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ON A CAPUTO FRACTIONAL DIFFERENTIAL INCLUSION
WITH INTEGRAL BOUNDARY CONDITION FOR
CONVEX-COMPACT AND NONCONVEX-COMPACT VALUED
MULTIFUNCTIONS

SH. REZAPOUR!2?* AND V. HEDAYATI?

ABSTRACT. In this paper, we investigate a Caputo fractional differential inclusion
with integral boundary condition under different conditions. First, we investigate it
for L'-Caratheodory convex-compact valued multifunction. Then, we investigate it
for nonconvex-compact valued multifunction via some conditions. Also we give two
examples to illustrate our results.

1. INTRODUCTION

As we know, it has been published many papers about the existence of solution for
different fractional differential equations (see for example, [8-16] and the references
there in). Also, it has been appeared many works on fractional differential inclusions
(see for example, [1-7,18-23,26,29,31-33,36] and the references there in). One can
find more details about necessary notions in [25,30,34|. Let n,v,5 € (0,1) and
a € (1,2] be such that T'(2 — B)(n*v —v*n —n* + > +4n— 20 —2) +2(1 —n) # 0
and a — 8 > 1. In this paper, we investigate the existence of solutions for the Caputo
fractional differential inclusion

(1.1) °D(t) € F(t,z(t),c DPx(t),2'(t)),
for almost all ¢ € [0, 1], via the integral boundary value conditions
n
z(0) 4 2'(0) +<D°z(0) = / x(s)ds
0
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and
o(1) 4+ /(1) + °DPa(1) = /0 2(5)ds.

where F': [0,1] x R x R x R — 2% is a compact valued multifunction and CDa is the
Caputo differential operator of order o € (1,2], that is, *D%*z(t) = 2 2 fo tm @) _ds.

sal

Let (X, d) be a metric space. It is well known that the Pompeiu Hausdorff metric
(see [17]) Hy : 2% x 2% — [0, 00) is defined by
Hy(A,B) = rnax{sup d(a, B),supd(A,b)},
beB

where d(A,b) = inf,cad(a,b). Then (CB(X), Hy) is a metric space and (C(X), Hy)
is a generalized metric space, where C'B(X) is the set of closed and bounded subsets
of X and C(X) is the set of closed subsets of X (|26]). Denote the set of compact
and convex subsets of X by P, ., (X). Let T : X — 2% be a multifunction. An
element = € X is called an fixed point of T" whenever x € Tx [24]. A multifunction
T : X — C(X) is called a contraction whenever there exists v € (0,1) such that
Hy(N(z),N(y)) < vd(z,y) for all z,y € X. In 1970, Covitz and Nadler proved that
each closed valued contractive multifunction on a complete metric space has a fixed
point [21]. A multifunction G : J — P,4(R) is said to be measurable whenever the
function ¢ — d(y, G(t)) is measurable for all y € R, where J = [0, 1] [22]. We say that
F:JxRxRxR — 2% is a Caratheodory multifunction whenever ¢ — F(t, x,y, 2) is
measurable for all z,y,2 € R and (z,y, z) — F(t,z,y, 2) is upper semi-continuous for
almost all t € J [7,22,26]. Also, a Caratheodory multifunction F' : Jx RxR xR — 28
is called L'-Caratheodory whenever for each p > 0 there exists ¢, € L'(J,R") such
that

1 E(t, 2.y, 2) [|= sup{|v] : v € F(t,x,y,2)} < 6,(1),

for all |z, |y|,|z] < p and for almost all ¢ € J [7,22,26]. By using main idea of
[5,6,31,36], we define the set of selections of F' by

Sp, = {v € AC[0,1](J,R) : wv(t) € F(t,x(t),*D’x(t),2'(t)) for almost all ¢t € J},

for all x € C(J,R). Let E be a nonempty closed subset of a Banach space X
and G : E — 2% a multifunction with nonempty closed values. We say that the
multifunction G is lower semi-continuous whenever the set {y € E : G(y) N B # (0} is
open for all open set B in X [24]. It has been proved that each completely continuous
multifunction is lower semi-continuous [24]. Denote by ACY0, 1] the space of all the
absolutely continuous functions deﬁned on [0,1]. Let AC?0,1] = {w € C'[0,1] : w

L[0,1]}. Recall that I*x(t) = fo txs()sl 2 —ds is said to be the Riemann- Liouvﬂle
fractional integral of order a (for rnore details see [34,37]). We use the followings in
our main results.

Lemma 1.1 (|28]). Let X be a Banach space, F : J X X — P, .(X) an L'-
Caratheodory multifunction and © a linear continuous mapping from L'(J, X) to
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C(J,X). Then the operator ©oSg : C(J, X) = Pepop(C(J), X) defined by (©0Sr)(z)
= O(SFy.) is a closed graph operator in C(J, X) x C(J, X).

Lemma 1.2 (|24]). Let E be a Banach space, C a closed convex subset of E, U
an open subset of C and 0 € U. Suppose that F : U — P., o (C) is a upper semi-
continuous compact map, where P, .,(C) denotes the family of nonempty, compact
convex subsets of C'. Then either F has a fixed point in U or there exist u € OU and
A € (0,1) such that uw € \F(u).

2. MAIN RESULTS

Now, we are ready to provide our results about the existence of solutions of the
inclusion problem (1.1). Define z,(t) = I*v(t) — cop — c10t, Where

Cop = — m /On /Os(s —m)* tv(m)dmds

(

2=n) =1 [ a1

+ 2 T(a) /0 (1—95)*"v(s)ds
= )A=m) (7 [ e\ dimds

T /0 0(8 S

+ (22;117@{@ ;)D /0 (1 — )P ly(s)ds + (22;&0)4(2;)1) /0 (1 —5)*2v(s)ds

and
Clo = — (il“_(ozl/;t /On /Os(s —m)* tv(m)dmds — (ilj_(cz;t /0 (1 —5)*tu(s)ds

~S st~ [ o

—(1—77)75 1 — 5)*2(s)ds

It is easy to check that z, € AC?[0,1] is well-define and a/,, “Dz,, [ z,(s)ds exist
whenever v € AC|0, 1] (see [27]).

Lemma 2.1. Let v € AC[0,1], B,n,v € (0,1) and « € (1,2] with « — 5 > 1 and
L2 -8y —v*n—n*+ v +4n—2v —2) +2(1 —n) #0.

Then x,(t) is the unique solution for the problem “D®x(t) = v(t) with the integral
boundary value conditions x(0) + /(0) +° D’x(0) = [ a(s)ds and x(1) + 2/(1) +
‘DPx(1) = [ x(s)ds.



146 SH. REZAPOUR AND V. HEDAYATI

Proof. 1t is known that the general solution of the equation Dz (t) = v(t) is

« _ 1 ! a—1
z(t) = I(t) — ag — ast = m/o (t —8)* " v(s)ds — ag — aqt,

where ag, a; are arbitrary constants and t € J [25,34]. Thus,
t'=Pa, 1 t tH=Ba,
cDPx(t) = I°Pu(t) — = / t— )P y(s)ds — =——
K YOR R ) S o)
and 2'(t) = I*w(t) —a; = ﬁ fot(t — 5)*2y(s)ds — a,. Hence by using an easy
calculation, we get z(0) + ¢Dz(0) + 2/(0) = —ag — a; and

c / o 1 ! a—1
(1) +° DPx(1) +2'(1) = m/o (1—95)*"v(s)ds
+ ﬁ/{) (1 —5)>Fy(s)ds

bt 1 —5)* (s 5—%— ag —a
e RO e REURS

By using the boundary conditions, we obtain

ao(n—l)—m(n; ) //s— Vo Ly(m)dmds

and
ao(v — 1)+ a <§—2—%>
_ ﬁ/ﬂlu ) Yu(s)ds
_ ﬁ /0 (1 )0 (s)ds — ﬁ /O (1 - 5 2u(s)ds
cm | e et
Thus,

Qg = Copy =

/ (m)dmds
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+ <22;1:7(0)é(i ;;) /0 (1 =) u(s)ds
+ (22;3(;@;1) /0 (1= s)*"?u(s)ds
and
—a _ 1—V)t i (s—m a1 3_(1_77>t 1 IV
a1 v = ) /0 ; m)dmd T (o) /0 (1 ) (s)d
b = 1)t/ / m)dmds
u — )2 Py (s)ds — -t [ — 9)* 2(s)ds
wa—m/o (1= (s = e [ togsyas
Hence,
o(t) = ot

:ﬁ/ot(t—s)al ds—i— 1= // m)dmds

Pl [ / (5 = m)*to(m)dmds
P B0 Pl gt
+ (77227}(2(1(2 ;)1) /0 (1= 52 y(s)ds
20D Pl gt

1_t35/ /'s— )*=Lo(m)dmds
Sy R——
e /01“‘3) “d”yrl(aﬁn / (1= 5" o(s)ds

=I1%(t) — cop — C1ot.

Conversely, it is clear that 2/ (t) = I*7 v (t) + ¢1, and 27/(t) = (I°o(t)) = BD?* v(t)
for almost all ¢ € J. Since 2 — « € (0, 1], we get

D, (t) = I*"w(t) = " *("D*"*(t)) = v(1).
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Similar to the last part, we obtain

n
2,(0) + 2 (0) +¢ DPx,(0) = —cop — €10 = / x(s)ds
0

and
1
2o(1) + 2, (1) +° DPay(1) :ﬁ/o (1= )" 'u(s)ds
1 ! o p
+ m/{) (1 —8)* " (s)ds
1 1 a— F(Q)al
X m/(; (1 — 8) 2U(8)d$ — m — 2011} — Coyp
= / x(s)ds.
0
This completes the proof. O

An element x € AC?%(]0, 1], R) is called a solution of the problem (1.1) whenever it
satisfies the integral boundary conditions and there exists a function v € Sk, such
that

x(t) = Iv(t) — cop — C1ot,
forallt € J. Let X = {x: 2,2/, D’z € C(J,R) for all 8 € (0,1)} endowed with the

norm |12 = supc |(2)|+supye., [ DO(t)] + supye, [(6). Then, (X, |.|) is a Banach
space [35]. For investigation of the problem (1.1) we provide two different methods.

Theorem 2.1. Suppose that F : J x R x R x R — P, .,(R) is a L'-Caratheodory
multifunction and there exist a bounded continuous non-decreasing map v : [0, 00) —
(0,00) and a continuous function p : J — (0,00) such that

1F(t, 2(t), D (t), 2 (1)) || = sup{Jv] : v € F(t,x(t),° D (t),a'(t))} < p(t)e(|l2])),
for allt € J and x € X. Then the inclusion problem (1.1) has at least one solution.
Proof. Define the operator N : X — 2% by
N(z) = {h € X : there exists v € Sp, such that h(t) = Iv(t) — cop — C10t, t € J}.

We show that the operator N has a fixed point. First, we show that N maps bounded
sets of X into bounded sets. Suppose that » > 0 and B, = {z € X : ||z|| < r}. Let
x € B, and h € N(x). Choose v € Sg, such that h(t) = I*v(t) — co, — c1,t for almost
all t € J. Thus,

01 < iy [ = ool + i [ [ s = my o) s

(77 _2 V_l‘// al\v (m)|dmds
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+(ﬁ;?$;”tfu—>“wwnw

N (v

T e [ Rl
-%“Zgaﬁjl)/?1—>aﬂw>ws

+ 1—:))75// s — m)*~|u(m)|dmds

Ao AL oo
R [ sy atoas + |2 A<1—$aﬂw>ws

< Mallpllscto(ll),

cph —1 t — ) P (s)|ds
D0 < s | (= (s

(1 — V)tl_ﬁ a 1
=gy | = etmlamds
1-8
] [ s etsas

T
+ T

(1—
(@)
(n—1)t'" yo- 1
trare=sl /~ lm)dmds
(1=t~ i _ ) BL, s
Al 4o
L=t 1 —5)*2|v(s)|ds
Hre—ore—g)| M
< Aa|lpllscto(ll=]])
and
| ()] < ﬁ/{) (t — 5)* 2|v(s)|ds + ) ) Ho(m)|dmds
A-n| [ —5)* u(s)|ds m)* v(m)|dmds
—1—‘711(0[) /0(1 ) Hu(s)|d +‘ |v(m)|dmd

(1 - 77)
W(a—1)

‘ (1—n)

1 — ) P 1y s
| [ @ s+

A(l—)aﬂw>us
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< Asllpllotb(l]])

for all t € J, where ||p|loc = sup,c; p(?)],

A, = [ 1 nt! (7 =2)(v =+ (> =2)(n—1) ‘
MNa+1) T(a+2)(1—mn) 29T (a+ 2) 29T (e + 1)
+<ﬁ—aX1—mw”1 ‘m?—mm—1> W?—mm—lw
29T (a+ 2) 29T (a—p+1 29T ()

(1 =)y (1-n) (n—1pt! (1-n)
BTN ’W(er)‘ +‘ (a+2) ‘VF(a—BH)‘

(1—-mn)
i wf(a) }
{ (1 —w)p*! ‘+’ (1-n) ‘
ra—ﬂ+1 T atrre—3)| | T a+ )2 =5)
+’ (n — Dot ‘ (L—mn) ’ (1—n) H

Na+%ﬂ2—@ Wla-+1I2—-6)| |"T(@r@2-06)]]
{ ' ot ‘<1—m “m—1W%l ‘ (1-n)
['(a) I« —|— 2) Yo+ 1) (e + 2) (o —B+1)
+M1 n}

(@)

Hence,
— cnp ! <
Il) = mawx [B(5)] + max [*DA(E)] + max K ()] < (A + Ao + As)pllctr (2]

Now, we show that N maps bounded sets into equi-continuous subsets of X. Let
x € B, and ty,ty, € J with t; < t5. Then, we have

Ih(ta) — h(t)| = ﬁ /O (s — ) L(s)ds — ﬁ /0 (= )2 (s)ds

(@)
L—mt> [ o1 L—mt [* a1
T(a) /0(1 $)*v(s)ds T(a) /0 1—35) v(s)ds
X (177;((11);2/0 /O(S—m)a_lv(m)dmds
_ (7’;1:(2;1 /OV /Os(s—m)a tu(m)dmds
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(1 —n)ty

- 1 — 5)* P Ly(s)ds
g [, (e e

=t [t BT o) ds
Tty e
(L=nt2 [* —5)*2u(s)ds — —(1 —nh [ — 5)*u(s)ds
D J, 0o S 0o o
5 — 17 (L=v)n*(ty —t)|  |(L=n)(t2 — 1)
<llpllocw(ll|) { Mot 1) ’ T(a+2) ‘ AT+ 1)
Jr‘(77— Dottty — 1) ’(1—?7)(152—751) ‘(1—77)(’52—151) }
(e +2) W(a—pB+1) (@) ’
ty -’ (ty 7=t 7)1 — vyt

T(a—B+1)

(t, " =) —n)
M(a+1I(2 - p)

ty 7 — ) (1 -
+ (23 el n) +

(e +2)l(2 - f)

(1" — ) —
(o + 2T - §)

ORI )
()2 = p)
a—1

and |1 (t2) = '(12)] < [Ipllccto(ll2) i for all h € N(x). Hence, limy, s, |A(tz) -
h(ty)] = limg, s, [*DPh(ts) —¢ DPh(ty)| = limy, ¢, |B'(t2) — W' (t1)| = 0 and so by using
the Arzela-Ascoli theorem, N is completely continuous. Now, we show that N has
a closed graph. Let =, — o, h, € N(z,) for all n and h, — hy. We prove that
ho € N(zp). For each n, choose v, € Sg,, such that h,(t) = I®v,(t) — cou, — Cro,t
for all t € J. Consider the continuous linear operator 6 : L'(J,R) — X defined by
O(v)(t) = I*v(t) — co, — c10t. By using Lemma 1.1, 8oSF is a closed graph operator.
Since x, — xo and h,, € 0(SF,,) for all n, there exists vy € S, such that ho(t) =
I*vg(t) — coy — C1et. Thus, N has a closed graph. In this section, we show that N(x)
is convex for all © € X. Let hy,hy € N(z) and w € [0,1]. Choose v1,vy € Sp, such
that h;(t) = I®v;(t) — cou, — C1,t for almost all ¢ € J and i = 1,2. Then,

[*D%h(tz) = DPh(t1)] < [Ipllscvo (1)) [

+

Wla-F+1)I(2-5)

1 t a-l — w)vy(s)]ds
_ m/ (t = 5)Hwoi(s) + (1 — w)oa(s))d
+ %/ / (s —m)* Hwvy(m) + (1 — w)vy(m)]dmds

(77_2y_1 0‘1 —w)vy(m)|dmds
# B [0 [ s = ) aom) + (1= w)ea(m)
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(m*=2)(n—1) [* - B
+ 2T (a) /0 (1= 8)* Hwovi(s) + (1 —w)va(s)]ds

B T ot — w)va(m)|dmds
+ T (a) /0 /0 (s —m)* wv(m) + (1 Yus(m)]dmd

=20 -1 [ — )2 P wu (s — w)ve(s)|ds
O [ = () + (1= wea(old

() Jo Jo
(flyr_(g))t /01(1 5)* Hwvy(s) + (1 — w)va(s)]ds

" (Zr_(iit /0 /05(5 —m)* Hwoy(m) + (1 — w)vy(m)]dmds
% /01“ = 5)" 7 Hwor(s) + (1 — w)va(s)]ds
% /01(1 — 5)*2[wvy(s) + (1 — w)va(s)]ds,

for all t € J. Since F' has convex values, Sg, is convex and so why + (1 —w)hy € N(z).
If there exists A € (0,1) such that + € AN(x), then there exists v € Sp, such
that z(t) = I*v(t) — co, — c1ot for almost all ¢ € J. Choose L > 0 such that
(A1+A2+A3I)l||p||oo'¢z(Hz||) > 1 for all x € X. Thus, ||z|| < L. Now,put U = {x € X : ||z|| <
L + 1}. Note that, there are no z € 9U and A\ € (0,1) such that z € AN(x) and
the operator N : U — P,,.,(U) is upper semi-continuous because it is completely
continuous. Now by using Lemma 1.2, N has a fixed point in U which is a solution
of the inclusion problem (1.1). This completes the proof. O

Here, we provide an example for the result.

FExample 2.1. Consider the fractional differential inclusion
(2.1) “Dix(t) € F(t,x(t),° D2x(t), 2/ (1)),

with the boundary value conditions

1

1
3

2(0) + 2(0) +CDéx(o>=/2x(s)ds and (1) + 2/(1) +CD%:U(1):/ 2(s)ds.

0 0
Put, o = 2, =4, n =3, v = 3 and consider the multifunction F : J x R? — 2¥
defined by
F(t,xy,x9,23) = |cost + 1] +singy, 5+t + ———
s 1+ |z] ’ 1+ el |
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Note that, [ F(t, 1, 22, 23)|| = sup{lyl  y € F(t,a0,2,25)} < 7. T p(t) = 1, and
¥ (t) = 7, then one can check that the assumptions of Theorem 2.1 hold and so the
problem (2.1) has at least one solution.

Here, we provide another result about the existence of solutions for the problem
(1.1) by changing the assumption of convex values for the multifunction.

Theorem 2.2. Let m € C(J,RT) be such that ||m||s (A1 +As+A3) < 1. Suppose that
F:JxRxRxR = P,(R) is an integrable bounded multifunction such that the map
t+ F(t,z,y,z) is measurable and Hy(F(t,x1, 22, x3), F(t,y1,92,y3)) < m(t)(|z1 —y1|+
|zo — yo| + |23 — y3|) for almost allt € J and x,y, z, 1, X2, T3,Y1, Y2,y € R. Then the
problem (%) has a solution.

Proof. Note that, the multivalued map t - F(t, z(t),c DBz (t), 2'(t)) is measurable and
closed valued for all x € X. Hence, it has a measurable selection and so the set Sg,
is nonempty. Now, consider the operator N : X — 2% defined by

N(x) = {h € X : there exists v € Sp, such that h(t) = I“0(t) — cop — C10t, t € J},

for all ¢ € J. First, we show that N(x) is a closed subset of X for all z € X.
Let € X and {u,}n>1 be a sequence in N(z) with w, — wu. For each n, choose
vy, € Spg such that w,(t) = 1%v,(t) — cop, — C10,t for almost all t € J. Since F has
compact values, {v,},>1 has a subsequence which converges to some v € L'(J,R).
Denote the subsequence again by {v,},>1. It is easy to check that v € Sp, and
un(t) = u(t) = I*v(t) — cop — c1pt for all t € J. This implies that u € N(x). Thus, the
multifunction N has closed values. Now, we show that NV is a contractive multifunction
with constant [ := ||m|l(A1 + A2+ A3) < 1. Let 2,y € X and hy € N(y). Choose
v1 € Sp,y such that hy(t) = 1% (t) — cop, — 10, t for almost all £ € J. Since
Ha(F(t, (), “Dx(t), '(t)), F(t,y(t), "D y(t), y (1))

<m(t)(Je(t) — y(t)] + [*D%x(t) = “Dy(t)| + |2 (t) — ¥/ (1)),

for almost all t € J, there exists w € F (¢, x(t), DPxz(t), 2'(t)) such that
[o1(t) = w| < m(t)(Ja(t) — y(t)] + [°D x(t) = Dy(t)] + o' (t) — ¥/ (1)),

for almost all ¢ € J. Define the multifunction U : J — 2% by

U(t) ={w e R:|or(t) — w| < m(t)(Ja(t) — y(t)] + "D x(t) = D7y(1)]
+ |2'(t) — v/ (t)]) for almost all t € J}.

It is easy to check that the multifunction U(.) () F(., z(.),¢ Dz(.),2'(.)) is measurable.
Thus, we can choose vy € S, such that

[o1(t) = va(t)] < m(t)(|2(t) —y()] + [*D%x(t) = Dy(t)| + [o'(t) — ¥/ (1)),
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for almost all ¢ € J. Now, consider hy € N(x) which is defined by ho(t) = [®v(t) —
Cov, — C10,t. Hence, we get

1 ' a—1
|ha(t) — ha(t)] < m/o (t —5)* oi(s) — v2(s)|ds
1 n

+ e (s —m)* vy (m) — vo(m)|dmds

; (772;72322)_1) [ [ =t m) = v amas
| ey 0=t =

| ;7212((;)—77) / / 1 oy () — v (m) | dmds
R [ = uolas

# [0 D] [ ) — vt
S [ [ = mtoatm  vom)idmas
#[SE [0 s) = s

; <j;(;§t | [ = mi o m) = v dmas
B o ) = vt
#2250 ints) = vt

< Aifmllocllz = yll;

cnb _c b —1 t — $) By () — va(s)|ds
D (1) = D*hat)] < s [ (=9 ) = o)l

(=)t m)* 1 ) — vo(m)|dmds
=g, ¢ ntm - stman

(L—n)t'*

TG 3| [ ) - sl

(2-
1-8
i %)r(ﬁ >/ / )" fen(m) = va(rm)dmds

+
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(1—77)t1_5 1 —8) P oy (s) — va(s)|ds
| [ 4= 9 ) - w(ela

‘ (L—nt'"
(@ = 1T(2 = p)
< Agflmloollz =yl

/0 (1= 5)* [0 (5) — vals)|ds

and

By (8) — H(t)] < ﬁ / (t — ) 2un(s) — va(s)|ds

* AT (@) /0’7 /OS(S —m)* oi(m) — va(m)|dmds

(1-n) a—1 — uo(s)|ds
el [ =9 ) el

U2 = m o) = wn(mlamds
)

+

—(1_77 1 — 8)* P (s) — vo(s)|ds

| [ = — ol
(1_77) ! a—2 — vo(s s

| [ =) — v

< Allmloollz =y

and so [[h; — hal < (A1 + Ay + A3)||m||ellz — y|| = ||z — y||. This implies that
the multifunction N is a contraction with closed values. Thus by using the result of
Covitz and Nadler, N has a fixed point which is a solution for the inclusion problem

(1.1). O
Next example illustrates last result.

Example 2.2. Consider the inclusion problem

(2.2) ‘Dig(t) € F(t,z(t),° D3z(t), 2/ (1)),

with the boundary value conditions

1

2(0) + 2/(0) +° D3 2(0) = /Ozas(s)ds and z(1) + /(1) + *Déz(1) = /OSx(s)ds.

Put a = %, b= %, n = %, v = % and consider the multifunction F : J x R3 — 2F
defined by

tsin x4 t]zs| |25
)

F(t =10
( y L1, T2, 513'3) [ ’ 15(5 + 3t2) 100(1 + |I2|) 100(1 + |I3|
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It is easy to see that

3
t t 1
Hy (F(t F(t N< (L =il
d (F(t, w1, w0, 23), F(t,y1,92,93)) < (15(5<+-30t2)_+ 100'+'100) ;é;\x Yil
for all t € J and x1, x9, 3,91, Yo, y3 € R. If m(t) = mjLﬁ—i—ﬁ for all t € J,

then H (F(t,x1, 29, 23), F(t,y1,Y2,y3)) < m(t) Z?Zl |z; — y;|. On the other hand, we
have L = ||m|loo(A1 + Ay + Az) < 0.0333 x (3.654 + 1.263 4 0.963) ~ 0.19580 < 1.
Thus, the assumptions of Theorem 2.2 hold and so the inclusion problem (2.2) has at
least one solution.
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