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CARLEMAN INTEGRAL OPERATORS AS MULTIPLICATION
OPERATORS AND PERTURBATION THEORY

S. M. BAHRI1

Abstract. In this paper we introduce a multiplication operation that allows us
to give to the Carleman integral operator of second class [3, 8] the form of a mul-
tiplication operator. Also we establish the formaly theory of perturbation of such
operators.

1. Introduction

It is well known that the multiplication operators [1,2] possess a very rich structure
theory, such that these operators played an important role in the study of operators
on Hilbert Spaces.

In this paper, we introduce a multiplication operation that allows us to give to the
Carleman integral operator of second class [3,8] the form of a multiplication operator.

In what follows, we shall assume that the reader is familiar with the fundamental
results and the standard notation of the Integral operators theory [8–12]. Let X
be an arbitrary set, µ a σ−finite measure on X (µ is defined on a σ−algebra of
subsets of X, we don’t indicate this σ−algebra), L2 (X,µ) the Hilbert space of square
integrable functions with respect to µ. Instead of writing “µ−measurable”, “µ−almost
everywhere” and “(dµ (x))” we write “measurable”, “a.e.” and “dx”.

A linear operator A : D (A) −→ L2 (X,µ), where the domain D (A) is a dense
linear manifold in L2 (X,µ), is said to be integral if there exists a measurable function
K on X ×X, a kernel, such that, for every f ∈ D (A),

(1.1) Af (x) =

∫
X

K (x, y) f (y) dy a.e.
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A kernel K on X ×X is said to be Carleman if K (x, y) ∈ L2 (X,µ) for almost every
fixed x, that is to say ∫

X

|K (x, y)|2 dy <∞ a.e.

An integral operator A with a kernel K is called Carleman operator if K is a Carleman
kernel. Every Carleman kernel K defines a Carleman function k from X to L2 (X,µ)

by k (x) = K (x, ·) for all x in X for which K (x, ·) ∈ L2 (X,µ).
Now we consider the Carleman integral operator (1.1) of second class [3,8] generated

by the following symmetric kernel

K (x, y) =
∞∑
n=0

anψn (x)ψn (y),

where the overbar denotes the complex conjugation, (ψn (x))∞n=0 is an orthonormal
sequence in L2 (X,µ) such that

∞∑
n=0

|ψn (x)|2 <∞ a.e.,

and (an)∞n=0 is a real number sequence verifying
∞∑
n=0

a2
n |ψn (x)|2 <∞ a.e.

We call (ψn (x))∞n=0 a Carleman sequence.
Moreover, we assume that there exists a numeric sequence (γn)∞n=0 such that

(1.2)
∞∑
n=0

γnψn (x) = 0 a.e.,

and

(1.3)
∞∑
n=0

∣∣∣∣ γn
an − λ

∣∣∣∣2 <∞.
With the conditions (1.2) and (1.3), the symmetric operator A = (A∗)∗ admits the
defect indices (1, 1) (see [3–6]), and its adjoint operator is given by

A∗f (x) =
∞∑
n=0

an (f, ψn)ψn (x) ,

D (A∗) =

{
f ∈ L2 (X,µ) :

∞∑
n=0

an (f, ψn)ψn (x) ∈ L2 (X,µ)

}
.

Moreover, we haveϕλ (x) =
∞∑
n=0

γn
an−λψn (x) ∈ Nλ, λ ∈ C, λ 6= an, n = 1, 2, . . . ,

ϕan (x) = ψn (x) ,
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Nλ being the defect space associated to λ (see [3, 4]).

2. Position Operator

Let ψ = (ψn)∞n=0 be a fixed Carleman sequence in L2 (X,µ). It is clear from the
foregoing that ψ is not a complete sequence in L2 (X,µ). We set Lψ the closure of
the linear span of the sequence (ψn (x))∞n=0

Lψ = span {ψn : n ∈ N}.
We start this section by defining some formaly spaces.

2.1. Formal Elements.

Definition 2.1 ([7]). We call formal element any expression of the form

(2.1) f =
∑
n∈N

anψn,

where the coefficients an (n ∈ N) are scalars.
The sequence (an)n is said to generate the formal element f .

Definition 2.2. We say that f is the zero formal element and we note f = 0 if an = 0
for all n ∈ N.

We say that two formal elements f =
∑

n∈N anψn and g =
∑

n∈N bnψn are equal if
an = bn for all n ∈ N.

If ϕ is a scalar function defined for each an, we set

ϕ

(∑
n

anψn

)
=
∑
n

ϕ (an)ψn,

or in another form,

ϕ (a1, a2, . . . , an, . . . ) = (ϕ (a1) , ϕ (a2) , . . . , ϕ (an) , . . . ) .

For example let

ϕ (x) =
1

x
, x 6= 0.

If an 6= 0 for all n ∈ N, then the formal element

ϕ

(∑
n

anψn

)
=
∑
n

1

an
ψn

is called inverse of the formal elementf =
∑

n anψn.
Furthermore, we define the conjugate of a formal element f by

f =
∑
n

anψn.

Denotes by Fψ the set of all formal elements (2.1). On Fψ, we define the following
algebraic operations:
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(a) the sum

+ : Fψ × Fψ → Fψ
(
∑
n

anψn) + (
∑
n

bnψn) =
∑
n

(an + bn)ψn ,

(b) and the product

· : C× Fψ → Fψ
λ · (

∑
n

anψn) =
∑
n

(λ · an)ψn.

Hence, we obtain a complex vector space structure for Fψ.

2.2. Bounded Formal Elements.

Definition 2.3. A formal element f =
∑
n∈N

anψn is bounded if its sequence (an)n is

bounded.

We denote by Bψ the set of all bounded formal elements. It’s clear that Bψ is a
subspace of Fψ. We claim that:

(a) Lψ is a subspace of Bψ.
(b) Furthermore we have the strict inclusions:

Lψ ⊂ Bψ ⊂ Fψ.

We define a linear form 〈·, ·〉 on Fψ by setting

(2.2)

〈∑
n

anψn,
∑
n

bnψn

〉
=
∑
n

anbn,

with the series converging on the right side.

Proposition 2.1. The form (2.2) verifies the properties of scalar product.

Proof. Indeed, let

f =
∑
n

anψn, g =
∑
n

bnψn, f1 =
∑
n

a1
nψn and f2 =

∑
n

a2
nψn,

in Fψ.
We have then:
(a)

〈f, g〉 =
∑
n

anbn =
∑
n

bnan = 〈g, f〉,

(b)

〈λf, g〉 =

〈
λ

(∑
n

anψn

)
,
∑
n

anψn

〉
=

〈∑
n

(λan)ψn,
∑
n

bnψn

〉
=
∑
n

(λan) bn = λ〈
∑
n

anψn,
∑
n

bnψn〉 = λ 〈f, g〉 ,
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(c)

〈f1 + f2, g〉 =

〈∑
n

(
a1
n + a2

n

)
ψn,
∑
n

bnψn

〉
=
∑
n

(
a1
n + a2

n

)
bn =

∑
n

a1
nbn +

∑
n

a2
nbn = 〈f1, g〉+ 〈f2, g〉 ,

(d)
〈f, f〉 =

∑
n

|an|2 ≥ 0 and 〈f, f〉 > 0, if f 6= 0.

�

Remark 2.1. On Lψ, the scalar product 〈. , .〉 coincides with the scalar product (. , .)
of L2 (X,µ).

2.3. The Multiplication Operation. Here, we introduce the crucial tool of our
work.

Definition 2.4. We call multiplication with respect to the Carleman sequence (ψn)n,
the operation denoted “◦” and defined by

f ◦ g =
∑
n

〈f, ψn〉 〈g, ψn〉ψn =
∑
n

anbnψn, for all (f, g) ∈ F2
ψ.

Definition 2.5. We call position operator in Lψ any unitary selfadjoint operator
satisfying

U (f ◦ g) = Uf ◦ Ug, for all f, g ∈ Lψ.

The term “position operator” comes from the fact (as it will be shown in the
following theorem) that for the elements of the sequence ψ = (ψn)n, the operator U
acts as operator of change of position of these elements.

2.4. Main Results.

Theorem 2.1. A linear operator defined on Lψ is a position operator if and only if
there exists an involution j (i.e. j2 = Id)of the set N such that for all n ∈ N
(2.3) Uψn = ψj(n).

Proof.
(a) It is easy to see that if (2.3) holds, then U is a position operator.
(b) Let U be a position operator. According to Proposition 2.1 we can write:

Uψn =
∑
k

αn,k ψk, with
∑
k

|αn,k|2 = 1

since Uψn ∈ Lψ.
On the other hand, we have

(2.4)
∑
k

αn,k ψk =
∑
k

α2
n,k ψk
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as
Uψn = U (ψn ◦ ψn) = Uψn ◦ Uψn.

The equalities (2.4) lead to the resolution of the system:

(2.5)

{∑
n |αn,k|

2 = 1,

α2
n,k = αn,k,

k ∈ N.

We get then

for all n ∈ N, there exists only one kn ∈ N :

{
αn,kn = 1,

αn,k = 0,
for all k 6= kn.

Let us now consider the following application

j : N → N,
n 7→ j (n) = kn.

It’s clear that j is injective.
Now let m ∈ N. Since U2 = I, then

U (Uψm) = Uψj(m) = ψj(j(m)) = ψm.

Hence
j(j(m)) = m.

Finally j is well defined as involution. �

Remark 2.2.
(a) We emphasize that involution j depends of the operator U , i.e. j = jU . We

then write
Uψn = ψj(n) = ψjU (n)

and

Uf = U

(∑
n

anψn

)
=
∑
n

anψj(n) = fU .

(b) The position operator U can be extended over Fψ as follows. If f =
∑

n anψn ∈
Fψ, then

Uf = fU =
∑
n

anψjU (n).

3. Carleman Operator in Fψ

3.1. Case of Defect Indices (1,1). Let α =
∑

n αpψp ∈ Fψ, we introduce the

operator
◦
Aα defined in Lψ by

◦
Aαf = α ◦ f =

∑
n

〈α, ψn〉 〈f, ψn〉ψn.
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It is clear that
◦
Aα is a Carleman operator induced by the kernel

K (x, y) =
∑
n

αnψn (x)ψn (y),

with domain

D(
◦
Aα) =

{
f ∈ Lψ :

∑
n

|αn (f, ψn)|2 <∞

}
.

Moreover, if α = α, then
◦
Aα is selfadjoint.

Now let Θ =
∑

n γnψn ∈ Fψ and Θ /∈ Lψ (i.e.,
∑

n |γn|
2 = ∞). We introduce the

following set

(3.1) HΘ = {f + µΘ : f ∈ Lψ, µ ∈ C} ,

which verify the following properties.

Proposition 3.1.

(a) HΘ is a subset of Fψ.
(b) Hθ = Lψ ⊕ Cθ, i.e. direct sum of Lψ with Cθ = {µθ : µ ∈ C}.

Proof. The first property is easy to establish. We show the uniqueness for the second.
Let g1 = f1 + µ1θ and g2 = f2 + µ2θ two formal elements in Hθ. Then

g1 = g2 ⇔ f1 − f2 = (µ2 − µ1) θ.

This last equality is verified only if µ2 = µ1. Therefore f1 = f2. �

Denote by Q the projector of HΘ on Lψ, that is to say: if g ∈ HΘ, g = f + µΘ
with f ∈ Lψ and µ ∈ C then Qg = f .

We define the operator Bα by

Bαf = Q (α ◦ f) , f ∈ Lψ.

It is clear that,

D (Bα) = {f ∈ Lψ : α ◦ f ∈ HΘ} .

Theorem 3.1. Bα is a densely defined and closed operator.
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Proof.
(a) Since

span {ψn : n ∈ N} ⊂ D (Bα)

and that (ψn)nis complete in Lψ, then

D (Bα) = Lψ.

(b) Let (fn)n, be a sequence of elements in D (Bα). Checking{
fn → f,

Bα fn → g,
(convergence in the L2 sense).

We have then
Bα fn = Q (α ◦ fn) ,

with
α ◦ fn = gn + µΘ, gn ∈ Lψ.

Then
gn = α ◦ fn − µnΘ ∈ Lψ,

This implies that:

〈gn, ψm〉 = αm 〈fn, ψm〉 − µnγmψm, for all m ∈ N.

Or, when n tends to ∞, we have:

gn → g and fn → f.

Therefore, there exist µ ∈ C such that:

lim
n→∞

µn = µ.

And as Q is a closed operator, then we can write

α ◦ f ∈ HΘ and g = Q (α ◦ f) .

Finally f ∈ D (Bα) and g = Bαf . �

It follows from this theorem that the adjoint operator B∗α exists and B∗∗α = Bα.
Let us denote by Aα, the operator adjoint of Bα

Aα = B∗α.

In the case α = α, the operator Aα is symmetric and we have the following results.

Theorem 3.2. Aα admits defect indices (1, 1) if and only if

ϕλ = (α− λ)−1 ◦Θ ∈ Lψ.

In this case ϕλ ∈ Nλ (defect space associated with λ, [3]).
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Proof. We know (see [3]) that Aα has the defect indices (1, 1) if and only if, its defect
subspaces Nλ and Nλ are unidimensional.

We have
Nλ = ker (A∗α − λI) = ker (Bα − λI) .

So it suffices to solve the system {
Bαϕλ = λϕλ,

ϕλ ∈ Lψ,

i.e., {
Q (α ◦ ϕλ) = λϕλ,

ϕλ ∈ Lψ,
⇐⇒

{
(α ◦ ϕλ) = λϕλ + µΘ, µ ∈ C,
ϕλ ∈ Lψ,

⇐⇒

{
(α− λ) ◦ ϕλ = Θ,

ϕλ ∈ Lψ,

⇐⇒

{
ϕλ = (α− λ)−1 ◦Θ,

ϕλ ∈ Lψ.

�

3.2. Case of Defect Indices (m,m). In this section we give the generalization for
the case of defect indices (m,m), where m > 1.

Let Θ1,Θ2, . . . ,Θm, (where m ∈ N) formal elements not belonging to Lψ and let

HΘ =

{
f +

m∑
k=1

µkΘk, f ∈ Lψ, µk ∈ C, k = 1, . . . ,m

}
.

We consider the operator Bα defined by

Bαf = Q (α ◦ f) , for f ∈ D (Bα) ,

D (Bα) = {f ∈ Lψ : α ◦ f ∈ HΘ} .

We assume that α = α and we set

Aα = B∗α.

By analogy to the case of defect indices (1, 1) we also have the following.

Theorem 3.3. The operator Bα is densely defined and closed.

Theorem 3.4. The operator Aα admits defect indices (m,m) if and only if

ϕ
(k)
λ = (α− λ) ◦Θk ∈ Lψ, k = 1, . . . ,m.

In this case the functions ϕ(k)
λ (k = 1, . . . ,m) are linearly independent and generate

the defect space Nλ.
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