
Kragujevac Journal of Mathematics
Volume 40(1) (2016), Pages 61–72.

DIRECT LIMIT DERIVED FROM TWIST PRODUCT ON
Γ-SEMIHYPERGROUPS

S. OSTADHADI-DEHKORDI

Abstract. The aim of this research work is to define a new class of hyperstructure
that we call direct system. An important tool in the theory of homological algebra
is the direct limit. We will present the construction of the direct limit of a direct
system derived from (∆, G)-set on Γ-semihypergroups. Also, we prove the direct
limit is unique up to isomorphism.

1. Introduction

The hypergroup notion was introduced in 1934 by a French mathematician F. Marty
[9], at the 8th Congress of Scandinavian Mathematicians. He published some notes on
hypergroups, using them in different contexts: algebraic functions, rational fractions,
non commutative groups. Algebraic hyperstructures are a suitable generalization of
classical algebraic structures. In a classical algebraic structure, the composition of
two elements is an element, while in an algebraic hyperstructure, the composition of
two elements is a set. Since then, hundreds of papers and several books have been
written on this topic, see [2–4].

Recently, the notion of Γ-hyperstructure introduced and studied by many researcher
and represent an intensively was studied field of research, for example, see [1, 5, 6, 8].
The concept of Γ-semihypergroups was introduced by Davvaz et al. [1, 8] and is a
generalization of semigroups, a generalization of semihypergroups and a generalization
of Γ-semigroups.

Key words and phrases. Γ-semihypergroup, left(right) (∆, G)-set, twist product, push out system,
direct system, direct limit.
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In this paper, we define the notion of left(right) (∆, G)-set, (G1,∆, G2)-biset, twist
product, push out systems direct system and direct limits. Also, we prove that direct
limit exists and unique.

2. Γ-semihypergroup and Twist Product

In this section we present some notion of Γ-semihypergroup and introduce a relation
denoted by ρ∗ which we shall use in order to define a new derived structure of
Γ-semihypergroup that we called twist product. These definitions and results are
necessary for the next section.

Definition 2.1. [8] Let G and Γ be nonempty sets and α : G × G −→ P ∗(G) be
a hyperoperation, where α ∈ Γ and P ∗(G) be the set of all nonempty subset of G.
Then, G is called Γ-hypergroupoid.

For any two nonempty subset G1 and G2, we define

G1αG2 =
⋃

g1∈G1,g2∈G2

g1αg2, G1α{x} = G1αx, {x}αG2 = xαG2.

A Γ-hypergroupiod G is a called Γ-semihypergroup if for all x, y, z ∈ G and α, β ∈ Γ,
we have (xαy)βz = xα(yβz), which means that⋃

u∈xαy

uβz =
⋃
v∈yβz

xαv.

Example 2.1. Let Γ ⊆ N be a nonempty set. We define

xα̂y = {z ∈ N : z ≥ max{x, α, y}},

where α ∈ Γ̂ = {α̂ : α ∈ Γ} and x, y ∈ N. Then, N is a Γ̂-semihypergroup.

Example 2.2. Let Γ = {α1, α2, . . . , αn}. Then, we define hyperoperations xαky =
xykZ. Hence Z is a Γ-semihypergroup.

Example 2.3. Let G be a nonempty set and Γ be a nonempty subset of G. We define
xα̂y = {x, α, y}, where Γ̂ = {α̂ : α ∈ Γ}. Then, G is a Γ̂-semihypergroup.

Example 2.4. Let G be a group, H be a normal subgroup of G and Γ ⊆ G be a
nonempty subset. For all g1, g2 ∈ G and α ∈ Γ̂, where Γ̂ = {α̂ : α ∈ Γ} we define

g1α̂g2 = g1αg2H.

Then, G is a Γ-semihypergroup.

Let G be a Γ-semihypergroup. Then, an element eα ∈ G is called α-identity if
for every x ∈ G, we have x ∈ eααx ∩ xαeα and eα is called scaler α-identity if
x = eααx = xαeα. We note that if for every α ∈ Γ, e is a scaler α-identity, then
xαy = xβy, where α, β ∈ Γ and x, y ∈ G. Indeed,

xαy = (xβe)αy = xβ(eαy) = xβy.
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Let G be a Γ-semihypergroup and for every α ∈ Γ has an α-identity. Then, G is
called a Γ-semihypergroup with identity.

Definition 2.2. Let G be a Γ-semihypergroup and ρ be an equivalence relation on
G. Then, ρ is called right regular if xρy and g ∈ G implies that for every t1 ∈ xαg
there is t2 ∈ yαg such that t1ρt2 and for every s1 ∈ yαg there is s1 ∈ xαg such that
s1ρs2. In a same way, we can define left regular relations.

Proposition 2.1. Let G be a Γ-semihypergroup and ρ be a regular relation on G.
Then, [G : ρ] = {ρ(x) : x ∈ G} is a Γ̂-semihypergroup with respect to the following
hyperoperation

ρ(x)α̂ρ(y) = {ρ(z) : z ∈ ρ(x)αρ(y)},

where Γ̂ = {α̂ : α ∈ Γ}.

Proof. The proof is straightforward. �

Let G be a Γ-semihypergroup and α ∈ Γ. We define x ◦ y = xαy for every x, y ∈ G.
Hence (G, ◦) becomes a semihypergroup, we denote this semihypergroup by G[α].

Definition 2.3. Let G1 and G2 be Γ-semihypergroup with identity. Then, a map
ϕ : G1 −→ G2 is called α-homomorphism if ϕ(xαy) = ϕ(x)αϕ(y) and ϕ(eα) = eα
for every x, y ∈ G1. If for every α ∈ Γ, ϕ is an α-homomorphism, then ϕ is called
homomorphism.

Definition 2.4. Let G be a Γ-semihypergroup with identity and X, ∆ be nonempty
sets. We say that X is a left (∆, G)-set if for every δ ∈ ∆ there is an action
δ : G×X −→ X with the following properties:

(g1αg2)δx = g1α(g2δx),

eααx = x,

for every g1, g2 ∈ G, α ∈ Γ, x ∈ X and δ ∈ ∆.

In a same way, we can define a right (∆, G)-set . Let G1 and G2 be
Γ-semihypergroups and X be a nonempty set. Then, we say that X is a (G1,∆, G2)-
bisets if it is a left (∆, G1)-set, right (∆, G2)-set and

(g1δ1x)δ2g2 = g1δ1(xδ2g2),

for every δ1, δ2 ∈ ∆, g1 ∈ G1, g2 ∈ G2 and x ∈ X.
A Γ-semihypergroup G is called commutative when xαy = yαx, for every x, y ∈ G

and α ∈ Γ. If G is a commutative Γ-semihypergroup, then there is no distinction
between a left and a right (∆, G)-set. A (∆, G)-left subset Y ofX such that Y∆X ⊆ Y .
A map ϕ : X −→ Y from a left (∆, G)-setX into a left (∆, G)-set Y is calledmorphism
if

ϕ(gδx) = gδϕ(x),
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for every x ∈ X, δ ∈ ∆ and g ∈ G. In a same way we can define a morphism of right
(∆, G)-sets. An equivalence relation ρ on left (∆, G)-set X is called congruence, if for
every x, y ∈ X, δ ∈ ∆ and g ∈ G

xρy =⇒ (gδx)ρ(gδy).

The quotient [X : ρ] is a left (∆̂, G)-set by following operation:

gδ̂(ρ(x)) = ρ(gδx),

where ∆̂ = {δ̂ : δ ∈ ∆}. The map π : X −→ [X : ρ] defined by π(x) = ρ(x), for every
x ∈ X is a morphism.

Example 2.5. Let G be a Γ-semihypergroup and G1 be a Γ-subsemihypergroup of G.
Then, G1 is a left (Γ, G1)-set in the obvious way.

Example 2.6. Let ρ be a left regular relation on Γ-semihypergroup G. Then, there
is a well-defined action of G on [G : ρ] given by gα̂(ρ(x)) = ρ(gαx), where α̂ ∈ Γ̂

and x ∈ G such that Γ̂ = {α̂ : α ∈ Γ}. Hence, with this definition [G : ρ] is a left
(Γ̂, G)-set.

It is easy to see that the cartesian product X × Y of a left (∆, G1)-set X and a
right (∆, G2)-set Y becomes (G1, ∆̂, G2)-biset if we make the obvious definition

g1δ̂1(x, y) = (g1δ1x, y), (x, y)δ̂2g2 = (x, yδ2g2),

where δ̂1, δ̂2 ∈ ∆̂, x ∈ X, y ∈ Y and g1 ∈ G1, g2 ∈ G2.
Let X, Y and Z be (G1,∆, G2)-biset, (G2,∆, G3)-biset, and (G1,∆, G3)-biset

(respectively). Then, the cartesian product X × Y is (G1,∆, G3)-biset. A map
ϕ : X × Y −→ Z is called δ-bimap if

ϕ(xδg2, y) = ϕ(x, g2δy),

where x ∈ X, y ∈ Y , z ∈ Z, g2 ∈ G2 and δ ∈ ∆.

Definition 2.5. [7] A pair (P, ψ) consisting of (G1,∆, G3)-biset P and a δ-bimap
ψ : X × Y −→ P will be called a twist product of X and Y over G2 if for every
(G1,∆, G3)-biset Z and for every bimap ω : X×Y −→ Z there exists a unique bimap
ω : P −→ Z such that ω ◦ ψ = ω.

Suppose that ρ is an equivalence relation on X × Y as follows:

ρ = {((xδg, y), (x, gδy)), x ∈ X, y ∈ Y, g ∈ G2}.

Let us define X	Y to be [X×Y : ρ∗], where ρ∗ is a transitive closure of ρ. We denote
a typical element ρ∗(x, y) by x	 y. By definition of ρ∗, we have xδg 	 y = x	 gδy,
where δ ∈ ∆.

Proposition 2.2. [7] Let X and Y be (G1,∆, G2)-biset and (G2,∆, G3)-biset, respec-
tively. Then, two elements x	 y and x′ 	 y′ are equal if and only if (x, y) = (x

′
, y

′
) or
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there exist x1, x2, . . . , xn−1 in X, y1, y2, . . . , yn−1 ∈ Y , g1, g2, . . . , gn, h1, h2, . . . , hn−1 ∈
G2 and δ ∈ ∆ such that

x = x1δg1,

x1δh1 = x2δg2,

...
xiδgi = xi+1δgi+1,

...

xn−1δhn−1 = x
′
δgn,

g1δy = h1δy1,

g2δy1 = h2δy2,

...
gi+1δyi = hi+1δyi+1,

...

gnδyn−1 = y
′
.

Theorem 2.1. [7] Let X and Y be (G1,∆, G2)-biset and (G2,∆, G3)-biset. Then,
(X 	 Y, π) is a twist product of X and Y over G2.

Proof. It is easy to see that π : X×Y −→ X	Y is a δ-bimap such that π(x, y) = x	y.
Let ω : X × Y −→ Z, where Z is a (G1,∆, G3)-biset and ω is a δ-bimap. We define
ω : X 	 Y −→ Z by

ω(x	 y) = ω(x, y).

Let x	 y = x
′ 	 y′ . By 2.2, we have

ω(x, y) = ω(x1δg1, y) = ω(x1, g1δy) = ω(x1, g1δh1) = · · · = ω(x
′
, y

′
).

Hence ω(x	 y) = ω(x
′ 	 y′

). It is easy to see that ω is a δ-bimap, ω ◦ π = ω and ω is
unique with respect. �

Theorem 2.2. Let X and Y be (G1,∆, G2)-biset and (G2,∆, G3)-biset. Then the
twist product X and Y over G2 is unique up to isomorphism.

Proof. Suppose that (P, ψ) and (P
′
, ψ

′
) are twist product of X and Y over G2. By

definition we find a unique ψ′ : P −→ P
′ and ψ : P

′ −→ P such that ψ ◦ ψ′ = ψ
′ and

ψ : P
′ −→ P such ψ′ ◦ ψ = ψ. Since ψ ◦ ψ′ ◦ ψ = ψ, we have ψ′ ◦ ψ = IdP ′ . By a

similar argument ψ ◦ ψ′ = IdP . �

We can generalize the notion of twist product three bisets. Let X, Y , Z and W
be (G1,∆, G2)-biset, (G2,∆, G3)-biset, (G3,∆, G4)-biset and (G1,∆, G4)-biset. Then,
a map ϕ : X × Y × Z −→ Z is called δ-trimap if for x ∈ X, y ∈ Y and z ∈ Z and
g2 ∈ G2, g3 ∈ G3 and δ ∈ ∆

ϕ(xδg2, y, z) = ϕ(x, g2δy, z), ϕ(x, yδg3, z) = ϕ(x, y, g3δz).

A pair (P, ψ), where P is a (G1,∆, G4)-biset and ψ : X × Y × Z −→ P is a
δ-trimap is said to be twist if for every (G1,∆, G4)-biset W and every δ-trimap
φ : X × Y × Z −→ W there is a unique φ : P −→ W such that φ ◦ ψ = φ.
A similar argument shows that X 	 (Y 	 Y ), together with the obvious trimap
(x, y, z) −→ x	 (y 	 z) is also a twist product of X, Y and Z.
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Proposition 2.3. [7] Let X, Y , Z be (G1,∆, G2)-biset, (G2,∆, G3)-biset, (G3,∆, G4)-
biset, respectively. Then, X 	 (Y 	 Z) ∼= (X 	 Y )	 Z.

Suppose that ϕ : X1 −→ X2 is a morphism and

kerlϕ : {(a, b) ∈ X1 ×X1 : ϕ(a) = ϕ(b)}.
This relation on X1 is an equivalence relation and is called kernel of ϕ.

Theorem 2.3. Let G be a Γ-semihypergroup, X1, X2 be left (∆, G)-sets, ϕ : X1 −→
X2 be a morphism and ρ ⊆ kerlϕ be a congruence relation on X1. Then, [X1 : ρ] is a
(∆̂, G)-set, where ∆̂ = {δ̂ : δ ∈ ∆} and there is a monomorphism ϕ̂ : [X1 : ρ] −→ Imϕ.

Proof. It is easy to see that [X1 : ρ] is a (∆̂, G)-set. We Define ϕ̂ : [X1 : ρ] −→ X2 by

ϕ̂(ρ(x)) = ϕ(x).

Let ρ(a) = ρ(b). Then,

(a, b) ∈ ρ =⇒ (a, b) ∈ kerlϕ =⇒ ϕ(a) = ϕ(b).

This implies that ϕ̂ is well-defined. If g ∈ G and ρ(a) ∈ [X1 : ρ], then

ϕ̂(gδ̂ρ(a)) = ϕ̂(ρ(gδa)) = ϕ(gδa) = gδϕ(a) = gδϕ̂(ρ(a)).

Hence ϕ̂ is a morphism. �

Proposition 2.4. Let ρ1 and ρ2 be congruence relations on (∆, G)-set X such that
ρ1 ⊆ ρ2. Then,

[ρ2 : ρ1] = {(ρ1(a), ρ1(b)) ∈ [X : ρ1]× [X : ρ2] : (a, b) ∈ ρ2},
is a congruence relation on [X : ρ1] and

[[X : ρ1] : [ρ2 : ρ1]] ' [X : ρ2].

Proof. The proof is straightforward. �

3. Direct Limit

In this section we introduce a non additive version of direct limit that is important
in homological algebra. We prove that the direct limit exists and is unique.

Let (J,≤) be a partially ordered set and {Xj}j∈J be a collection of (G1,∆, G2)-
bisets and for all i, j ∈ J such that i ≤ j, there is a morphism ωij : Xi −→ Xj with
the following properties:

1) ωii = IXi
,

2) ωij ◦ ωjk = ωik.
Then, we say that (Xi, ωij) is a direct system of (G1,∆, G2)-bisets.

We say that a (G1,∆, G2)-biset X is called direct limit of this direct system if
there exist morphisms ωi : Xi −→ X such that ωj ◦ ωij = ωi and if there exists a
(G1,∆, G2)- biset Y has the property that there exist a morphism λi : Xi −→ Y such
that λj ◦ αij = λi with i ≤ j and αij : Xi −→ Xj is a morphism, then there is a
unique morphism λ : X −→ Y such that λ ◦ ωi = λi.
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Theorem 3.1. Let (Xi, ωij) be a direct system. Then, the direct limit exist.

Proof. Suppose that (Xi, ωij) is a direct system. Without loses of generality we
suppose that the sets Xi are pairwise disjoint. Let D =

⋃
i∈I Xi and θ∗ be equivalence

relation generated by the following relation:

d1θd2 ⇐⇒ there exists i ≤ j, d1 ∈ Xi, ωij(d1) = d2,

where d1, d2 ∈ D, i, j ∈ I. We prove that [D : θ∗] is a direct limit. To see this, we
define a morphism ωi : Xi −→ [D : θ∗], for each i ∈ I by

ωi(xi) = θ∗(xi),

where xi ∈ Xi. We have

ωj ◦ ωij(xi) = θ∗(ωij(xi)) = θ∗(xi),

for every xi ∈ Xi. Let Y be a (G1,∆, G2)-biset and λi : Xi −→ Y be a morphism
such that λj ◦ αij = λi. We define a morphism ϕ : D −→ Y by

ϕ(xi) = λi(xi), xi ∈ Xi, i ∈ I.
Let d1θd2. Then, there are i, j ∈ I and ωij such that ωij(d1) = d2. This implies that

ϕ(d2) = ϕ(ωij(d1)) = λj(ωij(d1)) = λi(d1) = ϕ(d1).

Hence (d1, d2) ∈ kerϕ and by Proposition 2.4, there exists morphism ϕ̂ : [D : θ∗] −→ Y
defined by

ϕ̂(θ∗(xi)) = ϕ(xi),

where xi ∈ Xi, i ∈ I. Also, ϕ̂ ◦ ωi(xi) = ϕ̂(θ∗(xi)) = λi(xi). This implies that
ϕ̂ ◦ ωi = λi. If ψ is a morphism with the same properties, then for every xi ∈ Xi and
i ∈ I,

ψ(θ∗(xi)) = ψ(ωi(xi)) = λi(xi) = ϕ̂(θ∗(xi)).

Therefore, ϕ̂ = ψ. This completes the proof. �

Proposition 3.1. The direct limit of direct system (Xi, ωij)i,j∈I is unique up to
isomorphism.

Proof. Suppose that X and Y are direct limits of direct system (Xi, ωij)i,j∈I . By
definition we have a unique λ : X −→ Y and λ′

: Y −→ X such that ωi ◦ λ = λi and
λi ◦ λ

′
= ωi. Hence

ωi ◦ (λ ◦ λ′
) = (ωi ◦ λ) ◦ λ′

= λi ◦ λ
′
= ωi,

λi ◦ (λ
′ ◦ λ) = λi.

Therefore, λ ◦ λ′
= IX and λ′ ◦ λ = IY and so X ∼= Y . �

Proposition 3.2. Let (Xn, ωn) be a direct system and [D : θ∗] be the direct limit of
the this direct system. Then, the map βn : Xn −→ [D : θ∗] is one to one if and only
if the maps ωn are one to one.
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Proof. Suppose that all maps ωn : Xn −→ Xn+1 are one to one and βm(am) = βm(bm).
This implies that θ∗(am) = β∗(bm). Hence

there exists x1, x2, . . . , xn ∈ D : am = x1, bm = xn and xiθxi+1.

By the definition of θ, since every ωn is one to one it follows that am = bm. This
implies that βn : Xn −→ Xn+1 is one to one. Conversely, suppose that for some
n, ωn is not one to one and βn is one to one. Hence for some an 6= bn we have
ωn(an) = ωn(bn). By definition anθbn and θ∗(an) = θ∗(bn) and so β∗(an) = β∗(bn).
That is contradiction. �

Proposition 3.3. Let (Xi, ωij) be a direct system (G2,∆, G3)-biset, D be the direct
limit of this direct system and H1, H2 be (G1,∆, G2), (G3,∆, G4)-biset, respectively.
Then, H1	D	H2 is the direct limit of direct system (H1	Xi	H2, IH1 	ωij 	 IH2).

Proof. Suppose that

IH1 	 ωij 	 IH2 : H1 	Xi 	H2 −→ H1 	Xj 	H2,

IH1 	 ωi 	 IH2 : H1 	Xi 	H2 −→ H1 	D 	H2.

Obviously,
(IH1 	 ωi 	 IH2) ◦ (IH1 	 ωij 	 IH2) = IH1 	 ωi 	 IH2 ,

for i ≤ j. Let Q be a (G1,∆, G4)-biset and σi : H1 	 Xi 	 H2 −→ Q such that
(IH1 	 ωij 	 IH2) ◦ σj = σi, for all i ≤ j and T is the disjoint union Xi and θ∗ is the
equivalence relation generated by the following relation:

d1θd2 ⇐⇒ there exists i, j ∈ I ωij(d2) = d1.

We know that ωi(xi) = θ∗(xi) for all xi ∈ Xi. We define µ : H1 × T ×H2 −→ Q by

µ(h1, ti, h2) = σi(h1 	 ti 	 h2).

We have

µ(h1, ωij(ti), h2) = σi(h1 	 ωij(ti)	 h2)
= σj(IH2 	 ωij 	 IH2)(h1 	 ti 	 h2)
= σi(h1 	 ti 	 h2)
= µ(h1, ti, h2).

Hence µ induces a map µ̂ : H1 × T ×H2 −→ Q defined by

µ̂(h1, θ
∗(ti), h2) = σi(h1 	 ti 	 h2).

For all g2 ∈ G2 and ti ∈ T we have

µ̂(h1δg2, θ
∗(ti), h2) = σi(h1δg2 	 ti 	 h2) = σi(h1 	 g2δxi 	 h2) = µ̂(h1, g2θ

∗(ti), h2),

and similarly, for every g3 ∈ G3 we have

µ̂(h1, θ
∗(ti), g3δh2) = µ̂(h1, θ

∗(ti)δg3, h2).
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Hence µ̂ induces a map ξ : H1 	 T 	H2 −→ Q given by

ξ(h1 	 θ∗(ti)	 h2) = σi(h1 	 ti 	 h2).

It is easy to see that ξ is morphism and (IH1ωi 	 IH2) ◦ ξ = σi and ξ is unique. This
completes the proof. �

Suppose that X1, X2, X3, X4 are (∆, G)-sets and ϕi : X1 −→ Xi, ψj : Xj −→ X4

are morphisms for 2 ≤ i ≤ 3 and 2 ≤ j ≤ 3 such that ψ2 ◦ ϕ1 = ψ3 ◦ ϕ2. If there
are ψ′

2 : X2 −→ X
′
4 and ψ′

3 : X3 −→ X
′
4, such that ψ′

3 ◦ ϕ2 = ψ
′
2 ◦ ϕ1, then there is a

morphism λ : X4 −→ X
′
4 such that λ ◦ψ2 = ψ

′
2 and λ ◦ψ3 = ψ

′
3. A system [Xi, ϕj, ψk]

for 1 ≤ i ≤ 4, 1 ≤ j ≤ 2, 1 ≤ k ≤ 2 is called push out.

Proposition 3.4. Let X1, X2, X3 be (∆, G)-sets, ϕ1 : X1 −→ X2 and ϕ2 : X1 −→ X3

be morphisms. Then, there is a push out system and x2 ∈ X2, x3 ∈ X3, ψ2(x2) =
ψ3(x3) implies that x2 ∈ Imϕ1.

Proof. Suppose that ρ is a following relation on X = X1 ∪X2 ∪X3 of disjoint (∆, G)-
sets.

xρy ⇐⇒ x ∈ X1 and y = ϕ1(x) or x ∈ X1 and ϕ2(x) = y.

Let ρ∗ be equivalence relation generated by ρ and [X : ρ∗] be the quotient set on X
by ρ∗. We define ψ2 : X2 −→ [X : ρ∗] and ψ3 : X3 −→ [X : ρ∗] by

ψ2(x2) = ρ∗(x2), ψ3(x3) = ρ∗(x3).

It is easy to see that [X,Xi, ϕj, ϕk] is a push out system.
Let ψ2(x2) = ψ3(x3), then ρ∗(x2) = ρ∗(x3). This implies that there are

a1, a2, . . . , an ∈ X such that a1 = x2, an = x3 and aiρai+1. Hence ai ∈ X1 and
ϕ1(ai) = ai+1 or ϕ2(ai) = ai+1. This implies that x2 ∈ Imϕ1. �

Let G1 be a Γ-subsemihypergroup of G, X1 and X2 be a (∆, G1)-set and a (∆, G)-
set, respectively and X = X2 	 G, and ϕ : X1 −→ X2 be a morphism on G1. We
define the following relation on X as follows:

(d1	g1)ξ(d2	g2)⇐⇒ there exists t1, t2 ∈ X1, ϕ(t1) = d1, ϕ(t2) = d2, t1δg1 = t2δg2.

Suppose that ξ∗ is an equivalence relation generated by ξ. Hence [X 	 G : ξ∗] is a
(∆, G)-set and is called extension of X by G.

Proposition 3.5. Let G1 be a Γ-subsemihypergroup of G, X1 be a left (∆, G)-set,
X2 be a left (∆, G1)-set and ϕ : X1 −→ X2 be a morphism and T = [X2 	 G : ξ∗],
where ∆ ⊆ Γ. Then, X1 	 G,X2 	 G,X1, T , where ϕ 	 I : X1 	 G −→ X2 	 G,ψ :
X1 	G −→ X1, β : X1 −→ T and π : X2 	G −→ T defined as follows:

ϕ	 I(x1 	 g) = ϕ(x1)	 g, ψ(x1 	 g) = x1δg,

β(x1) = ξ∗(ϕ(x1)	 eδ), π(x2 	 g) = ξ∗(x2 	 g),

is a push out system.
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Proof. Suppose that x1 	 g ∈ X1 	G. Hence

π ◦ (ϕ	 I)(x1 	 g) = π(ϕ(x1)	 g) = ξ∗(ϕ(x1)	 g),

and

β ◦ ψ(x1 	 g) = β(x1δg) = ξ∗(ϕ(x1δg)	 eδ)
= ξ∗(ϕ(x1)δeδ 	 g)

= ξ∗(ϕ(x1)	 eδδg)

= ξ∗(ϕ(x1)	 g).

This implies that β ◦ ψ = π ◦ (ϕ 	 I). Let T ′ be a (∆, G)-set, β ′
: X1 −→ T

′ and
σ : X2	G −→ T

′ such that σ ◦ (ϕ	 I) = β
′ ◦ψ. For every x1, x

′
1 ∈ X1 and g, g′ ∈ G

such that ξ∗(ϕ(x1)	 g) = ξ∗(ϕ(x
′
1)	 g

′
). We have

π(ϕ(x1)	 g) = π ◦ (ϕ	 I)(x1 	 g) = β
′ ◦ ψ(x1 	 g)

= β
′
(x1δg)

= β
′
(x

′

1δg
′
)

= ψ(ϕ(x
′

1)	 g
′
).

It follows that ψ induces a unique morphism ω : T −→ T
′ by following definition:

ω(ξ∗(x2 	 g)) = π(x2 	 g).

On the others hand

ω ◦ β(x1) = ω(ξ∗(ϕ(x1)	 eδ)) = π ◦ (ϕ(x1)	 eδ)
= π ◦ (ϕ	 I)(x1 	 eδ)
= β

′ ◦ ψ(x1 	 eδ)
= β

′
(x1).

This completes the proof. �

Lemma 3.1. Let G1 be a Γ-subsemihypergroup of G and G1 has the extension property
in G and ϕ : X1 −→ X2 be a morphism on G1 and x2 	 eα = ϕ(x1) 	 g. Then,
x2 ∈ Imϕ.

Proof. Suppose that X1, X2, T are (∆, G)-sets and ϕ : X1 −→ X2, δ2 : X2 −→ T
and λ : X2 −→ T are a push out system. Hence X1 	 G, X2 	 G, T 	 G, ϕ 	 IG :
X1 	G −→ X2 	G, λ	 IG : X2 	G −→ T 	G and δ2 	 IG : X2 	G −→ T 	G is
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also push out system. Since x2 	 eα = ϕ(x1)	 g in X2 	G, we have

δ2(x2)	 eα = (δ2 	 IG)(x2 	 eα) = (δ2 	 IG)(ϕ(x1)	 g)

= δ2(ϕ(x1))	 g
= λ(ϕ(x1))	 g
= (λ	 IG)(ϕ(x1)	 g)

= (λ	 IG)(x2 	 eα)

= λ(x2)	 eα.
Since G1 has the extension property in G the map X2 −→ X2	 eα from X2 to X2	G
is one to one. This implies that λ(x2) = δ2(x2) and by Proposition 3.4, x2 ∈ Imϕ. �

Theorem 3.2. Let G1 be a Γ-subsemihypergroup of G and G1 has the extension
property in G and ϕ : X1 −→ X2 be a morphism on G1 such that ϕ	 I : X1	X −→
X2	X be a morphism, where X be a right (∆, G)-set. Then, x2	eα	x = ϕ(x)	g	x′,
implies that there exist t1 ∈ X1, t2 ∈ X such that x2 	 eα 	 x = ϕ(t1)	 eα 	 t2.

Proof. Suppose that x2 	 eα 	 x = ϕ(x)	 g 	 x′ . Let X1, X2, T be push out system,
where ϕ : X1 −→ X2, δ1 : X2 −→ T and δ2 : X2 −→ T . Hence X1 	X, X2 	X, and
T	X is a push out system, where ϕ	I : X1	X −→ X2	X, δ1	I : X2	X −→ T	X
and δ2	I : X2	X −→ T	X is also push out system. On the other hand on T	G	X,

δ2(x2)	 eα 	 x = (δ2 	 IG 	 IX)(x2 	 eα 	 x)) = (δ2 	 IG 	 IX)(ϕ(x)	 g 	 x′
)

= δ2ϕ(x)	 g 	 x′

= δ2ϕ(x)	 g 	 x′

= δ1ϕ(x)	 g 	 x′

= δ1(x2)	 eα 	 x.
By extension property we have δ2(x2) 	 x = δ1(x2) 	 x. Hence by Proposition 3.4
there exist t1 ∈ X1 and t2 ∈ X such that

x2 	 x = (ϕ	 IX)(t1 � t2) = ϕ(t1)� t2.
This implies that

x2 	 eαx = ϕ(t1)	 eα 	 t2.
�
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