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NOTE ON THE RANDIĆ ENERGY OF GRAPHS

JUN HE1, YAN-MIN LIU1, AND JUN-KANG TIAN1

Abstract. If G is a graph on n vertices, and di is the degree of its i-th vertex,
then the Randić matrix of G is the square matrix of order n whose (i, j)-entry is
equal to 1/

√
didj if the i-th and j-th vertex of G are adjacent, and zero otherwise.

In this note, we obtain some new lower and upper bounds for the Randić energy.

1. Introduction

Let G be a simple connected graph with vertex set V (G) = {v1, v2, . . . , vn} and
edge set E(G). Let di denote the degree of vertex vi, where i = 1, 2, . . . , n. The
maximum vertex degree is denoted by ∆. Use the notation vi ∼ vj, if two vertices vi

and vj of G are adjacent.
The Randić matrix R = R(G) of G is defined as

rij =


1√
didj

, if the vertices vi and vj are adjacent,

0, if the vertices vi and vj are not adjacent,
0, if i = j.

The Randić matrix is real symmetric, so we can order the eigenvalues of its Randić
matrix so that ρ1 ≥ ρ2 ≥ . . . ≥ ρn. The Randić energy of the graph G is defined in
[2, 3, 6, 7] as:

RE = RE(G) =
n∑

i=1
|ρi| .

As usual, the adjacency matrix A = A(G) of the graph G is defined so that its
(i, j)-element is equal to unity if the vertices vi and vj are adjacent, and is equal to
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zero otherwise. Let L = D − A and Q = D + A be, respectively, the Laplacian and
the signless Laplacian matrix of the graph G [9, 10, 12]. If we define

L = D−1/2LD−1/2 and Q = D−1/2QD−1/2,

where D is the diagonal matrix of vertex degrees, are the normalized Laplacian and
normalized signless Laplacian matrix. Then, evidently,

(1.1) L = In −R and Q = In +R.

The paper is organized as follows. In Section 2, we give a list of some previously
known results. In Section 3, we present some lower and upper bounds on the Randić
energy.

2. Preliminary Lemmas

In order to obtain bounds for the Randić energy of G, we need some lemmas.

Lemma 2.1. [1] Let G be a graph with n vertices and Randić matrix R. Then

tr(R) = 0, tr(R2) = 2
∑
i∼j

1
didj

,

tr(R4) =
n∑

i=1

∑
i∼j

1
didj

2

+
∑
i 6=j

1
didj

 ∑
k∼i,k∼j

1
dk

2

.

Lemma 2.2. [1] A simple connected graph G has two distinct Randić eigenvalues if
and only if G is complete.

Lemma 2.3. [13] Let a1, a2, . . . , an be non-negative numbers. Then

n

 1
n

n∑
j=1

aj −

 n∏
j=1

aj

1/n
 ≤ n

n∑
j=1

aj −

 n∑
j=1

√
aj

2

≤ n(n− 1)

 1
n

n∑
j=1

aj −

 n∏
j=1

aj

1/n
 .

Lemma 2.4. [11] Let G be a graph on n vertices which has at least one edge, υ1 ≥
. . . ≥ υn be the eigenvalues of the Laplacian L. Then

υ1 ≥ ∆ + 1.

Moreover, if G is connected, then the equality holds if and only if ∆ = n− 1.
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3. Main results

It has been proved that ρ1 = 1 is the largestR-eigenvalues with the Perron-Frobenius
vector αT = (

√
d1, . . . ,

√
dn) (see [4, 6, 8]).

Theorem 3.1. Let G be a graph with n vertices and at least one edge. Then

RE(G) ≥ 1 +
2

∑
i∼j

1
didj

− 1

√√√√√√√√

2 ∑
i∼j

1
didj
− 1

n∑
i=1

(∑
i∼j

1
didj

)2

+ ∑
i 6=j

1
didj

( ∑
k∼i,k∼j

1
dk

)2

− 1
.

Proof. Using Hölder inequality, we have
n∑

i=2
aibi ≤

(
n∑

i=2
ap

i

)1/p ( n∑
i=2

bq
i

)1/q

,

which holds for any non-negative real numbers ai, bi, i = 2, 3, . . . , n. Setting ai = |ρ|2/3,
bi = |ρ|4/3, p = 3/2 and q = 3, we obtain

n∑
i=2
|ρi|2 =

n∑
i=2
|ρi|2/3

n∑
i=2
|ρi|4/3 ≤

(
n∑

i=2
|ρi|

)2/3 ( n∑
i=2
|ρi|4

)1/3

,

that is

RE(G)− 1 =
n∑

i=2
|ρi| ≥

√√√√√√√√
(

n∑
i=2
|ρi|2

)3

n∑
i=2
|ρi|4

=

√√√√(tr(R2)− 1)3

tr(R4)− 1 .

Hence we get the result. �

We next derive a lower bound of the Randić energy in terms of the order n and
det(R).

Theorem 3.2. Let G be a graph with n vertices. Then

(3.1) RE(G) ≥ 1 + (n− 1)| det(R)|
1

n−1 ,

and the equality holds in (3.1) if and only if G is a complete graph or a non-bipartite
connected graph with three distinct Randić eigenvalues1,

√√√√√2 ∑
i∼j

1
didj

n− 1 ,−

√√√√√2 ∑
i∼j

1
didj

n− 1

 .
Proof. Using the arithmetic-geometric mean inequality, we obtain that

RE(G) = ρ1 +
n∑

i=2
|ρi| ≥ 1 + (n− 1)

(
n∏

i=2
|ρi|

) 1
n−1

= 1 + (n− 1)| det(R)|
1

n−1 ,
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and equality holds if and only if ρ1 = 1 and |ρ2| = . . . = |ρn| =

√
2
∑
i∼j

1
didj

n−1 , which is
discussed in the proof of Theorem 4 in [4].

Now the proof is complete. �

Theorem 3.3. Let G be a graph with n vertices. Then

RE(G) ≥ 1 +
√√√√2

∑
i∼j

1
didj

− 1 + (n− 1)(n− 2) (det(R))
2

n−1 ,

and

(3.2) RE(G) ≤ 1 +

√√√√√(n− 2)
2

∑
i∼j

1
didj

− 1
+ (n− 1) (det(R))

2
n−1 .

Proof. Let ai = ρ2
i , i = 2, . . . , n. Then by Lemma 2.1 and Lemma 2.3 we obtain

K ≤ (n− 1)
n∑

i=2
ρ2

i −
(

n∑
i=2
|ρi|

)2

≤ (n− 2)K,

that is,

K ≤ (n− 1)
2

∑
i∼j

1
didj

− 1
− (RE(G)− 1)2 ≤ (n− 2)K,

where

K = (n− 1)
 1
n− 1

n∑
i=2

ρ2
i −

(
n∏

i=2
ρ2

i

) 1
n−1


= (n− 1)
 1
n− 1

2
∑
i∼j

1
didj

− 1
− ( n∏

i=2
|ρi|

) 2
n−1


= 2
∑
i∼j

1
didj

− 1− (n− 1) (det(R))
2

n−1 .

Hence we get the result. �

Remark 3.1. Using the relation between the arithmetic and geometric means,

(det(R))2 ≤

2 ∑
i∼j

1
didj
− 1

n− 1


n−1

,

and bearing in mind the upper bound in (3.2), we arrive at

RE(G) ≤ 1 +

√√√√√(n− 1)
2

∑
i∼j

1
didj

− 1
,

which is same as the result in [4, 8].
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Lemma 3.1. Let G be a graph with n vertices. Then

|ρn| ≥
1
∆ .

Proof. Let u1 ≥ . . . ≥ un be the eigenvalues of the normalized Laplacian L, by equality
(1.1), we have
(3.3) ρn = 1− u1.

Let ‖A‖ be the spectral norm of a matrix A, by L = D−1/2LD−1/2 and Lemma 2.4,
we can get

∆ + 1 ≤ ‖L‖ ≤ ‖D‖‖L‖ = ∆u1,

therefore,
u1 ≥ 1 + 1

∆ .

Then, by equality (3.3), we obtain

|ρn| ≥
1
∆ .

Now the proof is complete. �

Theorem 3.4. Let G be a graph with n ≥ 2 vertices. Then

(3.4) RE(G) ≤ 1 +

√√√√√2 ∑
i∼j

1
didj
− 1

n− 1 +

√√√√√√(n− 2)

2
∑
i∼j

1
didj

− 1−
2 ∑

i∼j

1
didj
− 1

n− 1

.

More, if 1
∆ ≥

√
2
∑
i∼j

1
didj
−1

n−1 , then

(3.5) RE(G) ≤ 1 + 1
∆ +

√√√√√(n− 2)
2

∑
i∼j

1
didj

− 1− 1
∆2

.
Proof. Using Cauchy-Schwarz inequality, we obtain

RE(G) = ρ1 +
n−1∑
i=2
|ρi|+ |ρn| ≤ 1 + |ρn|+

√√√√(n− 2)
n−1∑
i=2

ρ2
i

≤ 1 + |ρn|+

√√√√√(n− 2)
2

∑
i∼j

1
didj

− 1− ρ2
n

.
Define a function f(x) = 1 + x +

√√√√(n− 2)
(

2 ∑
i∼j

1
didj
− 1− x2

)
, it is easy to see

that the function f(x) is monotonously decreasing in x ≥

√
2
∑
i∼j

1
didj
−1

n−1 , which implies
that the inequality (3.4) holds.
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By Lemma 3.1, if we have |ρn| ≥ 1
∆ ≥

√
2
∑
i∼j

1
didj
−1

n−1 , then

f(|ρn|) ≤ f
( 1

∆

)
,

which implies that the inequality (3.5) holds. Now the proof is complete. �
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