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DYNAMICAL SYSTEMS ON HILBERT MODULES OVER
LOCALLY C∗-ALGEBRAS

L. NARANJANI1, M. HASSANI1, AND M. AMYARI1

Abstract. Let A be a locally C∗-algebra and S(A) be the family of continuous
C∗-seminorms and let E be a Hilbert A-module. We prove that every dynamical
system of unitary operators on E defines a dynamical system of automorphisms on
the compact operators on E and show that under certain conditions, the converse is
true. We define a generalized derivation on E and prove that if E is a full Hilbert
A-module and δ : E→ E is a bounded generalized derivation, then δp : Ep → Ep is
a generalized derivation on the Hilbert module Ep over the C∗-algebra Ap for each
p ∈ S(A).

1. Introduction

Locally C∗-algebras are generalizations of C∗-algebras. Instead of having a single
C∗-norm, we have a given directed family of C∗-seminorms, which gives a topology.
Recall that a C∗-seminorm on a topological ∗-algebra A is a seminorm p such that
p(ab) ≤ p(a)p(b) and p(aa∗) = p(a)2 for all a, b ∈ A. A locally C∗-algebra is a
complete Hausdorff complex topological ∗-algebra A, whose topology is determined
by its continuous C∗-seminorms in the sense that the net {aγ} converges to zero if
and only if the net {p(aγ)}γ converges to 0, for every continuous C∗-seminorm p on
A. For example any C∗-algebra is a locally C∗-algebra and any closed subalgebra of a
locally C∗-algebra is a locally C∗-algebra. The notion of locally C∗-algebra was first
introduced by Inoue [6] and studied more by Phillips and Fragoulopoulou [3, 10]. See
also the book of Joita [7].

Hilbert modules are essentially objects, which behave similar to Hilbert spaces by
allowing the inner product to take values in a locally C∗-algebra rather than the field
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of complex numbers. They play an important role in the modern theory of operator
algebras, in noncommutative geometry and in quantum groups, see [5] . The paper
is organized as follows. In Section 2 we recall some facts about Hilbert module over
locally C∗-algebras [7]. In Section 3 we extend results about dynamical system of
unitary operators for Hilbert C∗-module from [4] in the context of Hilbert modules
over locally C∗-algebra. In Section 4 we investigate generalized derivation on Hilbert
modules over a locally C∗-algebra.

2. Preliminaries

Let A be a locally C∗-algebra and S(A) be the set of all continuous C∗-seminorms on
A. For p ∈ S(A), the quotient ∗-algebra Ap = A/Np, where Np = {a ∈ A : p(a) = 0}
is a C∗-algebra with respect to the C∗-norm ‖ · ‖p induced by p (i.e. ‖ap‖p = p(a)
for each a ∈ A, where ap = a+Np). The canonical map from A onto Ap is denoted
by πp and πp(a) = ap for all a in A. For p, q ∈ S(A) with p ≥ q, the surjective
canonical map πpq

A : Ap → Aq is defined by πpq
A(πpA(a)) = πq

A(a) for all a ∈ A.
The {Ap : πA

pq, p, q ∈ S(A), p ≥ q} is an inverse system of C∗-algebras and lim←−p Ap is a
locally C∗-algebra which is identical with A. Suppose that A is a locally C∗-algebra.
A right A-module E, equipped with an A-valued inner product 〈·, ·〉 : E × E → A

satisfying the following conditions for all x, y ∈ E, a ∈ A, α, β ∈ C:
(i) 〈x, x〉 ≥ 0, 〈x, x〉 = 0 if and only if x = 0;

(ii) 〈x, ya〉 = 〈x, y〉 a;
(iii) 〈x, y〉∗ = 〈y, x〉;
(iv) 〈x, αy + βz〉 = α 〈x, y〉+ β 〈x, z〉;

is called a pre Hilbert A-module. If E is complete with respect to the topology
determined by the family of seminorms {pE}p∈S(A), where pE(x) =

√
p(〈x, x〉), x ∈ E,

then E is called a Hilbert module over the locally C∗-algebra A (Hilbert A-module).
If E is a right A-module equipped with an A-valued inner-product 〈·, ·〉, then for each
p ∈ S(A) and for all x, y ∈ E we have the Cauchy-Schwarz inequality p(〈x, y〉)2 ≤
p(〈x, x〉)p(〈y, y〉). Suppose E is a Hilbert A-module and p belongs to S(A). Then
Np

E = {x ∈ E : pE(x) = 0} is a closed submodule of E and Ep = E

Np
E is a Hilbert

module over C∗-algebra Ap via the module multiplication (x+Np
E)πp(a) = xa+Np

E

and the inner product
〈
x+Np

E, y +Np
E
〉

= πp(〈x, y〉). The canonical map from E

onto Ep is denoted by σpE and σp
E(x) = xp, p ∈ S(A). For each p, q ∈ S(A), with

p ≥ q, there is a canonical surjective linear map σpqE : Ep → Eq such that σpqE(xp) = xq
for all x ∈ E. Then {Ep;Ap;σE

pq : p ≥ q, p, q ∈ S(A)} is an inverse system of Hilbert
C∗-modules in the following sense:

• σpqE(xpap) = σpq
E(xp)πpq(ap) for all xp ∈ Ep, ap ∈ Ap ;

•
〈
σpq

E(xp), σpqE(yp)
〉

= πpq(〈xp, yp〉) for all xp, yp ∈ Ep ;
• σpkE = σqk

E ◦ σpqE, for p ≥ q ≥ k;
• σppE = IEp ;
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and lim←−p Ep is a Hilbert A-module with ((xp)p)((ap)p) = (xpap)p and 〈(xp)p, (yp)p〉 =
(〈xp, yp〉)p. Moreover,lim←−p Ep can be identified by E.

Let A be a locally C∗-algebra and E,F be two Hilbert A-modules, a map T : E→ F

is said to be adjointable if there exists a map T ∗ : F → E such that 〈Tx, y〉 = 〈x, T ∗y〉
for all x ∈ E and y ∈ F. We use L(E,F) for the set of all adjointable module maps.
If E = F we write L(E). A map T : E→ F is called a bounded A-module map if for
each p ∈ S (A) there exists Kp ≥ 0 such that pF(Tx) ≤ KppE(x). The space of all
bounded A-module maps between E and F is denoted by B(E,F). It is easy to see
that P̃ (T ) = sup{pF(Tx) : pE(x) ≤ 1} is a seminorm on B(E,F). For y ∈ E and x ∈ F,
θx,y : E→ F is defined by θx,y(z) = x 〈y, z〉 for each z ∈ E. We have θ∗x,y = θy,x. The
closed subspace of L(E,F) generated by {θx,y : y ∈ E, x ∈ F} is denoted by K(E,F).
When E = F we use K(E) instead of K(E,E). An element in K(E,F) is called a
compact operator from E to F and K(E) is a two-sided ∗-ideal of L(E). In fact L(E)
is a locally C∗-algebra with respect to the topology determined by the family of
C∗-seminorms P̃ for each p ∈ S(A) (see [7, Theorem 2.2.6]) and K(E) is a locally
C∗-subalgebra of L(E).

A Hilbert A-module E is called full if the closed linear span {〈x, y〉 : x, y ∈ E}
denoted by 〈E,E〉, coincides with A. For each p ∈ S (A) and θx,y ∈ KA(E,F), we
have P̃ (θx,y) ≤ pF(x)pE(y), since for each z ∈ E, p ∈ S(A) such that pE(z) ≤ 1, it
follows from [7, Corollary 1.2.3] that pF(θx,y(z)) = pF(x〈y, z〉) ≤ pF(x)p(〈y, z〉) ≤
pF(x)pE(y)p(z) ≤ pF(x)pE(y).

Throughout this paper, we assume that A is a locally C∗-algebra and E, F are two
Hilbert A-modules. An adjointable operator u from E to F is said to be a unitary
if u∗u = IE and uu∗ = IF, where IE and IF are identity operators on E and F,
respectively.

Definition 2.1. Let A and B be two locally C∗-algebras. A morphism from A to B is
a continuous linear map ϕ : A→ B such that ϕ(ab) = ϕ(a)ϕ(b) and ϕ(a∗) = (ϕ(a))∗
for all a, b ∈ A. Two locally C∗-algebras A and B are isomorphic if there is an
isomorphism (bijective morphism) from A to B.

Joita in [7] characterized the unitary operators on Hilbert modules over locally
C∗-algebras by proving the following proposition.

Proposition 2.1. [7, Proposition 2.5.3] Let u : E → F be a linear map. Then the
following statements are equivalent:

(i) u is a unitary operator from E to F;
(ii) u is surjective and 〈ux, ux〉 = 〈x, x〉 for all x ∈ E;

(iii) pF(u(x)) = pE(x) for all x ∈ E, p ∈ S(A) and u is a surjective module
homomorphism from E to F.



242 L. NARANJANI, M. HASSANI, AND M. AMYARI

Remark 2.1. If ϕ : A → A is an automorphism of locally C∗-algebras, then ϕp :
Ap → Ap is a well-defined automorphism of C∗-algebras for each p ∈ S(A). Thus
p(ϕ(a)) = ‖(ϕ(a))p‖p = ‖ϕp(ap)‖p = ‖ap‖p = p(a) for each a ∈ A and p ∈ S(A).

3. Dynamical Systems on Hilbert modules

In this section we generalized the definitions of dynamical systems on Hilbert
modules over locally C∗-algebras.

Definition 3.1. Let E be a Hilbert A-module and U(E) be the set of all unitary
operators on E. A mapping α : R → U(E), t 7→ αt is said to be a one-parameter
group of unitaries if for each t, s ∈ R

(i) α0 = I;
(ii) αt+s = αtαs.

We say that α is a strongly continuous one-parameter group (C0-group) of unitaries if,
in addition, lim

t→0
αt(x) = x in E. In this case, α is called a dynamical system of unitary

operators on E.

The infinitesimal generator of α is the mapping δ : D(δ) ⊆ E→ E, where D(δ) ={
x ∈ E : lim

t→0

αt(x)− x
t

exists
}

and δ(x) = lim
t→0

αt(x)− x
t

for each x ∈ D(δ). The

above limit is taken in the topology on E.

Remark 3.1. Let A be a locally C∗-algebra and Aut(A) be the set of all automor-
phisms on A, then, similar to Definition 3.1, we can define a dynamical system of
automorphisms on A.

In the following theorem, we show that every dynamical system of unitary operators
on Hilbert A-module E, defines a dynamical system of automorphisms on locally C∗-
algebra K(E).

Theorem 3.1. Let α be a dynamical system of unitary operators on E and u : R→
Aut(K(E)) defined by ut(T ) = αtTα

∗
t for each T ∈ K(E), then u is a dynamical system

of automorphism on K(E).

Proof. Obviously u0 = I and ut+s = utus. It is enough to show that lim
t→0

ut(T ) = T for
each T ∈ K(E). Put S = θx,y for some x, y ∈ E. Then

P̃ (ut(S)− S) = P̃ (αtSα∗t − S) = P̃ (θαt(x),αt(y) − θx,y)
= P̃ (θαt(x),αt(y) − θx,y − θx,αt(y) + θx,αt(y))
= P̃ (θαt(x)−x,αt(y) + θx,αt(y)−y)
≤ P̃ (θαt(x)−x,αt(y)) + P̃ (θx,αt(y)−y)
≤ pE(αt(x)− x)pE(αt(y)) + pE(x)pE(αt(y)− y).
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Since αt is a unitary operator, by Proposition 2.1 we have pE(αt(y)) = pE(y), so the
right of above inequality tends to zero. We know that T = lim

t→∞
Tn, where each Tn is

of the form Tn =
kn∑
i=1

λni θxn
i ,y

n
i
, where λni ∈ C, xni , yni ∈ E. By continuity of seminorns,

lim
t→0

P̃ (ut(T )− T ) = lim
t→0

P̃ (αtTα∗t − T ) = 0. Hence lim
t→0

ut(T ) = T . �

The converse of Theorem 3.1 is not true in general, we want to show that under
some mild conditions on a dynamical system α of automorphism on K(E), there is
a dynamical system u of unitary operators on E such that αt(T ) = utTu

∗
t for each

T ∈ K(E).

Theorem 3.2. Let α be a dynamical system of automorphisms on K(E). If there is
x ∈ E such that 〈x, x〉 = 1 and αt(θx,x) = θx,x for each t ∈ R, then there is a dynamical
system u of unitary operators on E such that αt(T ) = utTu

∗
t for each T ∈ K(E).

Proof. For each T ∈ K(E), x ∈ E with 〈x, x〉 = 1, let us define ut : E → E by
ut(Tx) = αt(T )x. Then

pE(Tx) = pE(Tx 1) = pE(Tx 〈x, x〉) = pE(T (x〈x, x〉)) = pE(Tθx,x(x))
≤ P̃ (Tθx,x)pE(x) ≤ P̃ (Tθx,x) = P̃ (θTx,x) ≤ pE(Tx)pE(x) ≤ pE(Tx).

Therefore,
pE(Tx) = P̃ (θTx,x)

= P̃ (αt(θTx,x)) (αt is an automorphism and by Remark 2.1)
= P̃ (αt(Tθx,x)) = P̃ (αt(T )αt(θx,x)) = P̃ (αt(T )θx,x) = P̃ (θαt(T )x,x)
= pE(αt(T )x) = pE(ut(Tx)).

Thus, pE(Tx) = pE(ut(Tx)) for each x with 〈x, x〉 = 1. Let y be an arbitrary element
in E. Then y = y · 1 = y〈x, x〉 = θy,x(x). Put T0 = θy,x. Then T0 ∈ K(E) and y = T0x.
Now put z = α−1

t (T0)x and let T ′ = α−1
t (T0). Then

ut(T ′x) = αt(T ′)x = αt(α−1
t (T0))x = αt(α−t(T0))x

= αtα−t(T0)x = α0(T0)x = T0x = y.

Hence ut is onto. Since pE(T0x) = pE(ut(T0x)) or pE(y) = pE(ut(y)) for each y ∈ E,
so by Proposition 2.1, ut is unitary and u∗t = u−1

t . The equations α−t(ut(Tx)) =
α−t(αt(T )x) = α−t(αt(T ))x = α0(T )x = Tx and ut(α−t(T )x) = Tx show that
(ut)−1(Tx) = α−t(T )x. Let z, y ∈ E, then there exist T0, S0 ∈ K(E) such that
z = T0x and y = S0x. Hence
〈usut(z), y〉 = 〈usut(T0x), S0x〉 = 〈ut(T0x), (us)∗(S0x)〉

= 〈αt(T0)x, α−s(S0)x〉 = 〈(α−s(S0))∗αt(T0)x, x〉
= 〈α−s(S∗0)αt(T0)x, x〉 = 〈α−s(S∗0αt+s(T0))x, x〉 = 〈 u−s(S∗0αt+s(T0)x), x〉
= 〈S∗0αt+s(T0)x, (u−s)∗θx,x(x)〉 (x = x1 = x〈x, x〉 = θx,x(x))
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= 〈S∗0αt+s(T0)x, αs(θx,x)x〉 = 〈S∗0αt+s(T0)x, x〉
= 〈ut+s(T0x), S0(x)〉 = 〈ut+s(z), y〉,

whence ut+s = utus.
Also u0(y) = u0(S0x) = α0(S0)x = S0x = y, so u0 = I. Hence pE((ut)y − y) =

pE((ut)(Tx) − Tx) = pE((αt(T ) − T )x) ≤ p̃(αt(T ) − T )pE(x). Therefore, lim
t→0

ut(y) =
y, so u is a dynamical system of unitary on E. Also utTu

∗
t (z) = utTu

∗
t (T0x) =

utT (αt)−1(T0x) = αt(Tα−1
t (T0))x = αt(T )(αtα−1

t (T0)x) = αt(T )T0x = αt(T )z so
αt(T ) = utTu

∗
t . �

Theorem 3.3. Let α be an automorphism on K(E) such that α(θx,x) = θy,y, where
x ∈ E and 〈y, y〉 = 1. Then, there is a unitary operator u in K(E) such that
α(T ) = uTu∗ for each T ∈ K(E).

Proof. For each T ∈ K(E) we define u(Tx) = α(T )y. Then, by the some reasoning as
in the proof of Theorem 3.2, we have

pE(u(Tx)) = pE(α(T )y) = p̃(θα(T )y,y) = p̃(α(T )θy,y) = p̃(α(T )α(θx,x))
= p̃(α(Tθx,x) = p̃(α(θTx,x)) = p̃(θTx,x) = pE(Tx).

Also, u is onto since for each z ∈ E there exists T0 ∈ K(E) such that z = T0x.
One can see u(α−1(T0)y) = α(α−1T0)y = T0y = z. So u is well-defined, onto and
pE(u(Tx)) = pE(Tx). Hence, by Proposition 2.1, u is a unitary operator. Let S ∈ K(E)
and x ∈ E be arbitrary, then

uTu∗(Sx) = uTα−1(S)x = α(Tα−1(S))x = α(T )Sx,

which implies that uTu∗ = α(T ). �

4. Generalized derivations on Hilbert modules

Let A be an algebra, a linear mapping d : D(d) ⊆ A→ A, where D(d) is a dense
subalgebra of A is called a derivation if d(ab) = d(a)b + ad(b) for each a, b ∈ D(d).
We introduce the notion of a generalized derivation on Hilbert modules over locally
C∗-algebras. This definition is similar to that of a generalized derivation on Hilbert
C∗-modules introduced in [1].

Definition 4.1. Let E be a full Hilbert A-module. A linear map δ : D(δ) ⊆ E→ E,
where D(δ) is a dense subspace of E, is called a generalized derivation if there exists
a mapping d : D(d) ⊆ A→ A, where D(d) is a dense subalgebra of A such that D(δ)
is an algebraic left D(d)-module and δ(xa) = δ(x)a + xd(a) for each x ∈ D(δ) and
a ∈ D(d).

Recall that if E is a full Hilbert A-module and a ∈ A such that xa = 0 for each
x ∈ E, then a = 0 (see [8, Remark 2.1]).
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Proposition 4.1. Let A be a locally C∗-algebra and E be a full Hilbert A−module
and δ : E → E be a bounded generalized derivation. Then δp : Ep → Ep defined by
δp(x+Np

E) = δ(x)+Np
E is a generalized derivation for each p ∈ S(A). Conversely, if

δp is a generalized derivation for each p ∈ S(A) then there is a generalized derivation
on E.

Proof. Let δ : E → E be a bounded generalized derivation. There then exists a
mapping d : D(d) ⊆ A → A such that δ(xa) = δ(x)a + xd(a) for all x ∈ E and
a ∈ D(d). For any a, b ∈ A and x ∈ E we have δ(xab) = δ(x)(ab) + xd(ab). Also,

δ(xab) = δ((xa)b) = δ(xa)b+ (xa)d(b)
= (δ(x)a+ xd(a))b+ (xa)d(b) = δ(x)(ab) + xd(a)b+ xad(b).

So xd(ab) = xd(a)b+xad(b) or x(d(ab)− (d(a)b+ad(b))) = 0 for all x ∈ E. Since E is
full, we have d(ab) = ad(b) + d(a)b. It means that d is a derivation. Similarly, we can
show that d is linear. For each p ∈ S(A) consider the mapping dp : D(dp) ⊆ Ap → Ap,
defined by dp(a+Np) = d(a)+Np. We show that dp is well-defined. Indeed, if a ∈ Np,

then by [2] there exist elements b1, b2, b3, b4 ∈ Np such that a =
4∑

k=1
ikb2

k and p(bk) = 0

for k = 1, 2, 3, 4 and

p(d(a)) = p

(
d

( 4∑
k=1

ikb2
k

))

= p

( 4∑
k=1

ikd(b2
k)
)

= p

( 4∑
k=1

ik(bkd(bk) + d(bk)bk)
)

≤
4∑

k=1
p(bk)p(d(bk)) + p(d(bk))p(bk) = 0.

Therefore a ∈ Np implies that p(d(a)) = 0. Now, if a+Np = a′+Np, then a−a′ ∈ Np

so p(d(a− a′)) = 0 thus d(a) +Np = d(a′) +Np. It means that (d(a))p = (d(a′))p. So
dp is well defined. Obviously, the mapping dp is a derivation. Also,

δp(xpap) = δp((xa)p)
= δ(xa) +Np

E

= (δ(x)a+ xd(a)) +Np
E

= (δ(x)a+Np
E) + (xd(a) +Np

E)
= δp(xp)ap + xpdp(ap),

hence δp is a generalized derivation. Now suppose that δp is a generalized derivation for
each p ∈ S(A), then there exists a mapping dp : Ap → Ap such that δp is dp−derivation.
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Now, if we define δ : lim←−p Ep → lim←−p Ep by δ((ap)p) = (δp(ap))p and d : lim←−p Ap → lim←−p Ap

by d((aP )P ) = (dp(aP ))p, then δ is d−generalized derivation. Indeed,
δ(x)a+ xd(a) = (δp(xp))p(ap)p + (xp)p(dp(ap))p

= (δp(xp)ap)p(xpdp(ap))p
= (δp(xp)ap + xpdp(ap))p
= (δp(xpap))p
= δ(xa),

which is stated. �

Proposition 4.2. Suppose that E is a full Hilbert A-module, α is a dynamical system
of unitaries on E and δ is the infinitesimal generator of α such that D(δ) is a dense
subspace of E. Then there exists a derivation d : D(d) ⊆ A → A such that δ(xa) =
δ(x)a+ xd(a) for all a ∈ D(d), x ∈ D(δ).

Proof. Since α is a dynamical system of unitaries on E, the mapping αt : E→ E is a
unitary for each t ∈ R. It follows from [8, Corollary 3.6] there is an isomorphism of
locally C∗-algebras α′t : A→ A such that α′t(〈x, y〉) = 〈αt(x), αt(y)〉 and
〈αt(xa)− αt(x)α′t(a), αt(xa)− αt(x)α′t(a)〉

=α′t(〈xa, xa〉)− α′t(〈xa, x〉)α′t(a)− α′t(a∗)α′t(〈x, xa〉) + α′t(a∗)α′t(〈x, x〉)α′t(a) = 0.
Whence αt(xa) = αt(x)α′t(a). In addition,

pE(xα′t(a)− xa) = pE(xα′t(a)− αt(x)α′t(a) + αt(x)α′t(a)− xa)
≤ pE(xα′t(a)− αt(x)α′t(a) + pE(αt(x)α′t(a)− xa)
≤ p(α′t(a))pE(αt(x)− x) + pE(αt(x)α′t(a)− xa).

Hence lim
t→0

xα′t(a) − xa = 0 for each x ∈ E. Thus, lim
t→0

α′t(a) = a for each a ∈ A.
Therefore α′ : R→ Aut(A) is a dynamical system of automorphisms on A. The rest
of proof is similar to [1, Theorem 4.3] and we remove it. �
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