(G) - A(G)$ is called the Laplacian matrix of G. The Laplacian polynomial of G is defined as $\psi(G, \mu) = \det[\mu I - C(G)]$, where I is an identity matrix. The eigenvalues of $C(G)$, denoted by $\mu_i = \mu_i(G)$, $i = 1, 2, \ldots, n$, are called the Laplacian eigenvalues of G [16]. Two graphs are said to be Laplacian cospectral if they have same Laplacian eigenvalues. The adjacency eigenvalues and Laplacian eigenvalues satisfy the following conditions:

$$\sum_{i=1}^{n} \lambda_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} \mu_i = 2m.$$
The energy of a graph G is defined as

$$E = E(G) = \sum_{i=1}^{n} |\lambda_i|.$$

It was introduced by one of the present authors in the 1970s, and since then has been much studied in both chemical and mathematical literature. For details see the book [15] and the references cited therein.

The Laplacian energy of a graph was introduced a few years ago [13] and is defined as

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i(G) - \frac{2m}{n} \right|.$$

This definition is chosen so as to preserve the main features of the ordinary graph energy E, see [18]. Basic properties and other results on Laplacian energy can be found in the survey [1], the recent papers [6–8,11,12,17,19], and the references cited therein.

2. LAPLACIAN ENERGY OF UNION OF GRAPHS

Let G_1 and G_2 be two graphs with disjoint vertex sets. Let for $i = 1, 2$, the vertex and edges sets of G_i be, respectively, V_i and E_i. The union of G_1 and G_2 is a graph $G_1 \cup G_2$ with vertex set $V_1 \cup V_2$ and the edge set $E_1 \cup E_2$. If G_1 is an (n_1, m_1)-graph and G_2 is an (n_2, m_2)-graph then $G_1 \cup G_2$ has $n_1 + n_2$ vertices and $m_1 + m_2$ edges. It is easy to see that the Laplacian spectrum of $G_1 \cup G_2$ is the union of the Laplacian spectra of G_1 and G_2.

In [13] it was proven that if G_1 and G_2 have equal average vertex degrees, then $LE(G_1 \cup G_2) = LE(G_1) + LE(G_2)$. If the average vertex degrees are not equal, that is $\frac{2m_1}{n_1} \neq \frac{2m_2}{n_2}$, then it may be either $LE(G_1 \cup G_2) > LE(G_1) + LE(G_2)$ or $LE(G_1 \cup G_2) < LE(G_1) + LE(G_2)$ or, exceptionally, $LE(G_1 \cup G_2) = LE(G_1) + LE(G_2)$ [13].

In this section we study the Laplacian establish some additional relations between $LE(G_1 \cup G_2)$ and $LE(G_1) + LE(G_2)$.

Theorem 2.1. Let G_1 be an (n_1, m_1)-graph and G_2 be an (n_2, m_2)-graph, such that $\frac{2m_1}{n_1} > \frac{2m_2}{n_2}$. Then

$$LE(G_1) + LE(G_2) - \frac{4(n_2m_1 - n_1m_2)}{n_1 + n_2} \leq LE(G_1 \cup G_2) \leq LE(G_1) + LE(G_2) + \frac{4(n_2m_1 - n_1m_2)}{n_1 + n_2}.$$

(2.1)
Proof. For the sake of simplicity, denote $G_1 \cup G_2$ by G. Then G is an $(n_1 + n_2, m_1 + m_2)$-graphs. By the definition of Laplacian energy,

$$LE(G_1 \cup G_2) = \sum_{i=1}^{n_1 + n_2} \left| \mu_i(G) - \frac{2(m_1 + m_2)}{n_1 + n_2} \right|$$

$$= \sum_{i=1}^{n_1} \left| \mu_i(G_1) - \frac{2(m_1 + m_2)}{n_1 + n_2} \right| + \sum_{i=n_1+1}^{n_1 + n_2} \left| \mu_i(G) - \frac{2(m_1 + m_2)}{n_1 + n_2} \right|$$

$$= \sum_{i=1}^{n_1} \left| \mu_i(G_1) - \frac{2(m_1 + m_2)}{n_1 + n_2} \right| + \sum_{i=1}^{n_2} \left| \mu_i(G_2) - \frac{2(m_1 + m_2)}{n_1 + n_2} \right|$$

$$\leq \sum_{i=1}^{n_1} \left| \mu_i(G_1) - \frac{2m_1}{n_1} \right| + n_1 \left| \frac{2m_1}{n_1} - \frac{2(m_1 + m_2)}{n_1 + n_2} \right|$$

$$+ \sum_{i=1}^{n_2} \left| \mu_i(G_2) - \frac{2m_2}{n_2} \right| + n_2 \left| \frac{2m_2}{n_2} - \frac{2(m_1 + m_2)}{n_1 + n_2} \right|$$

(2.2)

Since $n_2m_1 > n_1m_2$, Eq. (2.2) becomes

$$LE(G_1 \cup G_2) \leq LE(G_1) + n_1 \left(\frac{2m_1}{n_1} - \frac{2(m_1 + m_2)}{n_1 + n_2} \right)$$

$$+ LE(G_2) + n_2 \left(- \frac{2m_2}{n_2} + \frac{2(m_1 + m_2)}{n_1 + n_2} \right)$$

$$= LE(G_1) + LE(G_2) + \frac{4(n_2m_1 - n_1m_2)}{n_1 + n_2}$$

which is an upper bound.

To obtain the lower bound, we just have to note that in full analogy to the above arguments,

$$LE(G_1 \cup G_2) \geq \sum_{i=1}^{n_1} \left| \mu_i(G_1) - \frac{2m_1}{n_1} \right| - n_1 \left| \frac{2m_1}{n_1} - \frac{2(m_1 + m_2)}{n_1 + n_2} \right|$$
\[\sum_{i=1}^{n_2} \vert \mu_i(G_2) - \frac{2m_2}{n_2} \vert - n_2 \left(\frac{2m_2}{n_2} - \frac{2(m_1 + m_2)}{n_1 + n_2} \right). \]

(2.3)

Since \(n_2m_1 > n_1m_2 \), the Eq. (2.3) becomes

\[LE(G_1 \cup G_2) \geq LE(G_1) - n_1 \left(\frac{2m_1}{n_1} - \frac{2(m_1 + m_2)}{n_1 + n_2} \right) \]
\[+ LE(G_2) - n_2 \left(\frac{2m_2}{n_2} + \frac{2(m_1 + m_2)}{n_1 + n_2} \right) \]
\[= LE(G_1) + LE(G_2) - \frac{4(n_2m_1 - n_1m_2)}{n_1 + n_2} \]

which is a lower bound.

\textbf{Corollary 2.1.} [13] Let \(G_1 \) be an \((n_1, m_1)\)-graph and \(G_2 \) be \((n_2, m_2)\)-graph such that \(\frac{2m_1}{n_1} = \frac{2m_2}{n_2} \). Then

\[LE(G_1 \cup G_2) = LE(G_1) + LE(G_2). \]

\textbf{Corollary 2.2.} Let \(G_1 \) be an \(r_1 \)-regular graph on \(n_1 \) vertices and \(G_2 \) be an \(r_2 \)-regular graph on \(n_2 \) vertices, such that \(r_1 > r_2 \). Then

\[LE(G_1) + LE(G_2) - \frac{2n_1n_2(r_1 - r_2)}{n_1 + n_2} \leq LE(G_1 \cup G_2) \]
\[\leq LE(G_1) + LE(G_2) + \frac{2n_1n_2(r_1 - r_2)}{n_1 + n_2}. \]

\textit{Proof.} Result follows by setting \(m_1 = n_1r_1/2 \) and \(m_2 = n_2r_2/2 \) into Theorem 2.1. \(\square \)

\textbf{Theorem 2.2.} Let \(G \) be an \((n, m)\)-graph and \(\overline{G} \) be its complement, and let \(m > n(n-1)/4 \). Then

\[LE(G) + LE(\overline{G}) - \left[4m - n(n-1) \right] \leq LE(G \cup \overline{G}) \leq LE(G) + LE(\overline{G}) + \left[4m - n(n-1) \right]. \]

\textit{Proof.} \(\overline{G} \) is a graph with \(n \) vertices and \(n(n-1)/2 - m \) edges. Substituting this into Eq. (2.1), the result follows. \(\square \)

\textbf{Theorem 2.3.} Let \(G \) be an \((n, m)\)-graph and \(G' \) be the graph obtained from \(G \) by removing \(k \) edges, \(0 \leq k \leq m \). Then

\[LE(G) + LE(G') - 2k \leq LE(G \cup G') \leq LE(G) + LE(G') + 2k. \]

\textit{Proof.} The number of vertices of \(G' \) is \(n \) and the number of edges is \(m-k \). Substituting this in Eq. (2.1), the result follows. \(\square \)
3. LAPLACIAN ENERGY OF CARTESIAN PRODUCT

Let G be a graph with vertex set V_1 and H be a graph with vertex set V_2. The Cartesian product of G and H, denoted by $G \times H$ is a graph with vertex set $V_1 \times V_2$, such that two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G \times H$ if and only if either $u_1 = u_2$ and v_1 is adjacent to v_2 in H or $v_1 = v_2$ and u_1 is adjacent to u_2 in G [14].

Lemma 3.1. [9] Let $A = \begin{bmatrix} A_0 & A_1 \\ A_1 & A_0 \end{bmatrix}$ be a symmetric 2×2 block matrix. Then the spectrum of A is the union of the spectra of $A_0 + A_1$ and $A_0 - A_1$.

Theorem 3.1. If $\mu_1, \mu_2, \ldots, \mu_n$ are the Laplacian eigenvalues of a graph G, then the Laplacian eigenvalues of $G \times K_2$ are $\mu_1, \mu_2, \ldots, \mu_n$ and $\mu_1 + 2, \mu_2 + 2, \ldots, \mu_n + 2$.

Proof. The Laplacian matrix of $G \times K_2$ is
\[
C(G \times K_2) = \begin{bmatrix} C(G) + I & -I \\ -I & C(G) + I \end{bmatrix} = \begin{bmatrix} C_0 & C_1 \\ C_1 & C_0 \end{bmatrix}
\]

where $C(G)$ is the Laplacian matrix of G and I is an identity matrix of order n. By Lemma 3.1, the Laplacian spectrum of $G \times K_2$ is the union of the spectra of $C_0 + C_1$ and $C_0 - C_1$.

Here $C_0 + C_1 = C(G)$. Therefore, the eigenvalues of $C_0 + C_1$ are the Laplacian eigenvalues of G.

Because $C_0 - C_1 = C(G) + 2I$, the characteristic polynomial of $C_0 - C_1$ is
\[
\psi(C_0 - C_1, \mu) = \det [\mu I - (C_0 - C_1)] = \det [\mu I - (C(G) + 2I)]
\]
\[
= \det [(\mu - 2)I - C(G)] = \psi(G, \mu - 2).
\]

Therefore the eigenvalues of $C_0 - C_1$ are $\mu_i + 2, i = 1, 2, \ldots, n$. □

The Laplacian eigenvalues of the complete graph K_n are n ($n - 1$ times) and 0. The Laplacian eigenvalues of the complete bipartite regular graph $K_{k,k}$ are $2k, k$ ($2k - 2$ times) and 0. The Laplacian eigenvalues of the cocktail party graph $CP(k)$ (the regular graph on $n = 2k$ vertices and of degree $2k - 2$) are $2k$ ($k - 1$ times), $2k - 2$ (k times) and 0 [16]. Applying Theorem 3.1, we directly arrive at the following example.

Example 3.1.

\[
LE(K_n \times K_2) = \begin{cases}
4n - 4, & \text{if } n > 2, \\
2n, & \text{if } n \leq 2,
\end{cases}
\]

\[
LE(K_{k,k} \times K_2) = \begin{cases}
8k - 4, & \text{if } k > 1, \\
6k - 2, & \text{if } k = 1,
\end{cases}
\]

\[
LE(CP(k) \times K_2) = 10k - 8, \quad \text{if } k \geq 2.
\]

Theorem 3.2. Let G be an (n,m)-graph. Then

\[
2[LE(G) - n] \leq LE(G \times K_2) \leq 2[LE(G) + n].
\]
Proof. Let \(\mu_1, \mu_2, \ldots, \mu_n \) be the Laplacian eigenvalues of \(G \). Then by Theorem 3.1, the Laplacian eigenvalues of \(G \times K_2 \) are \(\mu_i, i = 1, 2, \ldots, n \) and \(\mu_i + 2, i = 1, 2, \ldots, n \). The graph \(G \times K_2 \) has \(2n \) vertices and \(2m + n \) edges. Therefore,

\[
LE(G \times K_2) = \sum_{i=1}^{n} \left| \mu_i - \frac{2(2m + n)}{2n} \right| + \sum_{i=1}^{n} \left| \mu_i + 2 - \frac{2(2m + n)}{2n} \right|
\]

(3.1)

Equation (3.1) can be rewritten as

\[
LE(G \times K_2) \leq \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} - 1 \right| + \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} + 1 \right|.
\]

which is an upper bound.

For lower bound, Eq. (3.1) can be rewritten as

\[
LE(G \times K_2) \geq \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right| - n + \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right| - n = 2LE(G) - 2n.
\]

Theorem 3.3. For a graph \(G \) with \(n \) vertices, \(LE(G \times K_2) \geq 2n \).

Proof. From Eq. (3.1)

\[
LE(G \times K_2) \geq \sum_{i=1}^{n} \left(\mu_i - \frac{2m}{n} - 1 \right) + \sum_{i=1}^{n} \left(\mu_i - \frac{2m}{n} + 1 \right)
\]

\[
= |2m - 2m - n| + |2m - 2m + n| = 2.
\]

□

4. LAPLACIAN EQUIENERGETIC GRAPHS

Two graphs \(G_1 \) and \(G_2 \) are said to be equienergetic if \(E(G_1) = E(G_2) \) [2]. For details see the book [15]. In analogy to this, two graphs \(G_1 \) and \(G_2 \) are said to be Laplacian equienergetic if \(LE(G_1) = LE(G_2) \).

Obviously Laplacian cospectral graphs are Laplacian equienergetic. Therefore we are interested in Laplacian non-cospectral graphs with equal number of vertices, having equal Laplacian energies. Stevanović [24] has constructed Laplacian equienergetic threshold graphs. Fritscher et al. [10] discovered a family of Laplacian equienergetic unicyclic graphs. We now report some additional classes of such graphs.

The line graph of the graph \(G \), denoted by \(L(G) \), is a graph whose vertices corresponds to the edges of \(G \) and two vertices in \(L(G) \) are adjacent if and only if the corresponding edges are adjacent in \(G \) [14]. The \(k \)-th iterated line graph of \(G \) is defined
LAPLACIAN ENERGY 199

as $L^k(G) = L(L^{k-1}(G))$ where $L^0(G) \equiv G$ and $L^1(G) \equiv L(G)$. If G is a regular graph of order n_0 and of degree r_0, then $L(G)$ is a regular graph of order $n_1 = n_0 r_0 / 2$ and of degree $r_1 = 2r_0 - 2$. Consequently, the order and degree of $L^k(G)$ are [3,4]:

$$n_k = \frac{1}{2} n_{k-1} r_{k-1} \quad \text{and} \quad r_k = 2r_{k-1} - 2$$

where n_i and r_i stand for the order and degree of $L^i(G)$, $i = 0, 1, 2, \ldots$. Therefore [3,4],

\begin{equation}
(4.1) \quad n_k = \frac{n_0}{2^k} \prod_{i=0}^{k-1} r_i = \frac{n_0}{2^k} \prod_{i=0}^{k-1} \left(2^i r_0 - 2^{i+1} + 2\right)
\end{equation}

and

\begin{equation}
(4.2) \quad r_k = 2^k r_0 - 2^{k+1} + 2.
\end{equation}

Theorem 4.1. [23] If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of a regular graph G of order n and of degree r, then the adjacency eigenvalues of $L(G)$ are

$$\lambda_i + r - 2 \quad i = 1, 2, \ldots, n, \quad \text{and} \quad -2 \quad n(r - 2)/2 \text{ times.}$$

Theorem 4.2. [22] If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of a regular graph G of order n and of degree r, then the adjacency eigenvalues of \overline{G}, the complement of G, are $n - r - 1$ and $-\lambda_i - 1$, $i = 2, 3, \ldots, n$.

Theorem 4.3. [16] If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the adjacency eigenvalues of a regular graph G of order n and of degree r, then its Laplacian eigenvalues are $r - \lambda_i$, $i = 1, 2, \ldots, n$.

For G being a regular graph of degree $r \geq 3$, and for $k \geq 2$, expressions for $E(L^k(G))$ and $E(L^k(G))$ were reported in [20,21].

Theorem 4.4. If G is a regular graph of order n and of degree $r \geq 4$, then

$$LE(L^2(G) \times K_2) = 4nr(r - 2).$$

Proof. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the adjacency eigenvalues of G. Then by Theorem 4.1, the adjacency eigenvalues of $L(G)$ are

\begin{equation}
(4.3) \quad \lambda_i + r - 2 \quad i = 1, 2, \ldots, n, \quad \text{and} \quad -2 \quad n(r - 2)/2 \text{ times.}
\end{equation}

Since $L(G)$ is a regular graph of order $nr/2$ and of degree $2r - 2$, by Eq. (4.3) the adjacency eigenvalues of $L^2(G)$ are

\begin{equation}
(4.4) \quad \lambda_i + 3r - 6 \quad i = 1, 2, \ldots, n, \quad \text{and} \quad 2r - 6 \quad n(r - 2)/2 \text{ times, and} \quad -2 \quad nr(r - 2)/2 \text{ times.}
\end{equation}
Since $L^2(G)$ is a regular graph of order $nr(r - 1)/2$ and of degree $4r - 2$, by Theorem 4.3 and Eq. (4.4), the Laplacian eigenvalues of $L^2(G)$ are

\[
\begin{align*}
 r - \lambda_i & \quad i = 1, 2, \ldots, n, \quad \text{and} \\
 2r & \quad n(r - 2)/2 \text{ times, and} \\
 4r - 4 & \quad nr(r - 2)/2 \text{ times.}
\end{align*}
\]

(4.5)

Using Theorem 3.1 and Eq. (4.5), the Laplacian eigenvalues of $L^2(G) \times K_2$ are

\[
\begin{align*}
 r - \lambda_i & \quad i = 1, 2, \ldots, n, \quad \text{and} \\
 2r & \quad n(r - 2)/2 \text{ times, and} \\
 4r - 4 & \quad nr(r - 2)/2 \text{ times, and} \\
 r - \lambda_i + 2 & \quad i = 1, 2, \ldots, n, \quad \text{and} \\
 2r + 2 & \quad n(r - 2)/2 \text{ times, and} \\
 4r - 2 & \quad nr(r - 2)/2 \text{ times.}
\end{align*}
\]

(4.6)

The graph $L^2(G) \times K_2$ is a regular graph of order $nr(r - 1)$ and of degree $4r - 5$. By Eq. (4.6), the Laplacian energy of $L^2(G) \times K_2$ is computed as

\[
\begin{align*}
 LE(L^2(G) \times K_2) & = \sum_{i=1}^{n} \left| r - \lambda_i - (4r - 5) \right| + \left| 2r - (4r - 5) \right| \frac{n(r - 2)}{2} \\
 & + \left| 4r - 4 - (4r - 5) \right| \frac{nr(r - 2)}{2} + \sum_{i=1}^{n} \left| r - \lambda_i + 2 - (4r - 5) \right| \\
 & + \left| 2r + 2 - (4r - 5) \right| \frac{n(r - 2)}{2} + \left| 4r - 2 - (4r - 5) \right| \frac{nr(r - 2)}{2} \\
 & = \sum_{i=1}^{n} \left| - \lambda_i - 3r + 5 \right| + \left| - 2r + 5 \right| \frac{n(r - 2)}{2} \\
 & + \left| 1 \right| \frac{nr(r - 2)}{2} + \sum_{i=1}^{n} \left| - \lambda_i - 3r + 7 \right| \\
 & + \left| - 2r + 7 \right| \frac{n(r - 2)}{2} + \left| 3 \right| \frac{nr(r - 2)}{2}.
\end{align*}
\]

(4.7)

If d_{\max} is the greatest vertex degree of a graph, then all its adjacency eigenvalues belongs to the interval $[-d_{\max}, d_{\max}]$ [5]. In particular, the adjacency eigenvalues of a regular graph of degree r satisfy the condition $-r \leq \lambda_i \leq r, i = 1, 2, \ldots, n$.

If \(r \geq 4 \) then \(\lambda_i + 3r - 5 > 0, \lambda_i + 3r - 7 > 0, 2r - 5 > 0 \), and \(2r - 7 > 0 \). Therefore by Eq. (4.7), and bearing in mind that \(\sum_{i=1}^{n} \lambda_i = 0 \),

\[
LE(L^2(G) \times K_2) = \sum_{i=1}^{n} \lambda_i + n(3r - 5) + (2r - 5) \frac{n(r-2)}{2} + \frac{nr(r-2)}{2}
\]
\[
+ \sum_{i=1}^{n} \lambda_i + n(3r - 7) + (2r - 7) \frac{n(r-2)}{2} + \frac{3nr(r-2)}{2}
\]
\[
= 4nr(r - 2).
\]

\[\square \]

Corollary 4.1. Let \(G \) be a regular graph of order \(n_0 \) and of degree \(r_0 \geq 4 \). Let \(n_k \) and \(r_k \) be the order and degree, respectively of the \(k \)-th iterated line graph \(L^k(G) \) of \(G \), \(k \geq 2 \). Then

\[
LE(L^k(G) \times K_2) = 4n_k - 2r_k - 2(r_k - 2 - 2) = 4n_k - 1(r_k - 1 - 2),
\]

\[
LE(L^k(G) \times K_2) = 4n_0(r_0 - 2) \prod_{i=0}^{k-2} (2^i r_0 - 2^{i+1} + 2),
\]

\[
LE(L^k(G) \times K_2) = 8(n_k - n_{k-1}) = 8n_k \left(\frac{r_k - 2}{r_k + 2} \right).
\]

From Eq. (4.8) we see that the energy of \(L^k(G) \times K_2 \), \(k \geq 2 \) is fully determined by the order \(n \) and degree \(r \geq 4 \) of \(G \).

Theorem 4.5. If \(G \) is a regular graph of order \(n \) and of degree \(r \geq 3 \), then

\[
LE \left(L^2(G) \times K_2 \right) = (nr - 4)(4r - 6) - 4.
\]

Proof. Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be the adjacency eigenvalues of a regular graph \(G \) of order \(n \) and of degree \(r \geq 3 \). Then the adjacency eigenvalues of \(L^2(G) \) are as given by Eq. (4.4).

Since \(L^2(G) \) is a regular graph of order \(nr(r-1)/2 \) and of degree \(4r - 2 \), by Theorem 4.2 and Eq. (4.4), the adjacency eigenvalues of \(L^2(G) \) are

\[
-\lambda_i - 3r + 5 \quad i = 2, 3, \ldots, n, \quad \text{and}
\]
\[
-2r + 5 \quad n(r - 2)/2 \quad \text{times, and}
\]
\[
1 \quad nr(r - 2)/2 \quad \text{times, and}
\]
\[
(nr(r - 1)/2 - 4r + 5).
\]
Since $\overline{L^2(G)}$ is a regular graph of order $nr(r-1)/2$ and of degree $(nr(r-1)/2)-4r+5$, by Theorem 4.3 and Eq. (4.9), the Laplacian eigenvalues of $\overline{L^2(G)}$ are
\[(nr(r-1)/2) - r - \lambda_i \quad i = 2, 3, \ldots, n, \quad \text{and} \]
\[(nr(r-1)/2) - 2r \quad n(r-2)/2 \text{ times, and} \]
\[(nr(r-1)/2) - 4r + 4 \quad nr(r-2)/2 \text{ times, and} \]
\[0. \]

Using Theorem 3.1 and Eq. (4.10), the Laplacian eigenvalues of $\overline{L^2(G) \times K_2}$ are
\[(nr(r-1)/2) - r - \lambda_i \quad i = 2, 3, \ldots, n, \quad \text{and} \]
\[(nr(r-1)/2) - 2r \quad n(r-2)/2 \text{ times, and} \]
\[(nr(r-1)/2) - 4r + 4 \quad nr(r-2)/2 \text{ times, and} \]
\[0 \quad 1 \text{ time}, \quad \text{and} \]
\[(nr(r-1)/2) - r - \lambda_i + 2 \quad i = 2, 3, \ldots, n, \quad \text{and} \]
\[(nr(r-1)/2) - 2r + 2 \quad n(r-2)/2 \text{ times, and} \]
\[(nr(r-1)/2) - 4r + 6 \quad nr(r-2)/2 \text{ times, and} \]
\[2. \]

The graph $\overline{L^2(G) \times K_2}$ is a regular graph of order $nr(r-1)$ and of degree $(nr(r-1)/2)-4r+6$. By Eq. (4.11),
\[
LE\left(\overline{L^2(G) \times K_2}\right) = \sum_{i=2}^{n} \left| \frac{nr(r-1)}{2} - r + \lambda_i - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \]
\[+ \left| \frac{nr(r-1)}{2} - 2r - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \frac{n(r-2)}{2} \]
\[+ \left| \frac{nr(r-1)}{2} - 4r + 4 - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \frac{nr(r-2)}{2} \]
\[+ \left| 0 - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \]
\[+ \sum_{i=2}^{n} \left| \frac{nr(r-1)}{2} - r + \lambda_i + 2 - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \]
\[+ \left| \frac{nr(r-1)}{2} - 2r + 2 - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \frac{n(r-2)}{2} \]
LAPLACIAN ENERGY

\[+ \left| \frac{nr(r-1)}{2} - 4r + 6 - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \frac{nr(r-2)}{2} \]

\[+ \left| 2 - \left(\frac{nr(r-1)}{2} - 4r + 6 \right) \right| \]

\[= \sum_{i=2}^{n} |\lambda_i + 3r - 6| + |2r - 6| \frac{n(r-2)}{2} \]

\[+ |2r - 4| \frac{n(r-2)}{2} + |0| \frac{nr(r-2)}{2} + \left| \frac{-nr(r-1)}{2} + 4r - 6 \right| + \sum_{i=2}^{n} |\lambda_i + 3r - 4| \]

(4.12)

\[+ |2r - 4| \frac{n(r-2)}{2} + |0| \frac{nr(r-2)}{2} + \left| \frac{-nr(r-1)}{2} + 4r - 4 \right| . \]

All adjacency eigenvalues of a regular graph of degree \(r \) satisfy the condition \(-r \leq \lambda_i \leq r, i = 1, 2, \ldots, n \) [5]. Therefore if \(r \geq 3 \), then \(\lambda_i + 3r - 6 \geq 0, \lambda_i + 3r - 4 \geq 0, 2r - 6 \geq 0, 2r - 4 \geq 0, (-nr(r-1)/2) + 4r - 6 < 0 \), and \((-nr(r-1)/2) + 4r - 4 < 0 \).

Then from Eq. (4.12), and bearing in mind that \(\sum_{i=2}^{n} \lambda_i = -r \), we get

\[LE \left(L^2(G) \times K_2 \right) = \sum_{i=2}^{n} \lambda_i + (n-1)(3r - 6) + (r-3)n(r-2) + nr(r-2) \]

\[+ \frac{nr(r-1)}{2} - 4r + 6 + \sum_{i=2}^{n} \lambda_i + (n-1)(3r - 4) \]

\[+ (r-2)n(r-2) + \frac{nr(r-1)}{2} - 4r + 4 \]

\[= 2(nr - 4)(2r - 3) - 4. \]

□

Corollary 4.2. Let \(G \) be a regular graph of order \(n_0 \) and of degree \(r_0 \geq 3 \). Let \(n_k \) and \(r_k \) be the order and degree, respectively of the \(k \)-th iterated line graph \(L^k(G) \) of \(G \), \(k \geq 2 \). Then

\[LE \left(L^k(G) \times K_2 \right) = (n_{k-2}r_{k-2} - 4)(4r_{k-2} - 6) - 4 \]

\[= (2n_{k-1} - 4)(2r_{k-1} - 2) - 4, \]

(4.13) \[LE \left(L^k(G) \times K_2 \right) = \left[\frac{n_0}{2k-2} \prod_{i=0}^{k-2} \left(2^i r_0 - 2^{i+1} + 2 \right) - 4 \right] (2^k r_0 - 2^{k+1} + 2) - 4, \]
\[LE \left(L^k(G) \times K_2 \right) = \frac{8nk}{2 + rk} - 4(r_k + 1). \]

From Eq. (4.13) we see that the energy of \(L^k(G) \times K_2 \), \(k \geq 2 \) is fully determined by the order \(n \) and degree \(r \geq 3 \) of \(G \).

Theorem 4.6. Let \(G_1 \) and \(G_2 \) be two Laplacian non-cospectral, regular graphs of the same order and of the same degree \(r \geq 4 \). Then for any \(k \geq 2 \), \(L^k(G_1) \times K_2 \) and \(L^k(G_2) \times K_2 \) is a pair of Laplacian non-cospectral, Laplacian equienergetic graphs possessing same number of vertices and same number of edges.

Proof. If \(G \) is any graph with \(n \) vertices and \(m \) edges, then \(G \times K_2 \) has \(2n \) vertices and \(2m + n \) edges. Hence by repeated applications of Eqs. (4.1) and (4.2), \(L^k(G_1) \times K_2 \) and \(L^k(G_2) \times K_2 \) have same number of vertices and same number of edges. By Eqs. (4.5) and (4.6), if \(G_1 \) and \(G_2 \) are not Laplacian cospectral, then \(L^k(G_1) \times K_2 \) and \(L^k(G_2) \times K_2 \) are not Laplacian cospectral for all \(k \geq 1 \). Finally, Eq. (4.8) implies that \(L^k(G_1) \times K_2 \) and \(L^k(G_2) \times K_2 \) are Laplacian equienergetic. \(\square \)

Theorem 4.7. Let \(G_1 \) and \(G_2 \) be two Laplacian non-cospectral, regular graphs of the same order and of the same degree \(r \geq 3 \). Then for any \(k \geq 2 \), \(L^k(G_1) \times K_2 \) and \(L^k(G_2) \times K_2 \) is a pair of Laplacian non-cospectral, Laplacian equienergetic graphs possessing same number of vertices and same number of edges.

Proof. The proof is similar to that of Theorem 4.6 by using Eqs. (4.10), (4.11), and (4.13). \(\square \)

Acknowledgments. H. S. Ramane is thankful to the University Grants Commission (UGC), Govt. of India, for support through research grant under UPE FAR-II grant No. F 14-3/2012 (NS/PE). G. A. Gudodagi is thankful to the Karnatak University, Dharwad, for support through UGC-UPE scholarship No. KU/SCH/UGC-UPE/2014-15/901.

References

1Department of Mathematics,
Karnatak University,
Dharwad – 580003, India
E-mail address: hsramane@yahoo.com
E-mail address: gouri.gudodagi@gmail.com

2Faculty of Science,
University of Kragujevac,
Kragujevac, Serbia, and
State University of Novi Pazar,
Novi Pazar, Serbia
E-mail address: gutman@kg.ac.rs