KRAGUJEVAC JOURNAL OF MATHEMATICS VOLUME 42(2) (2018), PAGES 239–247.

DYNAMICAL SYSTEMS ON HILBERT MODULES OVER LOCALLY C*-ALGEBRAS

L. NARANJANI¹, M. HASSANI¹, AND M. AMYARI¹

ABSTRACT. Let \mathcal{A} be a locally C^* -algebra and $S(\mathcal{A})$ be the family of continuous C^* -seminorms and let \mathcal{E} be a Hilbert \mathcal{A} -module. We prove that every dynamical system of unitary operators on \mathcal{E} defines a dynamical system of automorphisms on the compact operators on \mathcal{E} and show that under certain conditions, the converse is true. We define a generalized derivation on \mathcal{E} and prove that if \mathcal{E} is a full Hilbert \mathcal{A} -module and $\delta : \mathcal{E} \to \mathcal{E}$ is a bounded generalized derivation, then $\delta_p : \mathcal{E}_p \to \mathcal{E}_p$ is a generalized derivation on the Hilbert module \mathcal{E}_p over the C^* -algebra \mathcal{A}_p for each $p \in S(\mathcal{A})$.

1. INTRODUCTION

Locally C^* -algebras are generalizations of C^* -algebras. Instead of having a single C^* -norm, we have a given directed family of C^* -seminorms, which gives a topology. Recall that a C^* -seminorm on a topological *-algebra \mathcal{A} is a seminorm p such that $p(ab) \leq p(a)p(b)$ and $p(aa^*) = p(a)^2$ for all $a, b \in \mathcal{A}$. A locally C^* -algebra is a complete Hausdorff complex topological *-algebra \mathcal{A} , whose topology is determined by its continuous C^* -seminorms in the sense that the net $\{a_{\gamma}\}$ converges to zero if and only if the net $\{p(a_{\gamma})\}_{\gamma}$ converges to 0, for every continuous C^* -seminorm p on \mathcal{A} . For example any C^* -algebra is a locally C^* -algebra and any closed subalgebra of a locally C^* -algebra is a locally C^* -algebra. The notion of locally C^* -algebra was first introduced by Inoue [6] and studied more by Phillips and Fragoulopoulou [3,10]. See also the book of Joita [7].

Hilbert modules are essentially objects, which behave similar to Hilbert spaces by allowing the inner product to take values in a locally C^* -algebra rather than the field

Key words and phrases. Locally C^* -algebra, dynamical system, generalized derivation.

²⁰¹⁰ Mathematics Subject Classification. Primary: 46L08. Secondary: 46L57, 46D60.

Received: December 02, 2016.

Accepted: March 04, 2017.

of complex numbers. They play an important role in the modern theory of operator algebras, in noncommutative geometry and in quantum groups, see [5]. The paper is organized as follows. In Section 2 we recall some facts about Hilbert module over locally C^* -algebras [7]. In Section 3 we extend results about dynamical system of unitary operators for Hilbert C^* -module from [4] in the context of Hilbert modules over locally C^* -algebra. In Section 4 we investigate generalized derivation on Hilbert modules over a locally C^* -algebra.

2. Preliminaries

Let \mathcal{A} be a locally C^* -algebra and $S(\mathcal{A})$ be the set of all continuous C^* -seminorms on \mathcal{A} . For $p \in S(\mathcal{A})$, the quotient *-algebra $\mathcal{A}_p = \mathcal{A}/N_p$, where $N_p = \{a \in \mathcal{A} : p(a) = 0\}$ is a C^{*}-algebra with respect to the C^{*}-norm $\|\cdot\|_p$ induced by p (i.e. $\|a_p\|_p = p(a)$ for each $a \in \mathcal{A}$, where $a_p = a + N_p$). The canonical map from \mathcal{A} onto \mathcal{A}_p is denoted by π_p and $\pi_p(a) = a_p$ for all a in \mathcal{A} . For $p, q \in S(\mathcal{A})$ with $p \geq q$, the surjective canonical map $\pi_{pq}^{\mathcal{A}} : \mathcal{A}_p \to \mathcal{A}_q$ is defined by $\pi_{pq}^{\mathcal{A}}(\pi_p^{\mathcal{A}}(a)) = \pi_q^{\mathcal{A}}(a)$ for all $a \in \mathcal{A}$. The $\{\mathcal{A}_p : \pi_{pq}^{\mathcal{A}}, p, q \in S(\mathcal{A}), p \ge q\}$ is an inverse system of C^* -algebras and $\lim_{t \to \infty} \mathcal{A}_p$ is a locally C^* -algebra which is identical with \mathcal{A} . Suppose that \mathcal{A} is a locally C^* -algebra. A right \mathcal{A} -module \mathcal{E} , equipped with an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle : \mathcal{E} \times \mathcal{E} \to \mathcal{A}$ satisfying the following conditions for all $x, y \in \mathcal{E}, a \in \mathcal{A}, \alpha, \beta \in \mathbb{C}$:

- (i) $\langle x, x \rangle \ge 0$, $\langle x, x \rangle = 0$ if and only if x = 0;
- (*ii*) $\langle x, ya \rangle = \langle x, y \rangle a;$
- (*iii*) $\langle x, y \rangle^* = \langle y, x \rangle;$
- (*iv*) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle;$

is called a pre Hilbert A-module. If \mathcal{E} is complete with respect to the topology determined by the family of seminorms $\{\overline{p}_{\mathcal{E}}\}_{p\in S(\mathcal{A})}$, where $\overline{p}_{\mathcal{E}}(x) = \sqrt{p(\langle x, x \rangle)}, x \in \mathcal{E}$, then \mathcal{E} is called a Hilbert module over the locally C^* -algebra \mathcal{A} (Hilbert \mathcal{A} -module). If \mathcal{E} is a right \mathcal{A} -module equipped with an \mathcal{A} -valued inner-product $\langle \cdot, \cdot \rangle$, then for each $p \in S(\mathcal{A})$ and for all $x, y \in \mathcal{E}$ we have the Cauchy-Schwarz inequality $p(\langle x, y \rangle)^2 \leq 1$ $p(\langle x, x \rangle)p(\langle y, y \rangle)$. Suppose \mathcal{E} is a Hilbert \mathcal{A} -module and p belongs to $S(\mathcal{A})$. Then $N_p^{\ \mathcal{E}} = \{x \in \mathcal{E} : \overline{p}_{\mathcal{E}}(x) = 0\}$ is a closed submodule of \mathcal{E} and $\mathcal{E}_p = \frac{\mathcal{E}}{N_p^{\mathcal{E}}}$ is a Hilbert module over C^* -algebra \mathcal{A}_p via the module multiplication $(x + N_p^{\varepsilon})\pi_p(a) = xa + N_p^{\varepsilon}$ and the inner product $\langle x + N_p^{\ \mathcal{E}}, y + N_p^{\ \mathcal{E}} \rangle = \pi_p(\langle x, y \rangle)$. The canonical map from \mathcal{E} onto \mathcal{E}_p is denoted by $\sigma_p^{\mathcal{E}}$ and $\sigma_p^{\mathcal{E}}(x) = x_p, p \in S(A)$. For each $p, q \in S(A)$, with $p \ge q$, there is a canonical surjective linear map $\sigma_{pq}^{\ \mathcal{E}} : \mathcal{E}_p \to \mathcal{E}_q$ such that $\sigma_{pq}^{\ \mathcal{E}}(x_p) = x_q$ for all $x \in \mathcal{E}$. Then $\{\mathcal{E}_p; \mathcal{A}_p; \sigma_{pq}^{\mathcal{E}} : p \ge q, p, q \in S(\mathcal{A})\}$ is an inverse system of Hilbert C^* -modules in the following sense:

- $\sigma_{pq}{}^{\mathcal{E}}(x_p a_p) = \sigma_{pq}{}^{\mathcal{E}}(x_p)\pi_{pq}(a_p)$ for all $x_p \in \mathcal{E}_p, a_p \in \mathcal{A}_p$;
- $\left\langle \sigma_{pq}^{\mathcal{E}}(x_p), \sigma_{pq}^{\mathcal{E}}(y_p) \right\rangle = \pi_{pq}(\langle x_p, y_p \rangle)$ for all $x_p, y_p \in \mathcal{E}_p$;
- $\sigma_{pk}^{\ \ \epsilon} = \sigma_{qk}^{\ \ \epsilon} \circ \sigma_{pq}^{\ \ \epsilon}$, for $p \ge q \ge k$; $\sigma_{pp}^{\ \ \epsilon} = I_{\mathcal{E}_p}$;

240

and $\lim_{p \to \infty} \mathcal{E}_p$ is a Hilbert \mathcal{A} -module with $((x_p)_p)((a_p)_p) = (x_p a_p)_p$ and $\langle (x_p)_p, (y_p)_p \rangle = (\langle x_p, y_p \rangle)_p$. Moreover, $\lim_{p \to \infty} \mathcal{E}_p$ can be identified by \mathcal{E} .

Let \mathcal{A} be a locally C^* -algebra and \mathcal{E}, \mathcal{F} be two Hilbert \mathcal{A} -modules, a map $T: \mathcal{E} \to \mathcal{F}$ is said to be adjointable if there exists a map $T^*: \mathcal{F} \to \mathcal{E}$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x \in \mathcal{E}$ and $y \in \mathcal{F}$. We use $L(\mathcal{E}, \mathcal{F})$ for the set of all adjointable module maps. If $\mathcal{E} = \mathcal{F}$ we write $L(\mathcal{E})$. A map $T: \mathcal{E} \to \mathcal{F}$ is called a bounded \mathcal{A} -module map if for each $p \in S(\mathcal{A})$ there exists $K_p \geq 0$ such that $\overline{p}_{\mathcal{F}}(Tx) \leq K_p \overline{p}_{\mathcal{E}}(x)$. The space of all bounded \mathcal{A} -module maps between \mathcal{E} and \mathcal{F} is denoted by $B(\mathcal{E}, \mathcal{F})$. It is easy to see that $\tilde{P}(T) = \sup\{\overline{p}_{\mathcal{F}}(Tx): \overline{p}_{\mathcal{E}}(x) \leq 1\}$ is a seminorm on $B(\mathcal{E}, \mathcal{F})$. For $y \in \mathcal{E}$ and $x \in \mathcal{F}$, $\theta_{x,y}: \mathcal{E} \to \mathcal{F}$ is defined by $\theta_{x,y}(z) = x \langle y, z \rangle$ for each $z \in \mathcal{E}$. We have $\theta^*_{x,y} = \theta_{y,x}$. The closed subspace of $L(\mathcal{E}, \mathcal{F})$ generated by $\{\theta_{x,y}: y \in \mathcal{E}, x \in \mathcal{F}\}$ is denoted by $K(\mathcal{E}, \mathcal{F})$. When $\mathcal{E} = \mathcal{F}$ we use $K(\mathcal{E})$ instead of $K(\mathcal{E}, \mathcal{E})$. An element in $K(\mathcal{E}, \mathcal{F})$ is called a compact operator from \mathcal{E} to \mathcal{F} and $K(\mathcal{E})$ is a two-sided *-ideal of $L(\mathcal{E})$. In fact $L(\mathcal{E})$ is a locally C^* -algebra with respect to the topology determined by the family of C^* -seminorms \tilde{P} for each $p \in S(\mathcal{A})$ (see [7, Theorem 2.2.6]) and $K(\mathcal{E})$ is a locally C^* -subalgebra of $L(\mathcal{E})$.

A Hilbert \mathcal{A} -module \mathcal{E} is called *full* if the closed linear span $\{\langle x, y \rangle : x, y \in \mathcal{E}\}$ denoted by $\langle \mathcal{E}, \mathcal{E} \rangle$, coincides with \mathcal{A} . For each $p \in S(\mathcal{A})$ and $\theta_{x,y} \in K_{\mathcal{A}}(\mathcal{E}, \mathcal{F})$, we have $\tilde{P}(\theta_{x,y}) \leq \overline{p}_{\mathcal{F}}(x)\overline{p}_{\mathcal{E}}(y)$, since for each $z \in \mathcal{E}$, $p \in S(\mathcal{A})$ such that $\overline{p}_{\mathcal{E}}(z) \leq 1$, it follows from [7, Corollary 1.2.3] that $\overline{p}_{\mathcal{F}}(\theta_{x,y}(z)) = \overline{p}_{\mathcal{F}}(x\langle y, z \rangle) \leq \overline{p}_{\mathcal{F}}(x)p(\langle y, z \rangle) \leq$ $\overline{p}_{\mathcal{F}}(x)\overline{p}_{\mathcal{E}}(y)\overline{p}(z) \leq \overline{p}_{\mathcal{F}}(x)\overline{p}_{\mathcal{E}}(y)$.

Throughout this paper, we assume that \mathcal{A} is a locally C^* -algebra and \mathcal{E} , \mathcal{F} are two Hilbert \mathcal{A} -modules. An adjointable operator u from \mathcal{E} to \mathcal{F} is said to be a unitary if $u^*u = I_{\mathcal{E}}$ and $uu^* = I_{\mathcal{F}}$, where $I_{\mathcal{E}}$ and $I_{\mathcal{F}}$ are identity operators on \mathcal{E} and \mathcal{F} , respectively.

Definition 2.1. Let \mathcal{A} and \mathcal{B} be two locally C^* -algebras. A morphism from \mathcal{A} to \mathcal{B} is a continuous linear map $\varphi : \mathcal{A} \to \mathcal{B}$ such that $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(a^*) = (\varphi(a))^*$ for all $a, b \in \mathcal{A}$. Two locally C^* -algebras \mathcal{A} and \mathcal{B} are isomorphic if there is an isomorphism (bijective morphism) from \mathcal{A} to \mathcal{B} .

Joita in [7] characterized the unitary operators on Hilbert modules over locally C^* -algebras by proving the following proposition.

Proposition 2.1. [7, Proposition 2.5.3] Let $u : \mathcal{E} \to \mathcal{F}$ be a linear map. Then the following statements are equivalent:

- (i) u is a unitary operator from \mathcal{E} to \mathcal{F} ;
- (ii) u is surjective and $\langle ux, ux \rangle = \langle x, x \rangle$ for all $x \in \mathcal{E}$;
- (iii) $\overline{p}_{\mathcal{F}}(u(x)) = \overline{p}_{\mathcal{E}}(x)$ for all $x \in \mathcal{E}$, $p \in S(\mathcal{A})$ and u is a surjective module homomorphism from \mathcal{E} to \mathcal{F} .

Remark 2.1. If $\varphi : \mathcal{A} \to \mathcal{A}$ is an automorphism of locally C^* -algebras, then $\varphi_p : \mathcal{A}_p \to \mathcal{A}_p$ is a well-defined automorphism of C^* -algebras for each $p \in S(\mathcal{A})$. Thus $p(\varphi(a)) = \|(\varphi(a))_p\|_p = \|\varphi_p(a_p)\|_p = \|a_p\|_p = p(a)$ for each $a \in \mathcal{A}$ and $p \in S(\mathcal{A})$.

3. Dynamical Systems on Hilbert modules

In this section we generalized the definitions of dynamical systems on Hilbert modules over locally C^* -algebras.

Definition 3.1. Let \mathcal{E} be a Hilbert \mathcal{A} -module and $U(\mathcal{E})$ be the set of all unitary operators on \mathcal{E} . A mapping $\alpha : \mathbb{R} \to U(\mathcal{E}), t \mapsto \alpha_t$ is said to be a one-parameter group of unitaries if for each $t, s \in \mathbb{R}$

- (i) $\alpha_0 = I;$
- (*ii*) $\alpha_{t+s} = \alpha_t \alpha_s$.

We say that α is a strongly continuous one-parameter group (C_0 -group) of unitaries if, in addition, $\lim_{t\to 0} \alpha_t(x) = x$ in \mathcal{E} . In this case, α is called a dynamical system of unitary operators on \mathcal{E} .

The infinitesimal generator of α is the mapping $\delta : D(\delta) \subseteq \mathcal{E} \to \mathcal{E}$, where $D(\delta) = \left\{ x \in \mathcal{E} : \lim_{t \to 0} \frac{\alpha_t(x) - x}{t} \quad \text{exists} \right\}$ and $\delta(x) = \lim_{t \to 0} \frac{\alpha_t(x) - x}{t}$ for each $x \in D(\delta)$. The above limit is taken in the topology on \mathcal{E} .

Remark 3.1. Let \mathcal{A} be a locally C^* -algebra and $\operatorname{Aut}(\mathcal{A})$ be the set of all automorphisms on \mathcal{A} , then, similar to Definition 3.1, we can define a dynamical system of automorphisms on \mathcal{A} .

In the following theorem, we show that every dynamical system of unitary operators on Hilbert \mathcal{A} -module \mathcal{E} , defines a dynamical system of automorphisms on locally C^* algebra $K(\mathcal{E})$.

Theorem 3.1. Let α be a dynamical system of unitary operators on \mathcal{E} and $u : \mathbb{R} \to \operatorname{Aut}(\operatorname{K}(\mathcal{E}))$ defined by $u_t(T) = \alpha_t T \alpha_t^*$ for each $T \in \operatorname{K}(\mathcal{E})$, then u is a dynamical system of automorphism on $\operatorname{K}(\mathcal{E})$.

Proof. Obviously $u_0 = I$ and $u_{t+s} = u_t u_s$. It is enough to show that $\lim_{t\to 0} u_t(T) = T$ for each $T \in K(\mathcal{E})$. Put $S = \theta_{x,y}$ for some $x, y \in \mathcal{E}$. Then

$$\widetilde{P}(u_t(S) - S) = \widetilde{P}(\alpha_t S \alpha_t^* - S) = \widetilde{P}(\theta_{\alpha_t(x),\alpha_t(y)} - \theta_{x,y})$$

$$= \widetilde{P}(\theta_{\alpha_t(x),\alpha_t(y)} - \theta_{x,y} - \theta_{x,\alpha_t(y)} + \theta_{x,\alpha_t(y)})$$

$$= \widetilde{P}(\theta_{\alpha_t(x)-x,\alpha_t(y)} + \theta_{x,\alpha_t(y)-y})$$

$$\leq \widetilde{P}(\theta_{\alpha_t(x)-x,\alpha_t(y)}) + \widetilde{P}(\theta_{x,\alpha_t(y)-y})$$

$$\leq \overline{p}_{\mathcal{E}}(\alpha_t(x) - x)\overline{p}_{\mathcal{E}}(\alpha_t(y)) + \overline{p}_{\mathcal{E}}(x)\overline{p}_{\mathcal{E}}(\alpha_t(y) - y)$$

Since α_t is a unitary operator, by Proposition 2.1 we have $\overline{p}_{\mathcal{E}}(\alpha_t(y)) = \overline{p}_{\mathcal{E}}(y)$, so the right of above inequality tends to zero. We know that $T = \lim_{t \to \infty} T_n$, where each T_n is

of the form
$$T_n = \sum_{i=1}^{k^n} \lambda_i^n \theta_{x_i^n, y_i^n}$$
, where $\lambda_i^n \in \mathbb{C}$, $x_i^n, y_i^n \in \mathcal{E}$. By continuity of seminorns,

$$\lim_{t \to 0} \tilde{P}(u_t(T) - T) = \lim_{t \to 0} \tilde{P}(\alpha_t T \alpha_t^* - T) = 0. \text{ Hence } \lim_{t \to 0} u_t(T) = T. \square$$

The converse of Theorem 3.1 is not true in general, we want to show that under some mild conditions on a dynamical system α of automorphism on $K(\mathcal{E})$, there is a dynamical system u of unitary operators on \mathcal{E} such that $\alpha_t(T) = u_t T u_t^*$ for each $T \in K(\mathcal{E})$.

Theorem 3.2. Let α be a dynamical system of automorphisms on $K(\mathcal{E})$. If there is $x \in \mathcal{E}$ such that $\langle x, x \rangle = 1$ and $\alpha_t(\theta_{x,x}) = \theta_{x,x}$ for each $t \in \mathbb{R}$, then there is a dynamical system u of unitary operators on \mathcal{E} such that $\alpha_t(T) = u_t T u_t^*$ for each $T \in K(\mathcal{E})$.

Proof. For each $T \in K(\mathcal{E})$, $x \in \mathcal{E}$ with $\langle x, x \rangle = 1$, let us define $u_t : \mathcal{E} \to \mathcal{E}$ by $u_t(Tx) = \alpha_t(T)x$. Then

$$\overline{p}_{\mathcal{E}}(Tx) = \overline{p}_{\mathcal{E}}(Tx\ 1) = \overline{p}_{\mathcal{E}}(Tx\ \langle x, x \rangle) = \overline{p}_{\mathcal{E}}(T(x\langle x, x \rangle)) = \overline{p}_{\mathcal{E}}(T\theta_{x,x}(x))$$
$$\leq \widetilde{P}(T\theta_{x,x})\overline{p}_{\mathcal{E}}(x) \leq \widetilde{P}(T\theta_{x,x}) = \widetilde{P}(\theta_{Tx,x}) \leq \overline{p}_{\mathcal{E}}(Tx)\overline{p}_{\mathcal{E}}(x) \leq \overline{p}_{\mathcal{E}}(Tx).$$

Therefore,

$$\overline{p}_{\mathcal{E}}(Tx) = \widetilde{P}(\theta_{Tx,x})$$

$$= \widetilde{P}(\alpha_t(\theta_{Tx,x})) \quad (\alpha_t \text{ is an automorphism and by Remark 2.1})$$

$$= \widetilde{P}(\alpha_t(T\theta_{x,x})) = \widetilde{P}(\alpha_t(T)\alpha_t(\theta_{x,x})) = \widetilde{P}(\alpha_t(T)\theta_{x,x}) = \widetilde{P}(\theta_{\alpha_t(T)x,x})$$

$$= \overline{p}_{\mathcal{E}}(\alpha_t(T)x) = \overline{p}_{\mathcal{E}}(u_t(Tx)).$$

Thus, $\overline{p}_{\mathcal{E}}(Tx) = \overline{p}_{\mathcal{E}}(u_t(Tx))$ for each x with $\langle x, x \rangle = 1$. Let y be an arbitrary element in \mathcal{E} . Then $y = y \cdot 1 = y \langle x, x \rangle = \theta_{y,x}(x)$. Put $T_0 = \theta_{y,x}$. Then $T_0 \in K(\mathcal{E})$ and $y = T_0 x$. Now put $z = \alpha_t^{-1}(T_0)x$ and let $T' = \alpha_t^{-1}(T_0)$. Then

$$u_t(T'x) = \alpha_t(T')x = \alpha_t(\alpha_t^{-1}(T_0))x = \alpha_t(\alpha_{-t}(T_0))x = \alpha_t\alpha_{-t}(T_0)x = \alpha_0(T_0)x = T_0x = y.$$

Hence u_t is onto. Since $\overline{p}_{\mathcal{E}}(T_0x) = \overline{p}_{\mathcal{E}}(u_t(T_0x))$ or $\overline{p}_{\mathcal{E}}(y) = \overline{p}_{\mathcal{E}}(u_t(y))$ for each $y \in \mathcal{E}$, so by Proposition 2.1, u_t is unitary and $u_t^* = u_t^{-1}$. The equations $\alpha_{-t}(u_t(Tx)) = \alpha_{-t}(\alpha_t(T)x) = \alpha_{-t}(\alpha_t(T))x = \alpha_0(T)x = Tx$ and $u_t(\alpha_{-t}(T)x) = Tx$ show that $(u_t)^{-1}(Tx) = \alpha_{-t}(T)x$. Let $z, y \in \mathcal{E}$, then there exist $T_0, S_0 \in K(\mathcal{E})$ such that $z = T_0x$ and $y = S_0x$. Hence

$$\langle u_s u_t(z), y \rangle = \langle u_s u_t(T_0 x), S_0 x \rangle = \langle u_t(T_0 x), (u_s)^*(S_0 x) \rangle$$

$$= \langle \alpha_t(T_0) x, \alpha_{-s}(S_0) x \rangle = \langle (\alpha_{-s}(S_0))^* \alpha_t(T_0) x, x \rangle$$

$$= \langle \alpha_{-s}(S_0^*) \alpha_t(T_0) x, x \rangle = \langle \alpha_{-s}(S_0^* \alpha_{t+s}(T_0)) x, x \rangle = \langle u_{-s}(S_0^* \alpha_{t+s}(T_0) x), x \rangle$$

$$= \langle S_0^* \alpha_{t+s}(T_0) x, (u_{-s})^* \theta_{x,x}(x) \rangle \quad (x = x1 = x \langle x, x \rangle = \theta_{x,x}(x))$$

$$= \langle S_0^* \alpha_{t+s}(T_0) x, \alpha_s(\theta_{x,x}) x \rangle = \langle S_0^* \alpha_{t+s}(T_0) x, x \rangle$$
$$= \langle u_{t+s}(T_0 x), S_0(x) \rangle = \langle u_{t+s}(z), y \rangle,$$

whence $u_{t+s} = u_t u_s$.

Also $u_0(y) = u_0(S_0x) = \alpha_0(S_0)x = S_0x = y$, so $u_0 = I$. Hence $\overline{p}_{\mathcal{E}}((u_t)y - y) = \overline{p}_{\mathcal{E}}((u_t)(Tx) - Tx) = \overline{p}_{\mathcal{E}}((\alpha_t(T) - T)x) \leq \widetilde{p}(\alpha_t(T) - T)\overline{p}_{\mathcal{E}}(x)$. Therefore, $\lim_{t \to 0} u_t(y) = y$, so u is a dynamical system of unitary on \mathcal{E} . Also $u_tTu_t^*(z) = u_tTu_t^*(T_0x) = u_tT(\alpha_t)^{-1}(T_0x) = \alpha_t(T\alpha_t^{-1}(T_0))x = \alpha_t(T)(\alpha_t\alpha_t^{-1}(T_0)x) = \alpha_t(T)T_0x = \alpha_t(T)z$ so $\alpha_t(T) = u_tTu_t^*$.

Theorem 3.3. Let α be an automorphism on $K(\mathcal{E})$ such that $\alpha(\theta_{x,x}) = \theta_{y,y}$, where $x \in \mathcal{E}$ and $\langle y, y \rangle = 1$. Then, there is a unitary operator u in $K(\mathcal{E})$ such that $\alpha(T) = uTu^*$ for each $T \in K(\mathcal{E})$.

Proof. For each $T \in K(\mathcal{E})$ we define $u(Tx) = \alpha(T)y$. Then, by the some reasoning as in the proof of Theorem 3.2, we have

$$\overline{p}_{\mathcal{E}}(u(Tx)) = \overline{p}_{\mathcal{E}}(\alpha(T)y) = \widetilde{p}(\theta_{\alpha(T)y,y}) = \widetilde{p}(\alpha(T)\theta_{y,y}) = \widetilde{p}(\alpha(T)\alpha(\theta_{x,x})) \\ = \widetilde{p}(\alpha(T\theta_{x,x}) = \widetilde{p}(\alpha(\theta_{Tx,x})) = \widetilde{p}(\theta_{Tx,x}) = \overline{p}_{\mathcal{E}}(Tx).$$

Also, u is onto since for each $z \in \mathcal{E}$ there exists $T_0 \in K(\mathcal{E})$ such that $z = T_0 x$. One can see $u(\alpha^{-1}(T_0)y) = \alpha(\alpha^{-1}T_0)y = T_0y = z$. So u is well-defined, onto and $\overline{p}_{\mathcal{E}}(u(Tx)) = \overline{p}_{\mathcal{E}}(Tx)$. Hence, by Proposition 2.1, u is a unitary operator. Let $S \in K(\mathcal{E})$ and $x \in \mathcal{E}$ be arbitrary, then

$$uTu^*(Sx) = uT\alpha^{-1}(S)x = \alpha(T\alpha^{-1}(S))x = \alpha(T)Sx,$$

which implies that $uTu^* = \alpha(T)$.

4. Generalized derivations on Hilbert modules

Let \mathcal{A} be an algebra, a linear mapping $d: D(d) \subseteq \mathcal{A} \to \mathcal{A}$, where D(d) is a dense subalgebra of \mathcal{A} is called a derivation if d(ab) = d(a)b + ad(b) for each $a, b \in D(d)$. We introduce the notion of a generalized derivation on Hilbert modules over locally C^* -algebras. This definition is similar to that of a generalized derivation on Hilbert C^* -modules introduced in [1].

Definition 4.1. Let \mathcal{E} be a full Hilbert \mathcal{A} -module. A linear map $\delta : D(\delta) \subseteq \mathcal{E} \to \mathcal{E}$, where $D(\delta)$ is a dense subspace of \mathcal{E} , is called a generalized derivation if there exists a mapping $d : D(d) \subseteq \mathcal{A} \to \mathcal{A}$, where D(d) is a dense subalgebra of \mathcal{A} such that $D(\delta)$ is an algebraic left D(d)-module and $\delta(xa) = \delta(x)a + xd(a)$ for each $x \in D(\delta)$ and $a \in D(d)$.

Recall that if \mathcal{E} is a full Hilbert \mathcal{A} -module and $a \in \mathcal{A}$ such that xa = 0 for each $x \in \mathcal{E}$, then a = 0 (see [8, Remark 2.1]).

Proposition 4.1. Let \mathcal{A} be a locally C^* -algebra and \mathcal{E} be a full Hilbert \mathcal{A} -module and $\delta : \mathcal{E} \to \mathcal{E}$ be a bounded generalized derivation. Then $\delta_p : \mathcal{E}_p \to \mathcal{E}_p$ defined by $\delta_p(x+N_p^{\mathcal{E}}) = \delta(x)+N_p^{\mathcal{E}}$ is a generalized derivation for each $p \in S(\mathcal{A})$. Conversely, if δ_p is a generalized derivation for each $p \in S(\mathcal{A})$ then there is a generalized derivation on \mathcal{E} .

Proof. Let $\delta : \mathcal{E} \to \mathcal{E}$ be a bounded generalized derivation. There then exists a mapping $d : D(d) \subseteq \mathcal{A} \to \mathcal{A}$ such that $\delta(xa) = \delta(x)a + xd(a)$ for all $x \in \mathcal{E}$ and $a \in D(d)$. For any $a, b \in \mathcal{A}$ and $x \in \mathcal{E}$ we have $\delta(xab) = \delta(x)(ab) + xd(ab)$. Also,

$$\begin{split} \delta(xab) &= \delta((xa)b) = \delta(xa)b + (xa)d(b) \\ &= (\delta(x)a + xd(a))b + (xa)d(b) = \delta(x)(ab) + xd(a)b + xad(b). \end{split}$$

So xd(ab) = xd(a)b + xad(b) or x(d(ab) - (d(a)b + ad(b))) = 0 for all $x \in \mathcal{E}$. Since \mathcal{E} is full, we have d(ab) = ad(b) + d(a)b. It means that d is a derivation. Similarly, we can show that d is linear. For each $p \in S(\mathcal{A})$ consider the mapping $d_p : D(d_p) \subseteq \mathcal{A}_p \to \mathcal{A}_p$, defined by $d_p(a + N_p) = d(a) + N_p$. We show that d_p is well-defined. Indeed, if $a \in N_p$, then by [2] there exist elements $b_1, b_2, b_3, b_4 \in N_p$ such that $a = \sum_{k=1}^4 i^k b_k^2$ and $p(b_k) = 0$ for k = 1, 2, 3, 4 and

$$p(d(a)) = p\left(d\left(\sum_{k=1}^{4} i^k b_k^2\right)\right)$$
$$= p\left(\sum_{k=1}^{4} i^k d(b_k^2)\right)$$
$$= p\left(\sum_{k=1}^{4} i^k (b_k d(b_k) + d(b_k)b_k)\right)$$
$$\leq \sum_{k=1}^{4} p(b_k) p(d(b_k)) + p(d(b_k)) p(b_k) = 0.$$

Therefore $a \in N_p$ implies that p(d(a)) = 0. Now, if $a + N_p = a' + N_p$, then $a - a' \in N_p$ so p(d(a - a')) = 0 thus $d(a) + N_p = d(a') + N_p$. It means that $(d(a))_p = (d(a'))_p$. So d_p is well defined. Obviously, the mapping d_p is a derivation. Also,

$$\delta_p(x_p a_p) = \delta_p((xa)_p)$$

= $\delta(xa) + N_p^{\mathcal{E}}$
= $(\delta(x)a + xd(a)) + N_p^{\mathcal{E}}$
= $(\delta(x)a + N_p^{\mathcal{E}}) + (xd(a) + N_p^{\mathcal{E}})$
= $\delta_p(x_p)a_p + x_pd_p(a_p),$

hence δ_p is a generalized derivation. Now suppose that δ_p is a generalized derivation for each $p \in S(\mathcal{A})$, then there exists a mapping $d_p : \mathcal{A}_p \to \mathcal{A}_p$ such that δ_p is d_p -derivation.

Now, if we define $\delta : \lim_{p \to \infty} \mathcal{E}_p \to \lim_{p \to \infty} \mathcal{E}_p$ by $\delta((a_p)_p) = (\delta_p(a_p))_p$ and $d : \lim_{p \to \infty} \mathcal{A}_p \to \lim_{p \to \infty} \mathcal{A}_p$ by $d((a_P)_P) = (d_p(a_P))_p$, then δ is d-generalized derivation. Indeed,

$$\delta(x)a + xd(a) = (\delta_p(x_p))_p(a_p)_p + (x_p)_p(d_p(a_p))_p$$

= $(\delta_p(x_p)a_p)_p(x_pd_p(a_p))_p$
= $(\delta_p(x_p)a_p + x_pd_p(a_p))_p$
= $(\delta_p(x_pa_p))_p$
= $\delta(xa),$

which is stated.

Proposition 4.2. Suppose that \mathcal{E} is a full Hilbert \mathcal{A} -module, α is a dynamical system of unitaries on \mathcal{E} and δ is the infinitesimal generator of α such that $D(\delta)$ is a dense subspace of \mathcal{E} . Then there exists a derivation $d : D(d) \subseteq \mathcal{A} \to \mathcal{A}$ such that $\delta(xa) = \delta(x)a + xd(a)$ for all $a \in D(d), x \in D(\delta)$.

Proof. Since α is a dynamical system of unitaries on \mathcal{E} , the mapping $\alpha_t : \mathcal{E} \to \mathcal{E}$ is a unitary for each $t \in \mathbb{R}$. It follows from [8, Corollary 3.6] there is an isomorphism of locally C^* -algebras $\alpha'_t : \mathcal{A} \to \mathcal{A}$ such that $\alpha'_t(\langle x, y \rangle) = \langle \alpha_t(x), \alpha_t(y) \rangle$ and

$$\begin{aligned} &\langle \alpha_t(xa) - \alpha_t(x)\alpha'_t(a), \alpha_t(xa) - \alpha_t(x)\alpha'_t(a) \rangle \\ &= &\alpha'_t(\langle xa, xa \rangle) - \alpha'_t(\langle xa, x \rangle)\alpha'_t(a) - \alpha'_t(a^*)\alpha'_t(\langle x, xa \rangle) + \alpha'_t(a^*)\alpha'_t(\langle x, x \rangle)\alpha'_t(a) = 0. \end{aligned}$$

Whence $\alpha_t(xa) = \alpha_t(x)\alpha'_t(a)$. In addition,

$$\overline{p}_{\mathcal{E}}(x\alpha'_{t}(a) - xa) = \overline{p}_{\mathcal{E}}(x\alpha'_{t}(a) - \alpha_{t}(x)\alpha'_{t}(a) + \alpha_{t}(x)\alpha'_{t}(a) - xa)$$

$$\leq \overline{p}_{\mathcal{E}}(x\alpha'_{t}(a) - \alpha_{t}(x)\alpha'_{t}(a) + \overline{p}_{\mathcal{E}}(\alpha_{t}(x)\alpha'_{t}(a) - xa))$$

$$\leq p(\alpha'_{t}(a))\overline{p}_{\mathcal{E}}(\alpha_{t}(x) - x) + \overline{p}_{\mathcal{E}}(\alpha_{t}(x)\alpha'_{t}(a) - xa).$$

Hence $\lim_{t\to 0} x\alpha'_t(a) - xa = 0$ for each $x \in \mathcal{E}$. Thus, $\lim_{t\to 0} \alpha'_t(a) = a$ for each $a \in \mathcal{A}$. Therefore $\alpha' : \mathbb{R} \to \operatorname{Aut}(\mathcal{A})$ is a dynamical system of automorphisms on \mathcal{A} . The rest of proof is similar to [1, Theorem 4.3] and we remove it. \Box

Acknowledgements. The authors would like to express their sincere thanks to the referees for their helpful comments.

References

- Gh. Abbaspour Tabadkan, M. S. Moslehian and A. Niknam, Dynamical systems on Hilbert C*-modules, Bull. Iranian Math. Soc. 31(1) (2005), 25–35.
- [2] R. Becker, Derivations on LMC*-algebras, Math. Nachr. 155 (1992), 141–149.
- [3] M. Fragoulopoulou, Topology Algebras with Invilution, North Holland, Amsterdam, 2005.
- [4] M. Hassani, A. Niknam, On C₀-group of linear operator, J. Sci. Islam. Repub. Iran 15(2) (2004), 159–161.
- [5] J. M. Gracia-Bondia and J. C. Varilly and H. Figueroa, *Elements of non-Commutative Geometry*, Birkhauser, 2000.

- [6] A. Inoue, Locally C^{*}-algebras, Mem. Fac. Sci. Kyushu Univ. A 25 (1972), 197–235.
- [7] M. Joita, Hilbert Modules over Locally C*-Algebras, University of Bucharest Press, 2006.
- [8] M. Joita, A note about full Hilbert modules over Frechet locally C*-algebras, Novi Sad J. Math. 37(1) (2007), 27–32.
- [9] M. S. Moslehian, On full Hilbert C*-modules, Bull. Malays. Math. Sci. Soc. 24(1) (2001), 45-47.
- [10] N. C. Phillips, Inverse limits of C^* -algebras, J. Operator Theory 19(1) (1988), 159–195.

E-mail address: lnaranjani@yahoo.com

¹ Department of mathematics, Islamic Azad University, Mashhad Branch, Mashhad, Iran

E-mail address: hassani@mshdiau.ac.ir

E-mail address: amyari@mshdiau.ac.ir