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REMARKS ON THEOREMS FOR CYCLIC
QUASI-CONTRACTIONS IN UNIFORMLY CONVEX BANACH

SPACES

N. V. DUNG1,2 AND S. RADENOVIĆ3,4,∗

Abstract. In this note we show an error in the proof of [1, Theorem 2.3]. Then
we give a counterexample to show that theorems for cyclic quasi-contractions in [1]
are not true. Also the proofs of theorems for cyclic strongly quasi-contractions in
that paper are not true. We also state the revisions with modified conditions for
main results in [1].

1. Introduction

The Banach contraction principle is a fundamental result in fixed point theory.
Several extensions and applications in nonlinear analysis and optimization of this
result were stated, see [2–4, 9, 10, 14] and the references given there. An interesting
extension was proved by Kirk et al. [11] by using a cyclic condition, where the cyclic
contraction is that deals with maps of the type T : Ai −→ Ai+1, i = 1, . . . , p with
Ap+1 = A1 and its contractive assumption is restricted to pairs (x, y) ∈ Ai × Ai+1.

Cyclic conditions were then studied by many authors. In 2010 Petric [13] extended
many fundamental metric fixed point theorems in the literature to maps with certain
cyclic contractions. Pǎcurar and Rus [15] presented fixed point theorems for cyclic
ϕ-contractions that were then noted by Radenović in [16]. In 2011 Karapinar and
Sadarangani [7, 8] considered fixed point theorems for cyclic weak φ-contractions.
In 2012 Chen [5] proved fixed point theorems for cyclic Meir-Keeler type maps in
complete metric spaces. In 2013 Amini-Harandi [1] introduced a new class of maps,
called cyclic strongly quasi-contractions, which contains the cyclic contractions as a
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subclass and proved some convergence and existence results of best-proximity point
theorems for cyclic strongly quasi-contraction maps.

Definition 1.1 ([1], Definitions 2.2–2.3). Let A and B be nonempty subsets of a
complete metric space (X, d) and let T : A ∪ B −→ A ∪ B such that T (A) ⊂ B and
T (B) ⊂ A. Then

(a) T is called a cyclic quasi-contraction if for all x ∈ A and y ∈ B and some
c ∈ [0, 1),

d(Tx, Ty) ≤ cmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}(1.1)
+ (1− c)d(A,B);

(b) T is called a cyclic strongly quasi-contraction if it is a cyclic quasi-contraction
and for all x ∈ A and y ∈ B

(1.2) d(T 2x, T 2y) ≤ cd(x, y) + (1− c)d(A,B).

The main results of [1] are as follows.

Theorem 1.1 ([1], Theorem 2.3). Let A and B be nonempty subsets of a metric space
X and let T : A ∪ B −→ A ∪ B be a cyclic quasi-contraction map. For x0 ∈ A ∪ B,
define xn+1 = Txn for each n ≥ 0. Then limn→∞ d(xn, xn+1) = d(A,B).

Theorem 1.2 ([1], Theorem 2.4). Let A and B be nonempty subsets of a uniformly
convex Banach space X and let T : A ∪ B −→ A ∪ B be a cyclic quasi-contraction
map such that A is convex. For x0 ∈ A∪B, define xn+1 = Txn for each n ≥ 0. Then
limn→∞ ‖x2n+2 − x2n‖ = 0 and limn→∞ ‖x2n+3 − x2n+1‖ = 0.

Theorem 1.3 ([1], Theorem 2.5). Let A and B be nonempty subsets of a uniformly
convex Banach space X and let T : A ∪ B −→ A ∪ B be a cyclic strongly quasi-
contraction map such that A is convex. For x0 ∈ A ∪B, define xn+1 = Txn for each
n ≥ 0. Then for each ε > 0 there exists n0 such that for all m > n ≥ n0 we have
‖x2m − x2n+1‖ < d(A,B) + ε.

Theorem 1.4 ([1], Theorem 2.6). Let A and B be nonempty subsets of a uniformly
convex Banach space X and let T : A ∪ B −→ A ∪ B be a cyclic strongly quasi-
contraction map such that A and B are convex. For x0 ∈ A ∪ B, define xn+1 = Txn
for each n ≥ 0. Then there exists unique x ∈ A such that limn→∞ x2n = x, T 2x = x
and ‖x− Tx‖ = d(A,B).

The author of [1] also posed the following question.

Question 1.1 ([1], Question 2.8). Does the conclusion of Theorem 1.4 remains true for
cyclic quasi-contraction maps?

Unexpectedly, in the proof of Theorem 1.1, the author used the cyclic quasi-
contraction condition for the pair (xi, xj) which may not belong to Ak × Ak+1 in
general, see the proof of (2.4) on [1, page 1669]. This is inappropriate since the cyclic
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quasi-contraction condition only holds for pairs in Ak × Ak+1 for k = 1, . . . , n. The
similar inappropriateness also appeared in the proof of [12, Theorem 4.1], see the
inequality (4.2) on page 79 of that paper and see also [6]. Theorem 1.1 was then used
in the proof of Theorems 1.2–1.4, see lines +3 and -2 on [1, page 1671], line +16 on
[1, page 1672]. By these facts, the main results of [1] must be reconsidered.

In this note we give a counterexample to show that Theorem 1.1 and Theorem 1.2
above, which are results for cyclic quasi-contractions, are not true. Then so are not
the proofs of Theorem 1.3 and Theorem 1.4. However we do not know whether the
conclusions of Theorem 1.3 and Theorem 1.4, which are results for cyclic strongly
quasi-contractions, hold or not. So the Question 1.1 is redundant if the conclusions
of Theorem 1.3 and Theorem 1.4 do not hold.

2. Main Results

First we give a map T and a uniformly convex Banach space that satisfy all
assumptions of Theorem 1.1 and Theorem 1.2 but the conclusions of Theorem 1.1 and
Theorem 1.2 do not hold. The map T and the space X also satisfy all assumptions of
[12, Theorem 4.1] but T is fixed point free, that is, the conclusion of [12, Theorem 4.1]
does not hold.

Example 2.1. Let X = R2 with the Euclidean norm, and

M = (0, 0), N = (2, 0), P = (2, 1), Q = (0, 1), I = (1,
1

2
),

and A = [M,P ], B = {N,Q}, and T : A ∪B −→ A ∪B be defined by

Tx =

{
N, if x ∈ [M, I],

Q, if x ∈ (I, P ],

and TN = P , TQ =M . Then
(a) X is a uniformly convex Banach space;
(b) A and B are nonempty subsets of X, A is convex and TA ⊂ B, TB ⊂ A;
(c) T is a cyclic quasi-contraction;
(d) There exists x0 ∈ A ∪B and xn+1 = Txn for all n ≥ 0 such that

lim
n→∞

d(xn, xn+1) 6= d(A,B), lim
n→∞

‖x2n+2 − x2n‖ 6= 0,

and
lim
n→∞

‖x2n+3 − x2n+1‖ 6= 0;

(e) T and T 2 are fixed point free.

Proof. (a), (b) and (e) are trivial.
(c). Let x ∈ A and y ∈ B. We consider the following four cases.
Case 1. x ∈ [M, I], y = N . We have

d(Tx, Ty) = d(N,P ) = 1, d(x, Ty) = d(x, P ) ≥
√
5

2
.
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So d(Tx, Ty) ≤ 2√
5
d(x, Ty).

Case 2. x ∈ [M, I], y = Q. We have

d(Tx, Ty) = d(N,M) = 2, d(y, Tx) = d(Q,N) =
√
5.

So d(Tx, Ty) = 2√
5
d(y, Tx).

Case 3. x ∈ (I, P ], y = N . We have

d(Tx, Ty) = d(Q,P ) = 2, d(y, Tx) = d(N,Q) =
√
5.

So d(Tx, Ty) = 2√
5
d(y, Tx).

Case 4. x ∈ (I, P ], y = Q. We have

d(Tx, Ty) = d(Q,M) = 1, d(x, Ty) = d(x,M) ≥
√
5

2
.

So d(Tx, Ty) ≤ 2√
5
d(x, Ty).

By the above four cases we find that (1.1) holds for all x ∈ A, y ∈ B and for some
c ∈ [ 2√

5
, 1). So T is a cyclic quasi-contraction.

(d). For x0 =M ∈ A we find that x1 = N , x2 = P , x3 = Q, x4 =M , . . . , x4n =M ,
x4n+1 = N , x4n+2 = P , x4n+3 = Q, . . .

Then limn→∞ d(x4n, x4n+1) = d(M,N) = 2 and

lim
n→∞

d(x4n+1, x4n+2) = d(N,P ) = 1.

So limn→∞ d(xn, xn+1) does not exist. This implies that limn→∞ d(xn, xn+1) 6= d(A,B).
We also have

lim
n→∞

‖x2n+2 − x2n‖ = d(P,M) =
√
5 6= 0,

and
lim
n→∞

‖x2n+3 − x2n+1‖ = d(Q,N) =
√
5 6= 0.

�

Next we revise Theorem 1.1 by replacing the value

max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
in (1.1) by

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
as follows.

Theorem 2.1. Let A and B be nonempty subsets of a metric space X and let T :
A ∪B −→ A ∪B be a map such that for all x ∈ A, y ∈ B and some c ∈ [0, 1),

d(Tx, Ty) ≤ cmax

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
(2.1)

+ (1− c)d(A,B).
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For x0 ∈ A ∪ B, define xn+1 = Txn for each n ≥ 0. Then limn→∞ d(xn, xn+1) =
d(A,B).

Proof. Without loss of generality we may assume that x0 ∈ A. Then x1 ∈ B, x2 ∈ A,
. . . , x2n ∈ A, x2n+1 ∈ B, . . . . By the symmetry of x and y in (2.1) we find that (2.1)
holds for x = xn and y = xn+1 for all n. Therefore

d(xn+1, xn+2)

(2.2)

= d(Txn, Txn+1)

≤ cmax

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn, Txn+1) + d(xn+1, Txn)

2

}
+ (1− c)d(A,B)

= cmax

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2

}
+ (1− c)d(A,B)

= cmax

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2)

2

}
+ (1− c)d(A,B)

≤ cmax

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+1) + d(xn+1, xn+2)

2

}
+ (1− c)d(A,B)

= cmax {d(xn, xn+1), d(xn+1, xn+2)}+ (1− c)d(A,B).

Note that d(xn+1, xn+2) ≥ d(A,B) for all n. If d(xn+1, xn+2) = d(A,B) then
d(xn+1, xn+2) ≤ d(xn, xn+1). If d(xn+1, xn+2) > d(A,B) then from (2.2) we get

d(xn+1, xn+2) < cmax {d(xn, xn+1), d(xn+1, xn+2)}+ (1− c)d(xn+1, xn+2)

≤ max {d(xn, xn+1), d(xn+1, xn+2)} .

This implies that d(xn+1, xn+2) < d(xn, xn+1).
So we have d(xn+1, xn+2) ≤ d(xn, xn+1) for all n, that is, the sequence {d(xn, xn+1)}

is decreasing. Then there exists limn→∞ d(xn, xn+1) = l ≥ 0. Note that l ≥ d(A,B).
Suppose that l > d(A,B). Letting n→∞ in (2.2) we get

l ≤ cmax{l, l}+ (1− c)d(A,B) < cl + (1− c)l = l.

This is a contradiction. Then l = d(A,B) and that limn→∞ d(xn, xn+1) = d(A,B). �



REMARKS ON THEOREMS FOR CYCLIC QUASI-CONTRACTIONS 277

Note that for the map T and x = P , y = N and A, B as in Example 2.1 we have

d(Tx, Ty) = d(Q,P ) = 2, d(x, y) = d(P,N) = 1,

d(x, Tx) = d(P,Q) = 2, d(y, Ty) = d(N,P ) = 1

d(x, Ty) + d(y, Tx)

2
=
d(P, P ) + d(N,Q)

2
=

√
5

2
, d(A,B) =

2√
5
.

This implies that for all c ∈ [0, 1),

d(Tx, Ty) > cmax

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
+ (1− c)d(A,B).

So T does not satisfy the condition (2.1).
Now by using Theorem 2.1 playing the role of Theorem 1.1 in the proofs of The-

orem 1.2, Theorem 1.3 and Theorem 1.4 in [1] we get the revisions of Theorem 1.2,
Theorem 1.3 and Theorem 1.4 as follows.

Theorem 2.2. Let A and B be nonempty subsets of a uniformly convex Banach space
X and let T : A∪B −→ A∪B be a map such that A is convex and for all x ∈ A, y ∈ B
and some c ∈ [0, 1) the condition (2.1) holds. For x0 ∈ A ∪B, define xn+1 = Txn for
each n ≥ 0. Then limn→∞ ‖x2n+2 − x2n‖ = 0 and limn→∞ ‖x2n+3 − x2n+1‖ = 0.

Theorem 2.3. Let A and B be nonempty subsets of a uniformly convex Banach space
X and let T : A ∪ B −→ A ∪ B be a map such that A is convex and for all x ∈ A,
y ∈ B and some c ∈ [0, 1) the conditions (2.1) and (1.2) hold. For x0 ∈ A∪B, define
xn+1 = Txn for each n ≥ 0. Then for each ε > 0 there exists n0 such that for all
m > n ≥ n0 we have ‖x2m − x2n+1‖ < d(A,B) + ε.

Theorem 2.4. Let A and B be nonempty subsets of a uniformly convex Banach
space X and let T : A ∪ B −→ A ∪ B be a map such that A and B are convex and
for all x ∈ A, y ∈ B and some c ∈ [0, 1) the conditions (2.1) and (1.2) hold. For
x0 ∈ A ∪B, define xn+1 = Txn for each n ≥ 0. Then there exists unique x ∈ A such
that limn→∞ x2n = x, T 2x = x and ‖x− Tx‖ = d(A,B).

Note that Example 2.1 may not applicable to show that Theorem 1.3 and The-
orem 1.4 are incorrect since T does not satisfy (1.2) and B is not convex. So the
following question remains open.

Question 2.1. Prove or disprove Theorem 1.3 and Theorem 1.4.

If Theorem 1.4 is proved then we may ask again the question of Amini-Harandi
in [1].

Question 2.2 ([1], Question 2.8). Does the conclusion of Theorem 1.4 remains true for
cyclic quasi-contraction maps?
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