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Abstract. The objective of the present paper is to investigate the geometric struc-
tures admitting by a metric which is physically relevant as well as significant. The
curvature properties of the metric investigated in the paper are also significant geo-
metrically as the metric admits several kinds of pseudosymmetric type conditions
among which some of them are new in literature.

1. Introduction

Let M , dimension M = n ≥ 3, be a connected semi-Riemannian smooth manifold
endowed with a semi-Riemannian metric g of signature (s, n− s), 0 ≤ s ≤ n. If s = 0
or s = n then M is a Riemannian manifold, and if s = 1 or s = n − 1, then M is a
Lorentzian manifold. The nature of a semi-Riemannian manifold is determined by its
curvature tensors, viz., the Riemann curvature tensor R, Ricci curvature S and scalar
curvature r. The notion of three curvatures are equivalent for any two dimensional
semi-Riemannian manifold but not for n ≥ 3. Hence throughout the paper we will
consider a smooth connected semi-Riemannian manifold of dimension n ≥ 3.

The Ricci curvature is the trace of the Riemann curvature and the scalar curvature
is the trace of the Ricci curvature. Hence to investigate the nature of a manifold one
should determine its Riemann curvature tensor. The metric tensor g determines R

by means of second order partial derivatives with respect to the coordinate functions.
Thus ultimately the metric tensor g determines the geometry of the manifold which
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is non-flat. In general relativity a spacetime is a connected 4-dimensional Lorentzian
manifold. General relativity is described by Einstein field equations which is the
set of equations connecting the geometrical properties of the spacetime with the
distribution of gravitating matter contained in the spacetime. The energy momentum
tensor contains all the information about the matter contained in the spacetime. Thus
Einstein field equations implies that a second rank tensor which describes the geometry
of the spacetime is equal to a second rank tensor which describes the physics of the
spacetime. Therefore Einstein field equations are fundamental in the construction of
a cosmological model which implies that the matter gives rise to the geometry of the
spacetime and conversely the motion of matter is determined by the metric tensor of
the non-flat space. In general relativity there are many metrics which describes various
cosmological models and each of the metric are physically relevant and significant
and their physical properties are well known due to the information of a specific
cosmological model. However, this physically significant metrics may have carried out
many geometric properties which are not well studied. The geometric structures are
obtained by imposing the first and higher order covariant derivatives on the Riemann
curvature tensor and also other curvature tensors which arise as an invariant of specific
transformation on a manifold, for example, the conformal, concircular, conharmonic,
projective curvature tensor etc. However, all these invariant curvature tensors are
mainly the linear combination of the tensors formed by g, R, S and r. Thus ultimately
the metric tensor g plays the crucial role in the study of differential geometry for
the characterization and classification of different geometric structures. However, in
differential geometry a specific geometric structure can be classified locally which
ensures the form of metric of that structure and hence all the geometric information
of the space can be determined. But there are many geometric structures whose local
classification is either difficult or cumbersome and yet known to be impossible. In
all those cases the existence of such structures is guaranteed by means of specific
metrics which are the trend of modern mathematics as abstraction, generalization or
extension, existence and then application. In the literature of differential geometry
there are many geometric structures which are determined by means of its curvature
tensor with first order or higher order covariant derivatives, for example, the local
symmetry, semisymmetry, recurrency, pseudosymmetry, weakly symmetry etc. The
moto of this paper is unconventional because we will consider a physically relevant
metric and then we would like to determine its curvature properties and verify which
geometric structures are admitted by this metric and which are not admitted by this
metric. Then it will be a nice approach to conclude that this metric will be a model of
such geometric structures which are admitting by this metric. For this purpose let us
consider the metric defined on a non-empty open connected subset of R4 as follows:

ds2 = gijdx
idxj(1.1)

=(1 + 2p)
[

(dx1)2 + (dx2)2 + (dx3)2
]

+ (dx4)2, i, j = 1, 2, 3, 4,
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where p = ex
1

ρ2
and ρ is a non-zero constant; x1, . . . , x4 are the standard coordinates

of R4. We note that such type of metric was first appeared in [89] and latter used by
many authors (see [15,16,100]) to prove the existence of various curvature restricted
geometric structures.

This paper is organized as follows. Section 2 deals with rudiments of various
geometric structures which are essential to study the curvature properties of the
above described metric. Section 3 is mainly concerned with the various components
of different curvature tensors to investigate the geometric structures admitting by this
metric. The last section is devoted to the conclusion as theorems (see Theorems 4.1
and 4.2) and remarks.

2. Preliminaries

Let ∇ be the Levi-Civita connection of M . In 1926 Cartan introduced the notion of
locally symmetric manifolds with full classification [7,8]. M is called locally symmetric
due to Cartan if ∇R = 0, which is equivalent to the fact that the local geodesic
symmetry at each point of M is an isometry. During the last eight decades the notion
of locally symmetric spaces have been generalized by many authors in different ways
and several steps such as κ-space by Ruse [73–75] (which is called recurrent space by
Walker in 1950 [114]), conformally recurrent manifolds by Adati and Miyazawa [2],
projectively recurrent manifolds by Adati and Miyazawa [3], 2-recurrent manifolds by
Lichnerowicz [57], generalized recurrent manifolds by Dubey [47], quasi-generalized
recurrent manifolds by Shaikh and Roy [101], hyper generalized recurrent manifolds
by Shaikh and Patra [100], weakly generalized recurrent manifolds by Shaikh and
Roy [102], semisymmetric manifolds by Cartan [9] (which were classified by Szabó
[107–109], in the Riemannian case), pseudosymmetric manifolds by Deszcz [23,35,83],
pseudosymmetric manifolds by Chaki [10], weakly symmetric manifolds by Selberg
[78], weakly symmetric manifolds by Tamássy and Binh [110]. It may be mentioned
that the notion of weakly symmetric manifold by Selberg is different from that by
Tamássy and Binh [83], and pseudosymmetric manifold by Chaki is also different
from pseudosymmetric manifold by Deszcz [83]. The manifold M is said to be Ricci
symmetric if ∇S = 0 (see, e.g., [69]). The notion of Ricci symmetry was also weakend
by various ways such as Ricci recurrent by Patterson [70], Ricci semisymmetric by
Okumara [69], Roter [72], Tanno [112], Ryan [76], Matsuyama [66], Mirzoyan [68],
Abdalla and Dillen [1] and others, Ricci pseudosymmetric by Deszcz [21], pseudo Ricci
symmetric by Chaki [11], weakly Ricci symmetric by Tamássy and Binh [111].

To find an exact solution of Einstein field equation, initially, a geometric structure
arose in the space which is called an Einstein space. A connected semi-Riemannian
manifold (M, g), n ≥ 3, is called Einstein if its Ricci tensor S of type (0, 2) is a
constant multiple of the metric tensor g such that S = r

n
g [4]. As a direct and

algebraic generalization of an Einstein manifold, the notion of quasi-Einstein manifold
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arose during the study of exact solutions of the Einstein’s field equation (Friedmann-
Lemaître-Robertson-Walker spacetimes; see, e.g., Section 6 of [51] and [56]) as well as
during the investigation of quasi-umbilical hypersurfaces by Cartan [6] and Schouten
[77]. Let US = {x ∈ M :

(

S − r
n
g
)

x
6= 0}. Then the manifold is said to be quasi-

Einstein [14, 19,25,28,39,40,43,49,56,69,88,94,105] if on US ⊂ M , we have

S − αg = βA⊗ A,

where A is an 1-form on US and α, β are some functions on US and ⊗ is the tensor
product. It is clear that the 1-form A as well as the function β are non-zero at every
point on US. The manifold is said to be a 2-quasi-Einstein [29, 31, 33] manifold if
rank(S−αg) ≤ 2 and rank(S−αg) = 2 on some open non-empty subset of US, where
α is some function on US.

Again as in an Einstein manifold the Ricci tensor S is proportional to the metric
tensor g, the Ricci parallel condition in the manifold i.e., ∇S = 0 is a generalized
structure of an Einstein manifold and also manifold of constant scalar curvature is
a generalization of Ricci parallel. In 1978 Gray [50] obtained two classes A, B of
Riemannian manifolds which lie between the class of Ricci symmetric manifolds and
the manifolds of constant scalar curvature. The class A (resp. B) is the class of
Riemannian manifolds whose Ricci tensor is cyclic parallel (resp. Codazzi tensor).
Every Ricci symmetric manifold is of class B but not conversely. We note that every
manifold of constant curvature and hence an Einstein manifold is of class A as well as
B. The existence of both the classes is given in [82]. In a semi-Riemannian manifold
(M, g), n ≥ 3, the Ricci tensor S is said to be a Codazzi tensor [48,106] (resp. cyclic
Ricci parallel [50]), if it satisfies

(∇X1
S)(X2, X3) = (∇X2

S)(X1, X3)

(resp. (∇X1
S)(X2, X3) + (∇X2

S)(X3, X1) + (∇X3
S)(X1, X2) = 0) ,

for all vector fields X1, X2, X3 ∈ χ(M), where χ(M) is the Lie algebra of all smooth
vector fields on M .

As a generalization of symmetry there arises recurrent structures such as recurrent
and Ricci recurrent manifold. Let UL = {x ∈ M : R 6= 0 at x} and UN = {x ∈ M :
S 6= 0 at x}. A semi-Riemannian manifold (M, g), n ≥ 3, is said to be recurrent [114]
if on UL ⊂ M the condition ∇R = A⊗R holds and Ricci recurrent [70] if on UN ⊂ M

the condition ∇S = A⊗ S holds, where A is a non-zero 1-form.
Again to generalize the notion of recurrent manifold in [96, 98, 100–103] (see also

[80]) the following four curvature conditions were introduced

∇R =A⊗R +B ⊗ (G+ g ∧H) ,

∇R =A⊗R +B ⊗ (S ∧ g),

∇R =A⊗R +B ⊗
1

2
(S ∧ S),

and ∇R =A⊗R +B1 ⊗ (S ∧ S) + B2 ⊗ (g ∧ S) + B3 ⊗ (g ∧ g),
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for some non-zero 1-forms A, B, B1, B2, B3 such that A(X) = g(σ,X), B(X) =
g(ρ,X), B1(X) = g(ρ1, X), B2(X) = g(ρ2, X) and B3(X) = g(ρ3, X), H = η ⊗ η, η
being a non-zero 1-form, and the Kulkarni-Nomizu product E∧F of two (0, 2)-tensors
E and F is defined by (see e.g. [27,49,55])

(E ∧ F )(X1, X2, X3, X4) =E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

− E(X1, X3)F (X2, X4)− E(X2, X4)F (X1, X3),

X1, X2, X3, X4 ∈ χ(M). A non-flat semi-Riemannian manifold (M, g), n ≥ 3, sa-
tisfying the respective conditions in {x ∈ M : (R)x 6= 0 and (G + g ∧ H)x 6= 0},
{x ∈ M : (R)x 6= 0 and (g ∧ S)x 6= 0}, {x ∈ M : (R)x 6= 0 and (S ∧ S)x 6= 0} and
{x ∈ M : (R)x 6= 0 and any one of S ∧ S, g ∧ S is non-zero at x} are respectively
called quasi-generalized recurrent manifold [101] (briefly, QGKn), hyper generalized
recurrent manifold [100] (briefly, HGKn), weakly generalized recurrent manifold [102]
(briefly, WGKn) and super generalized recurrent manifold [96,98,103] (briefly, SGKn).
Obviously, every HGKn and WGKn is a SGKn. We note that for α = β a quasi-
Einstein manifold is WGKn if and only if it is QGKn. Again, we also note that for
2α = β a quasi-Einstein manifold is HGKn if and only if it is QGKn.

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be weakly symmetric by
Tamássy and Binh [110] if on UL ⊂ M the following condition holds:

(∇XR)(X1, X2, X3, X4) =A(X)R(X1, X2, X3, X4)

+B(X1)R(X,X2, X3, X4) + B(X2)R(X1, X,X3, X4)

+D(X3)R(X1, X2, X,X4) +D(X4)R(X1, X2, X3, X),

for all vector fields X,Xi ∈ χ(M) (i = 1, 2, 3, 4) and some 1-forms A, B, D on M .
Weakly symmetric manifolds were also studied in [52,81,84–87,90–93,95,99,104].

The semi-Riemannian manifold (M, g), n ≥ 3, is called weakly Ricci symmetric
[111] if on UN

(2.1) (∇XS)(X1, X2) = A(X)S(X1, X2) + B(X1)S(X,X2) +D(X2)S(X1, X),

holds for some 1-forms A, B, D (not simultaneously zero), where X,X1, X2 ∈ χ(M).
Investigating conformally flat Riemannian manifolds of class one, that is manifolds

characterized by the property that at least n− 1 principal normal curvatures (i.e., the
eigenvalues of the second fundamental form) are equal to one another, Sen and Chaki
[79] found that if the remaining one is zero, then the curvature tensor satisfies

(∇XR)(X1, X2, X3, X4) = 2A(X)R(X1, X2, X3, X4)

+ A(X1)R(X,X2, X3, X4) + A(X2)R(X1, X,X3, X4)(2.2)

+ A(X3)R(X1, X2, X,X4) + A(X4)R(X1, X2, X3, X),

for some non-zero 1-form A, where X,X1, X2, X3, X4 ∈ χ(M). However, Riemannian
manifolds with condition (2.2) imposed on the curvature tensor were examined by
Chaki [10] and Chaki and De [12], and Chaki called such manifolds pseudosymmetric.
We mention that conformally flat semi-Riemannian manifolds of class one are also
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pseudosymmetric by Deszcz. This is an immediate consequence of Theorem 4.1 of
[44] and Corollary 1 of [45].

Again, the manifold (M, g), n ≥ 3, is said to be pseudo Ricci symmetric [11] if on
UN ⊂ M its Ricci tensor S is not identically zero and satisfies following:

(2.3) (∇XS)(X1, X2) = 2A(X)S(X1, X2) + A(X1)S(X,X2) + A(X2)S(X1, X),

for some non-zero 1-form A, where X,X1, X2 ∈ χ(M).
We refer to [5] and [67] for a presentation of Professor Mileva Prvanović’s contribu-

tion to Differential Geometry, and in particular to geometry of recurrent, generalized
recurrent, conformally flat, conformally symmetric, conformally recurrent, conformally
quasi-recurrent and weakly symmetric manifolds.

All the structures discussed above are equipped with the condition involving the first
order covariant derivatives. Now we will discuss some geometric structures obtained
by second order covariant derivatives which are either generalization or extension
of some well known geometric structures. For this purpose we first discuss some
notations as follows.

The endomorphisms X ∧E Y and R(X, Y ) are, respectively, given by [19,27,49]

(X ∧E Y )X1 = E(Y,X1)X −E(X,X1)Y and R(X, Y )X1 = [∇X ,∇Y ]X1 −∇[X,Y ]X1,

where E is a (0, 2)-tensor on M and X, Y,X1 ∈ χ(M).
It is well known that the conformal transformation is an angle preserving mapping,

the projective transformation is a geodesic preserving mapping whereas concircular
transformation is the geodesic circle preserving mapping and conharmonic transforma-
tion is a harmonic function preserving mapping. Now we define the Gaussian curvature
tensor G, the Riemann-Christoffel curvature tensor R, the Weyl conformal curvature
tensor C, the projective curvature tensor P , the concircular curvature tensor K and
the conharmonic curvature tensor Z of (M, g), respectively, by [19,27,49,53,115]

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) =R(X1, X2, X3, X4)−
1

n− 2
(g ∧ S)(X1, X2, X3, X4)

+
r

(n− 2)(n− 1)
G(X1, X2, X3, X4),

P (X1, X2, X3, X4) =R(X1, X2, X3, X4)

−
1

n− 1
[g(X1, X4)S(X2, X3)− g(X2, X4)S(X1, X3)],

K(X1, X2, X3, X4) =R(X1, X2, X3, X4)−
r

n(n− 1)
G(X1, X2, X3, X4),

Z(X1, X2, X3, X4) =R(X1, X2, X3, X4)−
1

n− 2
(g ∧ S)(X1, X2, X3, X4).
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For an (0, k)-tensor T , k ≥ 1 and a symmetric (0, 2)-tensor E we define the (0, k)-
tensor E · T and the (0, k + 2)-tensors R · T , C · T and Q(E, T ) by [19,27,34,49]

(E · T )(X1, · · · , Xk) = − T (EX1, X2, · · · , Xk)− · · · − T (X1, X2, · · · ,EXk),

(R · T )(X1, · · · , Xk;X, Y ) = (R(X, Y ) · T )(X1, · · · , Xk)

= − T (R(X, Y )X1, X2, · · · , Xk)− · · ·

− T (X1, · · · , Xk−1,R(X, Y )Xk),

(C · T )(X1, · · · , Xk;X, Y ) = (C(X, Y ) · T )(X1, · · · , Xk)

= − T (C(X, Y )X1, X2, · · · , Xk)− · · ·

− T (X1, · · · , Xk−1,C(X, Y )Xk),

Q(E, T )(X1, · · · , Xk;X, Y ) = ((X ∧E Y ) · T )(X1, · · · , Xk)

= − T ((X ∧E Y )X1, X2, · · · , Xk)− · · ·

− T (X1, · · · , Xk−1, (X ∧E Y )Xk),

where E is the endomorphism of χ(M) defined by g(EX, Y ) = E(X, Y ). Putting in
the above formulas T = R, T = S, T = C, T = K, T = Z or T = P , E = g or E = S,
we obtain the tensors: R ·R, R · S, R · C, R ·K, C ·R, C · S, C · C, C ·K, Q(g,R),
Q(g, S), Q(g, C), Q(g,K), Q(S,R), Q(S,C), Q(g,K), S ·R, S ·C, S ·K, Z ·Z, Z ·R,
R ·Z, Z ·S, P ·R, P ·P , R ·P , P ·S, etc. The tensor Q(E, T ) is called the Tachibana
tensor of the tensors E and T , or the Tachibana tensor for short [34]. We note that
(cf., [21, Section 4.4])

K ·K =

(

R−
r

n(n− 1)
G

)

·

(

R−
r

n(n− 1)
G

)

=R ·R−
r

n(n− 1)
G ·R = R ·R−

r

n(n− 1)
Q(g, R).

We also have (see, e.g., [38, Proposition 1])

C · C =

(

Z +
r

(n− 1)(n− 2)
G

)

·

(

Z +
r

(n− 1)(n− 2)
G

)

=Z · Z +
r

(n− 1)(n− 2)
G · Z = Z · Z +

r

(n− 1)(n− 2)
Q(g, Z).

If a semi-Riemannian manifold (M, g), n ≥ 3, satisfies the condition R ·R = 0, then
it is called semisymmetric [9, 107–109].

As a proper generalization of semisymmetric manifold, the notion of pseudosym-
metric manifolds arose during the study of semisymmetric totally umbilical subma-
nifolds in manifolds admitting semisymmetric generalized curvature tensors [20]. A
semi-Riemannian manifold (M, g), n ≥ 3, is said to be pseudosymmetric by Deszcz
[23,35] (see also [13,113]) (resp. Ricci-pseudosymmetric [21,37]) if on UR = {x ∈ M :
(

R− r
n(n−1)

G
)

x
6= 0} (resp. on US), R · R (resp. R · S) and the Tachibana tensor

Q(g,R) (resp. Q(g, S)) are linearly dependent at every point of M .
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A semi-Riemannian manifold (M, g), n ≥ 4, is said to be a manifold with pseudo-
symmetric Weyl conformal curvature tensor [22, 36] (see also [13, 26, 46]) if the tensor
C · C and the Tachibana tensor Q(g, C) are linearly dependent at every point of M ,
that is

C · C = LCQ(g, C)

on UC = {x ∈ M : C 6= 0 at x}, where LC is some function on this set. We note that
UC ∪ US = UR (see, e.g., [31]).

A semi-Riemannian manifold (M, g), n ≥ 3, is said to be Ricci-generalized pseudo-
symmetric [17,18] if at every point of M , the tensor R ·R and the Tachibana tensor
Q(S,R) are linearly dependent. Hence (M, g) is Ricci-generalized pseudosymmetric
if and only if

R ·R = LQ(S,R)

holds on U = {x ∈ M : Q(S,R) 6= 0 at x}, where L is some function on this set. An
important subclass of Ricci-generalized pseudosymmetric manifolds is formed by the
manifolds realizing the condition [17,36]

R ·R = Q(S,R).

The conditions of pseudosymmetry, Ricci-pseudosymmetry or any other conditions
(obtained from various curvature tensors) of this kind are called pseudosymmetry type
conditions.

A symmetric (0, 2)-tensor E on M is called Riemann compatible or R-compatible
[59,60] (see also [30]) if on M we have

R(EX1, X,X2, X3) +R(EX2, X,X3, X1) +R(EX3, X,X1, X2) = 0,

for all X,X1, X2, X3 ∈ χ(M), where E is the endomorphism on χ(M) defined as

g(EX1, X2) = E(X1, X2).

Again a vector field Y with associated 1-form Θ, i.e., g(Y,X) = Θ(X) is called
Riemann compatible or R-compatible [30, 60] if

Θ(X1)R(Y,X,X2, X3) + Θ(X2)R(Y,X,X3, X1) + Θ(X3)R(Y,X,X1, X2) = 0,

for all X,X1, X2, X3 ∈ χ(M). Similarly for other curvature tensors we have Weyl
compatibility or C-compatibility [30, 60, 61], concircular compatibility, conharmonic
compatibility etc. for both a vector and a (0, 2)-tensor.

A semi-Riemannian manifold (M, g) is said to be Roter type [24,27] (see also [32]
and [41]) if its curvature tensor R is expressed as the linear combination of g∧g, g∧S

and S ∧ S i.e.,

NR = N1g ∧ g +N2g ∧ S +N3S ∧ S,

where N , N1, N2 and N3 are non-zero smooth functions on M .
Again a semi-Riemannian manifold (M, g) is said to be generalized Roter type [83]

if its curvature tensor R is expressed as the linear combination of S ∧S, S ∧S2, g∧S,
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g ∧ S2, g ∧ g and S2 ∧ S2 i.e.,

(2.4) LR = L1g ∧ g + L2g ∧ S + L3S ∧ S + L4g ∧ S2 + L5S ∧ S2 + L6S
2 ∧ S2,

where L and Li, 1 6 i 6 6 are non-zero smooth functions on M . We note that any
Roter type manifold is a generalized Roter type but not conversely. Very recently
generalized Roter type manifolds were investigated in [31,97].

In [71, Theorem 1] it was stated that some 2-recurrent manifolds satisfy R = 1
r
S∧S.

Curvature properties of pseudosymmetry type of manifolds satisfying the condition
R = φS ∧ S, where φ is some function, were obtained in [54]. We also mention that
in [42] manifolds satisfying some extensions of (2.4) were studied.

Again the curvature 2-forms Ωm
(R)l [4, 58] for the curvature tensor R are given by

Ωm
(R)l = Rm

jkldx
j ∧ dxk

and Ricci 1-forms Λ(S)l are given by

Λ(S)l = Slmdx
m,

where ∧ indicates the exterior product. Recently, Mantica and Suh [62–65] determined
the necessary and sufficient conditions for the recurrency of such curvature 2-forms
and Ricci 1-forms. They showed that Ωm

(R)l are recurrent (i.e., DΩm
(R)l = A ∧ Ωm

(R)l, D

is the exterior derivative and A is the associated 1-form) if and only if

∇X1
R(X2, X3, X, Y ) +∇X2

R(X3, X1, X, Y ) +∇X3
R(X1, X2, X, Y )

=A(X1)R(X2, X3, X, Y ) + A(X2)R(X3, X1, X, Y ) + A(X3)R(X1, X2, X, Y )

and Λ(S)l are recurrent (i.e., DΛ(S)l = A ∧ Λ(S)l) if and only if

∇X1
S(X2, X)−∇X2

S(X1, X) = A(X1)S(X2, X)− A(X2)S(X1, X),

for an 1-form A. We can replace R by some other curvature tensors such as conformal,
concircular, conharmonic curvature tensor etc. and S by any other symmetric (0, 2)
tensors, and get the corresponding results.

3. Curvature properties of the metric (1.1)

Let M be a non-empty open connected subset of R4 endowed with the metric given
in (1.1). Then the non-zero components of the Christoffel symbols of second kind are
given by:

Γ1
11 = Γ2

12 = Γ3
13 =

p

1 + 2p
= −Γ1

22 = −Γ1
33.

The non-zero components of curvature tensor and Ricci tensor are given by:

R1212 = R1313 = −
p

1 + 2p
, R2323 = −

p2

1 + 2p
,

S11 =
2p

(1 + 2p)3
g11, S22 =

p(1 + p)

(1 + 2p)3
g22 and S33 =

p(1 + p)

(1 + 2p)3
g33.
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The scalar curvature of this metric is given by r = 2p(2+p)
(1+2p)3

. Again, the non-zero local

components of the Weyl conformal curvature tensor are given by:

C1212 = C1313 =
1

2
C2323 =

p(p− 1)

6(1 + 2p)
, C1414 = C2424 =

1

2
C3434 =

p(p− 1)

6(1 + 2p)2
.

Again, the non-zero components Rhijk,l and Sij,l of the covariant derivatives of curva-
ture tensor and Ricci tensor are given by:

R1212,1 = R1313,1 =
p(4p− 1)

(1 + 2p)2
, R1223,3 = −R1323,2 = −

1

2
R2323,1 =

p2(1− p)

(1 + 2p)2
,

S11,1 =
2p(1− 4p)

(1 + 2p)3
, S12,2 = S13,3 =

p2(1− p)

(1 + 2p)3
, and S22,1 = S33,1 =

p(1− 2p− 2p2)

(1 + 2p)2
.

We have made all the calculations by using a programme in Wolfram Mathematica.

4. Conclusions

Using the formulas given in Section 3 we can easily check curvature properties of
the metric (1.1). Namely we have

Theorem 4.1. Let (M4, g) be a semi-Riemannian manifold equipped with the metric

(1.1). Then (M4, g) satisfies the following:

(i) C · C = p(1−p)
6(1+2p)3

Q(g, C),

(ii) P ·R = 2
3
Q(S,R),

(iii) C · Z = p(1−p)
6(1+2p)3

Q(g, Z),

(iv) Z · C = − p(1+p)
2(1+2p)3

Q(g, C),

(v) Z · Z = − p(1+p)
2(1+2p)3

Q(g, Z),

(vi) R ·R = Q(S,R),
(vii) R · C + C ·R + p

3(1+2p)2
Q(g, C)−Q(S,C) = 0,

(viii) R · Z + Z ·R + p(2+p)
(1+2p)3

Q(g,R)− p

(1+2p)3
Q(g, Z)−Q(S, Z) = 0,

(ix) C ·K +K · C + p(4+5p)
6(1+2p)2

Q(g, C)−Q(S,C) = 0,

(x) K · Z + Z ·K + p(2+p)
(1+2p)3

Q(g,K)− p(4−p)
6(1+2p)3

Q(g, Z)−Q(S, Z) = 0,

(xi) having no R-compatible vector but the R-compatible tensor and the

K-compatible tensor are respectively of the form









a11 a2e−x1

a21 a2e−x1

a31 a14
a21 a22 a32 a24
a31 a32 a33 a34
0 0 0 a44









and









a11 0 0 a14
0 a22 a23 0
0 a23 a33 0

2a2+ex
1

−4a2+ex
1 a14 0 0 a44









,



CURVATURE PROPERTIES OF SOME 4-DIMENSIONAL SEMI-RIEMANNIAN METRICS 269

(xii) both the C-compatible and Z-compatible tensors are of the form








a11 0 0 a14
0 a22 a23 0
0 a23 a33 0
a14 0 0 a44









,

(xiii) Ricci 1-forms are recurrent with the 1-form of rercurrency

A =

(

−
p2 + 3p− 1

2p2 + 3p+ 1
, 0, 0, 0

)

,

(xiv) curvature 2-forms for C, i.e., Ωm
(C)l are recurrent with the 1-form of rercurrency

A =

(

p2 + 3p− 1

2p2 − p− 1
, 0, 0, 0

)

,

(xv) Ricci tensor is Riemann compatible as well as C, K and Z compatible,

(xvi) does not satisfy the Roter type condition but it is a generalized Roter type

manifold with

L2 = −
(3 + p)(1 + 2p)3

p(p+ 1)
L1,

L3 =
2p4(1 + p)4L6 − p(1 + 2p)9 + 2(2 + p)(1 + 2p)12L1

2p2(1 + p)2(1 + 2p)6
,

L4 =
(1 + 2p)6

p2(1 + p)
L1,

L5 =
p(1 + 2p)9 − 4p4(1 + p)3L6 − 2(1 + 2p)12L1

2p3(1 + p)2(1 + 2p)3
,

where L1, L6 and aij’s are arbitrary scalars,

(xvii) at all the points of the manifold at which p 6= 1, rank(S − p(1+p)
(1+2p)2

g) = 2, and

hence the manifold is 2-quasi-Einstein.

Remark 4.1. Let (M4, g) be a semi-Riemannian manifold equipped with the metric
(1.1). Then (M4, g) does not satisfy any one of the following:

(i) quasi-Einstein,
(ii) Ricci recurrent,
(iii) weakly generalized recurrent,
(iv) hyper-generalized recurrent,
(v) quasi-generalized recurrent,
(vi) Codazzi type Ricci tensor,
(vii) cyclic Ricci parallel,
(viii) Ricci semisymmetric,
(ix) weakly symmetric,
(x) weakly Ricci symmetric,
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(xi) R ·W = LQ(g,W ),
(xii) R ·W1 = LQ(S,W1),
(xiii) C ·W2 = LQ(g,W2),
(xiv) C ·W = LQ(S,W ),
(xv) P ·W = LQ(g,W ),
(xvi) P ·W1 = LQ(S,W1),
(xvii) K ·W = LQ(g,W ),
(xviii) K ·W = LQ(S,W ),
(xix) Z ·W2 = LQ(g,W2),
(xx) Z ·W = LQ(S,W ),
(xxi) recurrent curvature 2-forms for R, K and Z,

where L is some smooth function, W is any one of R, C, P , K and Z, W1 is any one
of C, P,K and Z and W2 is any one of R, S, P , K and Z.

Remark 4.2. We note that the semi-Riemannian manifold (M4, g) equipped with the
metric (1.1) is a product manifold of an 1-dimensional and a 3-dimensional manifold.
Hence the condition presented in Theorem 4.1 (vi) is an immediate consequence
of Corollary 3.2 of [18]. Again in [46, Theorem 2], Deszcz et al. showed that an
warped product manifold with 1-dimensional base and 3-dimensional fiber satisfies
C · C = LQ(g, C) if and only if the fiber is quasi-Einstein. Since the 3-dimensional
part of (M4, g) is quasi-Einstein, the condition presented in Theorem 4.1 (i) is a
consequence of Theorem 2 of [46] (see also Theorem 4.4 of [31]). Furthermore, it is
obvious that the metric (1.1) can also be considered as an warped product manifold
with 2-dimensional base manifold and 2-dimensional fiber. Some curvature properties
of such manifolds are presented in Theorem 6.2 and Theorem 7.1 of [31].

Again, if we consider the signature of the metric (1.1) as semi-Riemannian, and in
particular, Lorentzian, given by

ds2 = gijdx
idxj = (1 + 2p)

[

(dx1)2 ± (dx2)2 ± (dx3)2
]

± (dx4)2,

i, j = 1, 2, 3, 4, then it can be easily shown that the obtained results remain unchanged.
Again if we consider the metric as:

(4.1) ds2 = gijdx
idxj = (1 + 2p)

[

(dx1)2 + (dx2)2 + (dx4)2
]

+ (dx3)2

and

(4.2) ds2 = gijdx
idxj = (1 + 2p)

[

(dx1)2 + (dx3)2 + (dx4)2
]

+ (dx2)2,

i, j = 1, 2, 3, 4, then the obtained results also remain unchanged. It may be mentioned
that if the signature of the metrics (4.1) and (4.2) are considered as semi-Riemannian,
and in particular, Lorentzian, then also the results will be the same.

Again, if we consider the signature of the metric (1.1) as Lorentzian given by

(4.3) ds2 = gijdx
idxj = (1 + 2p)

[

−(dx1)2 + (dx2)2 + (dx3)2
]

+ (dx4)2,
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i, j = 1, 2, 3, 4, then it is easy to check that the metrics (4.3) gives the same results
as metric (1.1) but only L1, L3, L4 and L5 are changed by negative sign.

Now another kind of metric which is nearly similar as metric (1.1) is given below a
conformally flat metric [89,100]:
(4.4)

ds2 = gijdx
idxj = (1 + 2p)

[

(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2
]

, i, j = 1, 2, 3, 4,

where p = ex
1

ρ2
and ρ is a non-zero constant; x1, . . . , x4 are the standard coordinates

of R4. Let M be a non-empty open connected subset of R4 endowed with the metric
(4.4). Later the same metric is used in [16].

Then the non-zero components of the Christoffel symbols of second kind are given
by:

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 =
p

1 + 2p
= −Γ1

22 = −Γ1
33 = −Γ1

44.

The non-zero components of curvature tensor and Ricci tensor are given by:

(4.5)

{

R1212 = R1313 = R1414 = − p

1+2p
, R2323 = R2424 = R3434 = − p2

1+2p
,

S11 =
3p

(1+2p)3
g11, S22 =

p

(1+2p)2
g22, S33 =

p

(1+2p)2
g33, S44 =

p

(1+2p)2
g44.

The scalar curvature of this metric is given by r = 6p(1+p)
(1+2p)3

. Again the non-zero

components Rhijk,l and Sij,l of the covariant derivatives of curvature tensor and Ricci
tensor are given by:

{

R1212,1 = R1313,1 = R1414,1 =
p(4p−1)
(1+2p)2

,R2323,1 = R2424,1 = R3434,1 =
2p2(p−1)
(1+2p)2

,

R1223,3 = −R1323,2 = R1224,4 = R1334,4 = R1424,2 = R1434,3 =
p2(1−p)
(1+2p)2

,
(4.6)

{

S11,1 =
3p(1−4p)
(1+2p)3

, S22,1 = S33,1 = S44,1 =
p(1−2p)
(1+2p)2

,

S12,2 = S13,3 = S14,4 =
2p2(1−p)
(1+2p)3

.
(4.7)

Using the formulas (4.4)–(4.7) we can easily check curvature properties of the metric
(4.4). Namely we have

Theorem 4.2. Let (M4, g) be a semi-Riemannian manifold equipped with the metric

(4.4). Then (M4, g) satisfies the following:

(i) quasi-Einstein,

(ii) conformally flat,

(iii) conharmonicly recurrent with the 1-form of recurrency A =
(

−2p2+2p−1
2p2+3p+1

, 0, 0, 0
)

,

(iv) R ·R = Q(S,R),
(v) Z ·R = Z ·K = −1

2
Q(S, Z),

(vi) R ·W = p

(1+2p)3
Q(g,W ),

(vii) K ·W = p(1−p)
2(1+2p)3

Q(g,W ),

(viii) Z ·W = − p(1+p)
(1+2p)3

Q(g,W ),

(ix) P ·R = 2
3
Q(S,R),
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(x) P · Z = −1
3
Q(S, Z),

(xi) P ·R = 2p
3(1+2p)3

Q(g,R),

(xii) P · S = p

(1+2p)3
Q(g, S),

(xiii) R ·K = 1
2+p

Q(S,K),

(xiv) P ·K = p(1−p)
3(1+2p)3

Q(g,K),

(xv) P ·K = 1−p

3(2+p)
Q(S,K),

(xvi) P · Z = −1
3
Q(S, Z),

(xvii) K ·R = 1
2
(1− p)Q(S,R),

(xviii) K ·K = 1−p

2(2+p)
Q(S,K),

(xix) Z ·R = −(1 + p)Q(S,R),
(xx) Z ·K = −1+p

2+p
Q(S,K),

(xxi) Q(S,R) = 1
2(1+p)

Q(S, Z),

(xxii) Q(S,K) = 2+p

2(1+p)
Q(S, Z),

(xxiii) R ·K −Q(S,K) = − p(1+p)
(1+2p)3

Q(g, R) = −(1 + p)Q(S,R),

(xxiv) R ·K −Q(g,K) = −1+5p+12p2+8p3

p
Q(S, Z),

(xxv) The R-compatible tensor and the K-compatible tensor are respectively of the

form








a11 a2e−x1

a21 a2e2−x1

a31 a2e−x1

a41
a21 a22 a32 a42
a31 a32 a33 a43
a41 a42 a43 a44









and









a11 −a21 −a31 −a41
a21 a22 a32 a42
a31 a32 a33 a43
a41 a42 a43 a44









,

(xxvi) any symmetric (0, 2)tensor is Z-compatible,

(xxvii) Ricci tensor is R, K and also Z-compatible,

(xxviii) Ricci 1-forms are recurrent with the 1-form of recurrency
(

1−2p−2p2

(1+2p)2
, 0, 0, 0

)

,

(xxix) curvature 2-forms for K are recurrent with the 1-form of recurrency
(

2p2 + 2p− 1

2p2 − p− 1
, 0, 0, 0

)

,

(xxx) curvature 2-forms for Z are recurrent with the 1-form of recurrency
(

−
2p2 + 2p− 1

2p2 + 3p+ 1
, 0, 0, 0

)

,

(xxxi) Roter type manifold with

N2 = −
2(1 + 2p)2

p
N1 −

1

2(1 + 2p)
, N3 = −

(1 + 2p)(p(1 + p) + 2N1(1 + 2p)3)

2p2
,

where W is any one of R, S, P,K and N1, aij’s are any scalar.

Remark 4.3. Let (M4, g) be a semi-Riemannian manifold equipped with the metric
(4.4). Then (M4, g) does not satisfy any one of the following: (i) Einstein, (ii) Ricci
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recurrent, (iii) weakly generalized recurrent, (iv) hyper- generalized recurrent, (v)
quasi-generalized recurrent, (vi) Codazzi type Ricci tensor, (vii) cyclic Ricci parallel,
(viii) Ricci semisymmetric, (ix) weakly symmetric, (x) weakly Ricci symmetric, (xi)
W · P = LQ(S, P ), where L is any smooth function, W is any one of R, K and Z.
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