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LAPLACIAN ENERGY OF GENERALIZED COMPLEMENTS OF A
GRAPH

H. J. GOWTHAM1, SABITHA D’SOUZA1, AND PRADEEP G. BHAT1

Abstract. Let P = {V1, V2, V3, . . . , Vk} be a partition of vertex set V (G) of order
k ≥ 2. For all Vi and Vj in P , i 6= j, remove the edges between Vi and Vj in graph
G and add the edges between Vi and Vj which are not in G. The graph GP

k thus
obtained is called the k−complement of graph G with respect to a partition P . For
each set Vr in P , remove the edges of graph G inside Vr and add the edges of G (the
complement of G) joining the vertices of Vr. The graph GP

k(i) thus obtained is called
the k(i)−complement of graph G with respect to a partition P . In this paper, we
study Laplacian energy of generalized complements of some families of graph. An
effort is made to throw some light on showing variation in Laplacian energy due to
changes in a partition of the graph.

1. Introduction

Let G be a graph on n vertices and m edges. The complement of a graph G, denoted
as G has the same vertex set as that of G, but two vertices are adjacent in G if and
only if they are not adjacent in G. If G is isomorphic to G then G is said to be
self-complementary graph. For all notations and terminologies we refer [2, 15, 21]. E.
Sampathkumar et al. have introduced two types of generalized complements [19] of a
graph. For completeness we produce these here.

Let P = {V1, V2, V3, . . . , Vk} be a partition of vertex set V (G) of order k ≥ 2. For
all Vi and Vj in P , i 6= j, remove the edges between Vi and Vj in graph G and add the
edges between Vi and Vj which are not in G. The graph GP

k thus obtained is called
the k−complement of graph G with respect to a partition P . For each set Vr in P ,
remove the edges of graph G inside Vr and add the edges of G joining the vertices
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of Vr. The graph GP
k(i) thus obtained is called the k(i)-complement of graph G with

respect to a partition P .
The energy of the graph is first defined by Ivan Gutman [10] in 1978 as the sum of

absolute eigenvalues of graph G. For more information on energy of a graph we refer
[1,3,5,7–9,12,13,17,18,20]. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of
vertex degrees, and A(G) is the adjacency matrix. Then L(G) = D(G)−A(G) is the
Laplacian matrix of graph G. The characteristic polynomial of the Laplacian matrix
is denoted by φ(L(G), µ) = det(µIn − L(G)). Let {µ1, µ2, · · · , µn} be the Laplacian
eigenvalues of graph G, i.e., the roots of φ(L(G), µ). The Laplacian energy[14], denoted
by LE(G), is defined as

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m
n

∣∣∣∣ .
The Laplacian energy LE(G) is a very recently defined graph invariant. The basic
properties for Laplacian energy have been established in [4,6,11,14,22,23], and it has
found remarkable chemical applications. In this paper we study the Laplacian energy
of generalized complements of some classes of graphs.

2. Preliminaries

Proposition 2.1. [19] The k-complement and k(i) complement of G are related as
follows:

(i) GP
k
∼= GP

k(i);
(ii) GP

k(i)
∼= GP

k .

Theorem 2.1. [6] Let G be a graph with n vertices and G be its complement. If
the Laplacian spectrum of G is {µ1, µ2, . . . , µn}, then the Laplacian spectrum of G is
{n− µn−1, n− µn−2, . . . , n− µ1, 0}.

Definition 2.1. [6] Let fi, i = 1, 2, . . . , k, 1 ≤ k ≤
⌊

p
2

⌋
, be independent edges of the

complete graphKp, p ≥ 3. The graphKbp(k) is obtained by deleting fi, i = 1, 2, . . . , k,
from Kp. In addition Kbp(0) ∼= Kp.

Proposition 2.2. [6] For p ≥ 3 and 0 ≤ k ≤
⌊

p
2

⌋
,

LE(Kbp(k)) = (2p− 2) +
(

2− 4
p

)
k − 4k2

p
.

Lemma 2.1. [16] Let

A =
[
A0 A1
A1 A0

]
be a 2× 2 block symmetric matrix. Then the eigenvalues of A are the eigenvalues of
the matrices A0 + A1 and A0 − A1.
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3. Laplacian energy of generalized complements of classes of graphs

Now we find Laplacian energy of generalized complements of some standard graphs
like complete, complete bipartite, path, cycle, double star, friendship and cocktail
party graph. For some graphs we take partition of order k and for some partition of
order two.

Theorem 3.1. Let P = {V1, V2, . . . , Vk} be a partition of the complete graph Kn.
(i) If < Vi >= Ki, for i = 1, 2, . . . , n, then

LE
(
(Kn)P

k

)
=

2k
k∑

i=1
niC2

n
+

k∑
i=1

(ni − 1)

∣∣∣∣∣∣∣∣∣ni −
2k

k∑
i=1

niC2

n

∣∣∣∣∣∣∣∣∣
and

LE
(
(Kn)P

k(i)

)
=n(k − 1) + (k + 2)


2
(

nC2 −
k∑

i=1
niC2

)
n



+
k∑

i=1
(ni − 1)

∣∣∣∣∣∣∣∣∣∣
(n− ni)−

2
(

nC2 −
k∑

i=1
niC2

)
n

∣∣∣∣∣∣∣∣∣∣
.

(ii) If |Vi| = 2 and one of |Vi| = 1 when n is odd, then

LE
(
(Kn)P

k

)
= 4k(n− k)

n
and LE

(
(Kn)P

k(i)

)
= 2(3n− 2k)(k − 1)

n
.

Proof. For a partition P = {V1, V2, . . . , Vk}, let G = (Kn)P
k be a graph.

(i) If < Vi >= Ki, for i = 1, 2, . . . , n, then G is the union of k disconnected
complete subgraphs of order ni such that

n∑
i=1

ni = n. If ni ≥ 2, the Laplacian
spectrum of Kni

consists of {0, ni(ni−1 times)}, i = 1, 2, . . . , n.

Then the Laplacian spectrum of (Kn)P
k is

{
0 n1 n2 . . . nk

k n1 − 1 n2 − 1 . . . nk − 1

}

and the average degree of (Kn)P
k =

2
k∑

i=1

niC2

n
,

LE
(
(Kn)P

k

)
=

2k
k∑

i=1
niC2

n
+

k∑
i=1

(ni − 1)

∣∣∣∣∣∣∣∣∣ni −
2k

k∑
i=1

niC2

n

∣∣∣∣∣∣∣∣∣ ,
where |Vi| = ni, i = 1, 2, . . . , k.
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By noting that (Kn)P
k(i) = (Kn)P

k and from Theorem 2.1, we obtain Lapla-

cian spectrum of (Kn)P
k(i) is

{
0 n n− n1 n− n2 . . . n− nk

1 k − 1 n1 − 1 n2 − 1 . . . nk − 1

}
and the

average degree of (Kn)P
k(i) is

2
(

nC2−
k∑

i=1

niC2

)
n

,

LE
(
(Kn)P

k(i)

)
=n(k − 1) + (k + 2)


2
(

nC2 −
k∑

i=1
niC2

)
n



+
k∑

i=1
(ni − 1)

∣∣∣∣∣∣∣∣∣∣
(n− ni)−

2
(

nC2 −
k∑

i=1
niC2

)
n

∣∣∣∣∣∣∣∣∣∣
,

where |Vi| = ni, i = 1, 2, . . . , k.

(ii) If |Vi| = 2, then k =


n

2 , if n is even,
n+ 1

2 , if n is odd.
It follows by substituting the value of k in Theorem 3.1 of statement (i). Also,
the Laplacian spectrum of G is given by {0(k times), 2(n− k times)}. Average
degree of G is 2m

n
= 2(n−k)

n
. Thus,

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m
n

∣∣∣∣
= k

∣∣∣∣∣2(n− k)
n

∣∣∣∣∣+ (n− k)
∣∣∣∣∣2− 2(n− k)

n

∣∣∣∣∣
= 2k(n− k)

n
+ 2k(n− k)

n

= 4k(n− k)
n

, k ≥ 1.

Hence, Laplacian spectrum of G consists of {0, (n − 2)(n − k times), n(k −
1 times)}. Average degree of G is 2m

n
= n(n−1)−2(n−k)

n
.

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m
n

∣∣∣∣
=
∣∣∣∣∣n(n− 1)− 2(n− k)

n

∣∣∣∣∣
+ (n− k)

∣∣∣∣∣(n− 2)− n(n− 1)− 2(n− k)
n

∣∣∣∣∣
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+ (k − 1)
∣∣∣∣∣n− n(n− 1)− 2(n− k)

n

∣∣∣∣∣
=2(3n− 2k)(k − 1)

n
, k ≥ 1. �

Remark 3.1. Let P = {V1, V2, . . . , Vk} be a partition of the complete graph Kn with
|Vi| = 2 and one of |Vi| = 1, if n is odd. Then,

LE
(
(Kn)P

k

)
+ LE

(
(Kn)P

k(i)

)
=

3n− 4, if n is even,
3(n− 1), if n is odd.

Theorem 3.2. Let P = {V1, V2, . . . , Vk} be a partition of path Pn.
(i) If any one of the pendant vertex is in V1 or Vk, and remaining k − 1 sets are

K2’s, then

LE
(
(Pn)P

k(i)

)
= 2
n
{k(k − 1) + (n− k)(n− k + 1)},

whereas

LE
(
(Pn)P

k

)
= LE

[
Kbn

(⌊
n

2

⌋)]
= 2n− 2 +

(
2− 4

n

) ⌊
n

2

⌋
− 4

(⌊
n

2

⌋)2
,

for odd n ≥ 3.
(ii) If any one of the non pendant vertex is in Vi, 3 ≤ i ≤ n − 2 and remaining

k − 1 sets are K2’s, then

LE
(
(Pn)P

k(i)

)
= 2
n

[(n− k)2 + k(k − 2) + n],

whereas

LE
(
(Pn)P

k

)
= 2
n

[n(n− k) + 2k(k − 1)], k =
⌈
n

2

⌉
for odd n ≥ 5.

(iii) If < Vi >= K2, then

LE
(
(Pn)P

k(i)

)
= 4
n

(k − 1)(n− k + 1) and LE
(
(Pn)P

k

)
= 2(n− 1),

for even n ≥ 2.

Proof. (i) If any one of the pendant vertex is in V1 or Vk, and remaining k − 1
sets are K2’s, then (Pn)P

k(i) is the union of (k− 1) K2’s and one isolated vertex.
Laplacian spectrum of (Pn)P

k(i) is {0(k times), 2(n − k times)}. The average
degree of (Pn)P

k(i) is 2
n
(k − 1), i.e.,

LE
(
(Pn)P

k(i)

)
=k

( 2
n

(k − 1)
)

+ (n− k)
∣∣∣∣2− 2

n
(k − 1)

∣∣∣∣
= 2
n

[(n− k)2 + k(k − 2) + n].
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Note that (Pn)P
k is the graph obtained from Kn by deleting all the independent

edges, (Pn)P
k = Kbn

(⌊
n
2

⌋)
. Hence, from Proposition 2.2,

LE
(
(Pn)P

k

)
= LE

[
Kbn

(⌊
n

2

⌋)]
= 2n− 2 +

(
2− 4

n

) ⌊
n

2

⌋
− 4

(⌊
n

2

⌋)2
.

(ii) If any one of the non pendant vertex is in Vi, 3 ≤ i ≤ n − 2 and remaining
k− 1 sets are K2’s, then (Pn)P

k(i) is the union of K1,2, (n− k− 2) K2’s and two
isolated vertices. Hence, Laplacian spectrum of (Pn)P

k(i) is {0(k times), 1, 2(n−

k − 2 times), 3}. The average degree of (Pn)P
k(i) is

2(k − 1)
n

, i.e.,

LE
(
(Pn)P

k(i)

)
=k

( 2
n

(k − 1)
)

+ (n− k − 2)
∣∣∣∣2− 2

n
(k − 1)

∣∣∣∣
+
∣∣∣∣1− 2

n
(k − 1)

∣∣∣∣+ ∣∣∣∣3− 2
n

(k − 1)
∣∣∣∣

= 2
n

[(n− k)2 + k(k − 2) + n].

Also from Theorem 2.1, Laplacian spectrum of (Pn)P
k is {0, n − 3, n − 2(n −

k − 2 times), n − 1, n(k − 1 times)}. Average degree of (Pn)P
k is n(n−1)−2(k−1)

n
.

Hence,

LE
(
(Pn)P

k

)
=n(n− 1)− 2(k − 1)

n
+
∣∣∣∣∣(n− 3)− n(n− 1)− 2(k − 1)

n

∣∣∣∣∣
+ (n− k − 2)

∣∣∣∣∣(n− 2)− n(n− 1)− 2(k − 1)
n

∣∣∣∣∣
+
∣∣∣∣∣(n− 1)− n(n− 1)− 2(k − 1)

n

∣∣∣∣∣
+ (k − 1)

∣∣∣∣∣n− n(n− 1)− 2(k − 1)
n

∣∣∣∣∣
= 2
n

[(n− k)2 + k(k − 2) + n].

(iii) If < Vi >= K2, then (Pn)P
k(i) is the union of (k − 1) K2’s and two isolated

vertices. Its Laplacian spectrum is {0(n − k + 1 times), 2(k − 1 times)} and
average degree is 2

n
(k − 1). Hence,

LE
(
(Pn)P

k(i)

)
= (n− k + 1) 2

n
(k − 1) + (k − 1)

∣∣∣∣2− 2
n

(k − 1)
∣∣∣∣

= 4
n

(k − 1)(n− k + 1).



LAPLACIAN ENERGY OF GENERALIZED COMPLEMENTS OF A GRAPH 305

Also from Theorem 2.1, Laplacian spectrum of (Pn)P
k is {0, n − 2(n − k −

1 times), n(k times)}. Average degree of (Pn)P
k is n(n−1)−2(k−1)

n
. Thus,

LE
(
(Pn)P

k

)
= 1
n

[n(n+ k − 1) + 2(k − 1)2 + (n− k − 1)(n− 2(k − 1))].

Note that k = n
2 for path of even order, hence, we obtain, LE

(
(Pn)P

k

)
=

2(n− 1). �

Remark 3.2. As k = n
2 for path of even order, LE

(
(Pn)P

k(i)

)
= n2−4

n
.

Theorem 3.3. Let P = {V1, V2, . . . , Vk} be a partition of cycle Cn.
(i) If any of the Vi is K1 and remaining Vj’s are all K2’s, where i 6= j. Then

LE
(
(Cn)P

k(i)

)
= 2
n

[
(n− k)2 + k2

]
,

whereas
LE

(
(Cn)P

k

)
= 4k

n
[n− 2] , for odd n ≥ 3.

(ii) If each Vi consists of K2, then

LE
(
(Cn)P

k(i)

)
= 2
n

[k2 + (n− k)2],

whereas

LE
(
(Cn)P

k

)
= (2n− 2) +

(
2− 4

n

) 2
n
− 4
n

(
n

2

)2
, for even n ≥ 4.

Proof. (i) If any of the Vi is K1 and remaining Vj’s are all K2’s, where i 6= j. Then
(Cn)P

k(i) is the union of K1,2 and (n− k − 1) K2’s. Hence, Laplacian spectrum
of (Cn)P

k(i) is {0(k − 1 times), 1, 2(n− k − 1 times), 3}. The average degree of
(Cn)P

k(i) is 2k
n

and

LE
(
(Cn)n

k(i)

)
=(k − 1)

∣∣∣∣∣−2k
n

∣∣∣∣∣+
∣∣∣∣∣1− 2k

n

∣∣∣∣∣
+ (n− k − 1)

∣∣∣∣∣2− 2k
n

∣∣∣∣∣+
∣∣∣∣∣3− 2k

n

∣∣∣∣∣
= 2
n

[
(n− k)2 + k2

]
.

Also according to Theorem 2.1, Laplacian spectrum of (Cn)P
k is {0, n− 3, n− 2

×(n − k − 1 times), n − 1, n(k − 2 times)}. The average degree of (Cn)P
k is

n(n−1)−2k
n

. Thus

LE
(
(Cn)P

k

)
=
∣∣∣∣∣n(n− 1)− 2k

n

∣∣∣∣∣+
∣∣∣∣∣(n− 3)−

(
n(n− 1)− 2k

n

)∣∣∣∣∣
+
∣∣∣∣∣(n− 1)−

(
n(n− 1)− 2k

n

)∣∣∣∣∣



306 H. J. GOWTHAM, S. D’SOUZA, AND P. G. BHAT

+ (n− k − 1)
∣∣∣∣∣(n− 2)−

(
n(n− 1)− 2k

n

)∣∣∣∣∣
+ (k − 2)

∣∣∣∣∣n−
(
n(n− 1)− 2k

n

)∣∣∣∣∣
=4k
n

[n− 2].

(ii) If each Vi consists of K2, then (Cn)P
k(i) has k components of K2. Hence, Lapla-

cian specrtum of (Cn)P
k(i) is {0(k times), 2(n− k times)}. The average degree

of (Cn)P
k(i) is 2k

n
and

LE((Cn)P
k(i)) = k

∣∣∣∣∣−2k
n

∣∣∣∣∣+ (n− k)
∣∣∣∣∣2− 2k

n

∣∣∣∣∣ = 2
n

[
k2 + (n− k)2

]
.

Also from Theorem 2.1, Laplacian spectrum of (Cn)P
k is {0, n− 2(k times),

n(n− k− 1 times)}. As (Cn)P
k(i) has k edges, (Cn)P

k has (nC2− k) edges. Also,
note that (Cn)P

k has Kn− k independent edges. For cycle of even order, k = n
2 ,

we have

LE
(
(Cn)P

k

)
= LE

(
Kbn

(
n

2

))
= (2n− 2) +

(
2− 4

n

) 2
n
− 4
n

(
n

2

)2
. �

Theorem 3.4. Let Km,n = {Um, Un} be complete bipartite graph with partition P =
{V1, V2}. Then,

(i) If < V1 >= Ks1,s2 and < V2 >= Km−s1,n−s2, where s1, s2 denote number of
vertices of V1 such that s1 vertices belong to Um and s2 vertices belong to Un

and s1 < m, s2 < n, then

LE
(
(Km,n)P

2

)
=2q + 2(n− s1 + s2)(m− s2 + s1)

× |(n− s1 + s2)− (m− s2 + s1)|
(n− s1 + s2) + (m− s2 + s1)

,

where

q =

n− s1 + s2, if n− s1 + s2 ≤ m− s2 + s1,

m− s2 + s1, if m− s2 + s1 < n− s1 + s2

and
LE

(
(Km,n)P

2(i)

)
= 2(m+ n− 2).

(ii) If |V1| = m− 1 such that all the vertices of V1 are from first partite set of Km,n

and |V2| = n+ 1, then

LE
(
(Km,n)P

2

)
= 2

(
n2 − 2n+ 2

n

)
and

LE
(
(Km,n)P

2(i)

)
= 2(m+ n− 2).
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Proof. (i) If < V1 >= Ks1,s2 and < V2 >= Km−s1,n−s2 , then

(Km,n)P
2
∼= Kn−s1+s2,m−s2+s1 .

Hence,

LE
(
(Km,n)P

2

)
=2q + 2(n− s1 + s2)(m− s2 + s1)

× |(n− s1 + s2)− (m− s2 + s1)|
(n− s1 + s2) + (m− s2 + s1)

,

where

q =

n− s1 + s2, if n− s1 + s2 ≤ m− s2 + s1,

m− s2 + s1, if m− s2 + s1 < n− s1 + s2.

Also

LE
(
(Km,n)P

2(i)

) ∼= Km ∪Kn.

Hence,

LE
(
(Km,n)P

2(i)

)
= LE(Km) + LE(Kn) = 2(m+ n− 2).

(ii) If |V1| = m − 1 such that all the vertices of V1 are from first partite set of
Km,n and |V2| = n + 1, then (Km,n)P

2
∼= K1,m+n−1. Hence LE

(
(Km,n)P

2

)
=

2
(

n2−2n+2
n

)
. Also (Km,n)P

2(i)
∼= K1 ∪Km+n−1. Thus, LE

(
(Km,n)P

2(i)

)
= 2(m+

n− 2), which is stated. �

Theorem 3.5. Let S(m,n) be double star graph with partition P = {V1, V2}, such
that the vertices of V1 and V2 are of distance two. Then

LE
(
S(m,n)P

2(i)

)
=



2n(m(2 +m− n) + 2(n− 1))
m+ n

, if m > n,

2m(n(2 + n−m) + 2(m− 1))
m+ n

, if n > m,

4(m2 + n2 − 2)
m+ n

, if m = n,

and

LE
(
S(m,n))P

2

)
= 12(n− 1)(m− 1)

m+ n
.

Proof. Let V1 and V2 be the partition of vertices of S(m,n) such that the vertices of V1
and V2 are of distance two, i.e., V1={v1, v2, v3, . . . , vm−1, u1} and V2={vm, u2, u3, . . . ,
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un−1, un}. We have

L(S(m, n)P
2(i)) =



v1 v2 v3 ... vm−1 vm u1 u2 ... un

v1 m −1 −1 · · · −1 −1 −1 0 · · · 0
v2 −1 m −1 · · · −1 −1 −1 0 · · · 0
v3 −1 −1 m · · · −1 −1 −1 0 · · · 0
...

...
...

...
. . .

...
...

...
...

. . .
...

vm−1 −1 −1 −1 · · · m −1 −1 0 . . . 0
vm −1 −1 −1 · · · −1 n + m − 1 −1 −1 · · · −1
u1 −1 −1 −1 · · · −1 −1 n + m − 1 −1 · · · −1
u2 0 0 0 · · · 0 −1 −1 n · · · −1
...

...
...

...
. . .

...
...

...
...

. . .
...

un 0 0 0 · · · 0 −1 −1 −1 · · · n


.

Consider det
(
λI − L

(
S(m,n)P

2(i)

))
.

Step 1: Replace Ri by Ri − Ri+1, for i = v1, v2, v3, . . . , vm−2, vm and replace Ri by
Ri − Ri−1, for i = un, un−1, . . . , u4, u3. Then det

(
λI − L

(
S(m,n)P

2(i)

))
is of

the form
(λ− (m+ 1))m−2(λ− (n+ 1))n−2(λ− (n+m)) det(D).

Step 2: In det(D), replace Ci by Ci−Ci−1, for i = v2, v3, v4, . . . , vm−1 and replace Ci by
Ci−Ci+1, for i = un−1, un−2, . . . , u2, u1. Then it reduces to a new determinant

det(E) =

∣∣∣∣∣∣∣∣∣
λ− 2 1 1 0

0 1 −1 0
m− 1 1 λ−m n− 1

0 1 λ− 1 λ− 2

∣∣∣∣∣∣∣∣∣ ,
i.e., det(E)= λ(λ− 2)(λ− (n+m)). The Laplacian spectrum of

(
S(m,n)P

k(i)

)
is {0, 2, n+m(2 times),m+ 1(m− 2 times), n+ 1(n− 2 times)} and the av-
erage degree of

(
S(m,n)P

2(i)

)
is n(n+1)+m(m+1)−2

m+n
. Hence,

LE
(
(S(m,n)P

2(i)

)
=n(n+ 1) +m(m+ 1)− 2

m+ n

+
∣∣∣∣∣2− n(n+ 1) +m(m+ 1)− 2

m+ n

∣∣∣∣∣
+ 2

∣∣∣∣∣(n+m)− n(n+ 1) +m(m+ 1)− 2
m+ n

∣∣∣∣∣
+ (m− 2)

∣∣∣∣∣(m+ 1)− n(n+ 1) +m(m+ 1)− 2
m+ n

∣∣∣∣∣
+ (n− 2)

∣∣∣∣∣(n+ 1)− n(n+ 1) +m(m+ 1)− 2
m+ n

∣∣∣∣∣ .
If m > n,

LE
(
S(m,n)P

2(i)

)
= 2n(m(2 +m− n) + 2(n− 1))

m+ n
.
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If n > m,

LE
(
S(m,n)P

2(i)

)
= 2m(n(2 + n−m) + 2(m− 1))

m+ n
.

If m = n,

LE
(
S(m,n)P

2(i)

)
= 4(m2 + n2 − 2)

m+ n
.

Also from Theorem 2.1, Laplacian spectrum of
(
S(m,n)P

2

)
is {0(3 times),m−

1(n− 2 times), n− 1(m− 2 times), n+m− 2}. Average degree of
(
S(m,n)P

2

)
is 2(m−1)(n−1)

4n+2 . Thus,

LE
(
S(m,n)P

2

)
=3

(
2(m− 1)(n− 1)

4n+ 2

)

+ (n− 2)
∣∣∣∣∣(m− 1)− 2(m− 1)(n− 1)

4n+ 2

∣∣∣∣∣
+ (m− 2)

∣∣∣∣∣(n− 1)− 2(m− 1)(n− 1)
4n+ 2

∣∣∣∣∣
+
∣∣∣∣∣(n+m− 2)− 2(m− 1)(n− 1)

4n+ 2

∣∣∣∣∣
=4(m2 + n2 − 2)

m+ n
. �

Theorem 3.6. Let Fn be friendship graph with partition P = {V1, V2}, such that a
partition V1 contains central vertex and remaining vertices are in a partition V2. Then

LE
(
(Fn)P

2(i)

)
= 2n(4n+ 1)

2n+ 1 and LE
(
(Fn)P

2

)
= 4n(n+ 1)

2n+ 1 .

Proof. Let V1 and V2 be the partition of vertices of Fn and a partition V1 con-
tains only the central vertex and remaining vertices are in a partition V2. We have

L((Fn)P
2(i)) =



v1 v2 v3 v4 ... vn−1 vn vn+1 ... v2n v2n+1

v1 2n −1 −1 −1 · · · −1 −1 −1 · · · −1 −1
v2 −1 2n − 1 0 −1 · · · −1 −1 −1 · · · −1 −1
v3 −1 0 2n − 1 −1 · · · −1 −1 −1 · · · −1 −1
v4 −1 −1 −1 2n − 1 · · · −1 −1 −1 · · · −1 −1
...

...
...

...
...

. . .
...

...
...

. . .
...

...
vn−1 −1 −1 −1 −1 · · · 2n − 1 0 −1 . . . −1 −1

vn −1 −1 −1 −1 · · · 0 2n − 1 −1 · · · −1 −1
vn+1 −1 −1 −1 −1 · · · −1 −1 2n − 1 · · · −1 −1

...
...

...
...

...
. . .

...
...

...
. . .

...
...

v2n −1 −1 −1 −1 · · · −1 −1 −1 · · · 2n − 1 0
v2n+1 −1 −1 −1 −1 · · · −1 −1 −1 · · · 0 2n − 1


.

Consider det
(
λI − L(Fn)P

2(i)

)
.
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Step 1: Replace Ri by Ri − Ri−1, where i = v2n+1, v2n, v2n−1, . . . , v3, v2. Then we
conclude that det

(
λI − L(Fn)P

2(i)

)
is of the form

(λ− (2n− 1))n det(D).

Step 2: In det(D), replace Ci by Ci + Ci+1, where i = v2n, v2n−1, v2n−2, . . . , v1. We get
a new determinant, let it be det(E).

Step 3: In det(E), replace Ri by Ri +Ri−1, where i = v4, v6, v8, . . . , v2n−2, v2n, then the
entries below the principal diagonal are zeros. Hence det(E) = λ(λ−(2n+1))n.

Thus,

det
(
λI − L(Fn)P

2(i)

)
= λ(λ− (2n+ 1))n(λ− (2n− 1))n.

Therefore, Laplacian spectrum of (Fn)P
2(i) is {0, 2n− 1(n times), 2n+ 1(n times)} and

the average degree of (Fn)P
2(i) is 4n2

2n+1 . Hence,

LE
(
(Fn)P

2(i)

)
= 4n2

2n+ 1 +n
∣∣∣∣∣(2n− 1)− 4n2

2n+ 1

∣∣∣∣∣+n
∣∣∣∣∣(2n− 1)− 4n2

2n+ 1

∣∣∣∣∣ = 2n(4n+ 1)
2n+ 1 .

Also from Theorem 2.1, Laplacian spectrum of (Fn)P
2 is {0(n+ 1) times, 2(n times)}.

Average degree of (Fn)P
2 is 2n

2n+1 . Thus,

LE
(
(Fn)P

2

)
= 2n

2n+ 1 + n
∣∣∣∣2− 2n

2n+ 1

∣∣∣∣ = 4n(n+ 1)
2n+ 1 . �

Theorem 3.7. Let Fn be friendship graph with partition P = {V1, V2}, such that a
partition V1 contains one triangle and remaining vertices are in a partition V2. Then

LE
(
(Fn)P

2(i)

)
= 24(n2 − 2n+ 1)

2n+ 1

and

LE
(
(Fn)P

2

)
=


4(3n2 − n+ 1)

2n+ 1 , if n = 3,
4(4n2 − 6n+ 5)

2n+ 1 , if n > 3.

Proof. If V1 and V2 be the partition of Fn, such that a partition V1 contains one
triangle and remaining vertices are in a partition V2. Then
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L((Fn)P
2(i)) =



v1 v2 v3 v4 v5 ... vn−1 vn vn+1 ... v2n+1

v1 2n − 2 0 0 −1 −1 · · · −1 −1 −1 · · · −1
v2 0 0 0 0 0 · · · 0 0 0 · · · 0
v3 0 0 0 0 0 · · · 0 0 0 · · · 0
v4 −1 0 0 2n − 3 −1 · · · −1 −1 −1 · · · −1
v5 −1 0 0 0 −1 · · · −1 −1 −1 · · · −1
v6 −1 0 0 −1 2n − 3 · · · −1 −1 −1 · · · −1
...

...
...

...
...

...
. . .

...
...

...
. . .

...
vn−1 −1 0 0 −1 −1 · · · 2n − 3 0 −1 . . . −1

vn −1 0 0 −1 −1 · · · 0 2n − 3 −1 · · · −1
vn+1 −1 0 0 −1 −1 · · · −1 −1 2n − 3 · · · −1

...
...

...
...

...
...

. . .
...

...
...

. . .
...

v2n −1 0 0 −1 −1 · · · −1 −1 −1 · · · 0
v2n+1 −1 0 0 −1 −1 · · · −1 −1 −1 · · · 2n − 3



.

Consider det
(
λI − L(Fn)P

2(i)

)
.

Step 1: Replace Ri by Ri−Ri−1, where i = v2n+1, v2n, v2n−1, . . . , v5 and replace Rv4 by
Rv4 −Rv1 . Then det

(
λI − L(Fn)P

2(i)

)
is of the form

λ2(λ− (2n− 3))n−1 det(D).

Step 2: In det(D), replace Ci by Ci + Ci+1, where i = v2n, v2n−1, v2n−2, . . . , v4. We get
a new determinant, let it be det(E).

Step 3: In det(E), replace Ri by Ri + Ri−1, where i = v2n, v2n−2, v2n−4, . . . , v6 and
simplifying we get,

det(E) = (λ− (2n− 1))n−2

∣∣∣∣∣∣∣∣∣
λ− (2n− 2) 0 0 2n− 2

0 1 0 0
0 0 1 0

2n− λ− 1 0 0 λ− 2n+ 1

∣∣∣∣∣∣∣∣∣
= (λ− (2n− 1))n−2λ(λ− (2n− 1)).

Thus,
det

(
λI − L

(
(Fn)P

2(i)

))
= λ3(λ− (2n− 1))n−1(λ− (2n− 3))n−1.

Therefore, the Laplacian spectrum of (Fn)P
2(i) is {0(3 times), 2n− 1(n− 1 times), 2n−

3(n− 1 times)} and the average degree of (Fn)P
2(i) is

4(n2−2n+1)
2n+1 . Hence,

LE
(
(Fn)P

2(i)

)
=3

(
4(n2 − 2n+ 1)

2n+ 1

)
+ (n− 1)

∣∣∣∣∣(2n− 1)− 4(n2 − 2n+ 1)
2n+ 1

∣∣∣∣∣
+ (n− 1)

∣∣∣∣∣(2n− 3)− 4(n2 − 2n+ 1)
2n+ 1

∣∣∣∣∣
=24(n2 − 2n+ 1)

2n+ 1 .

Also from Theorem 2.1, Laplacian spectrum of (Fn)P
2 is {0, 2(n − 1 times), 4(n −

1 times), 2n+ 1(2 times)}. Average degree of (Fn)P
2 is 10n−4

2n+1 .
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If n = 3, then

LE
(
(Fn)P

2

)
=10n− 4

2n+ 1 + (n− 1)
∣∣∣∣2− 10n− 4

2n+ 1

∣∣∣∣+ (n− 1)
∣∣∣∣4− 10n− 4

2n+ 1

∣∣∣∣
+ 2

∣∣∣∣(2n+ 1)− 10n− 4
2n+ 1

∣∣∣∣
=4(3n2 − n+ 1)

2n+ 1 .

If n > 3,

LE
(
(Fn)P

2

)
= 4(4n2 − 6n+ 5)

2n+ 1 . �

Theorem 3.8. Let Kn×2 be cocktail party graph with vertex set V = {v1, v2, . . . , vn, u1,
u2, . . . , un} and partition P = {V1, V2}, such that V1 contains vi vertices, and remain-
ing ui vertices are in V2, where i = 1, 2, 3, . . . , n. Then

LE
(
(Kn×2)P

2(i)

)
= LE

(
(Kn×2)P

2

)
= 4(n− 1).

Proof. Let Kn×2 be a cocktail party graph with vertex set V = {v1, v2, · · · , vn, u1, u2,
· · · , un} and P = {V1, V2} be a partition of vertices ofKn×2 such that V1 = {v1, . . . , vn}
and V2={u1, u2, u3, . . . , un}. We have

L(Kn×2)P
2(i) =

[
(n− 1)In (I − J)n

(I − J)n (n− 1)In

]
.

It is of the form
[
A0 A1
A1 A0

]
. Hence, from Lemma 2.1, we get, Laplacian spectrum of

(Kn×2)P
2(i) is {0, 2n− 2, n(n− 1 times), n− 2(n− 1 times)} and the average degree of

(Kn×2)P
2(i) is n2−1

n
. Hence,

LE
(
(Kn×2)P

2(i)

)
=n

2 − 1
n

+
∣∣∣∣∣(2n− 2)− n2 − 1

n

∣∣∣∣∣+ (n− 1)
∣∣∣∣∣n− n2 − 1

n

∣∣∣∣∣
+ (n− 1)

∣∣∣∣∣(n− 2)− n2 − 1
n

∣∣∣∣∣
=4(n− 1).

Also from Theorem 2.1, Laplacian spectrum of (Kn×2)P
2 is {0, 2, n(n − 1 times), n +

2(n− 1 times)}. Average degree of (Kn×2)P
2 is n. Thus,

LE
(
(Kn×2)P

2

)
= n+ |2− n|+ (n− 1) |n− n|+ (n− 1) |(n+ 2)− n| = 4(n− 1). �

Theorem 3.9. For cocktail graph K2n×2 with a partition P = {V1, V2, . . . , V2n}, such
that Vi consists of K2 in respective partition, where i = 1, 2, . . . , 2n. Then

LE
(
(K2n×2)P

k(i)

)
= 10n− 6 and LE

(
(K2n×2)P

k

)
= 4n.
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Proof. Let P = {V1, V2, . . . , V2n} be a partition of cocktail party graph K2n×2, such
that Vi consists of K2 in respective partition, where i = 1, 2, . . . , 2n. Then, we have

L((Kn×2)P
k(i)) =



v1 v2 v3 ... v2n−1 v2n u1 u2 ... u2n

v1 4n − 3 0 −1 · · · −1 −1 0 −1 · · · −1
v2 0 4n − 3 −1 · · · −1 −1 −1 0 · · · −1
v3 −1 −1 4n − 3 · · · −1 −1 −1 −1 · · · −1
v4 −1 −1 0 · · · −1 −1 −1 −1 · · · −1
...

...
...

...
. . .

...
...

...
...

. . .
...

v2n−1 −1 −1 −1 · · · 4n − 3 0 −1 −1 . . . −1
v2n −1 −1 −1 · · · 0 4n − 3 −1 −1 · · · 0
u1 0 −1 −1 · · · −1 −1 4n − 3 0 · · · −1
u2 −1 0 −1 · · · −1 −1 0 4n − 3 · · · −1
...

...
...

...
. . .

...
...

...
...

. . .
...

u2n−1 −1 −1 −1 · · · 0 −1 −1 −1 · · · 0
u2n −1 −1 −1 · · · −1 0 −1 −1 · · · 4n − 3


.

It is of the form
[
A0 A1
A1 A0

]
. Hence, from Lemma 2.1, we get Laplacian spectrum of

(Kn×2)P
k(i) is {0, 4n(n− 1 times), 4n− 2(2n times) , 4n− 4(n times)} and the average

degree of (Kn×2)P
k(i) is 4n− 3. Hence,

LE
(
(K2n×2)P

k(i)

)
=(4n− 3) + (n− 1) |4n− (4n− 3)|+ 2n |(4n− 2)− (4n− 3)|

+ n |(4n− 4)− (4n− 3)|
=10n− 6.

Also from Theorem 2.1, Laplacian spectrum of (K2n×2)P
k is {0(n times), 2(2n times),

4(n times)}. Average degree of (K2n×2)P
k is 2. Thus,

LE
(
(K2n×2)P

k

)
= 2n+ 2n |2− 2|+ n |4− 2| = 4n. �

Theorem 3.10. For cocktail graph K(2n+1)×2 with a partition P = {V1, V2, . . . , V2n+2},
such that Vi consists of K2 in respective partition, where i = 1, 2, . . . , 2n and Vj consists
of K1 in respective partition, where j = 1, 2. Then

LE
(
(K(2n+1)×2)P

k(i)

)
= 4n(5n+ 2)

2n+ 1 and LE
(
(K(2n+1)×2)P

k

)
= |8n

2 − 26n− 2|
2n+ 1 .

Proof. For the given partition

L((K(2n+1)×2)P
k(i)) =



v1 v2 v3 ... v2n+1 u1 u2 ... u2n u2n

v1 4n − 1 0 −1 · · · −1 0 −1 · · · −1 −1
v2 0 4n − 1 −1 · · · −1 −1 0 · · · −1 −1
v3 −1 −1 4n − 1 · · · −1 −1 −1 · · · −1 −1
v4 −1 −1 0 · · · −1 −1 −1 · · · −1 −1
...

...
...

...
. . .

...
...

...
. . .

...
...

v2n −1 −1 −1 · · · −1 −1 −1 . . . 0 −1
v2n+1 −1 −1 −1 · · · 4n −1 −1 · · · −1 0

u1 0 −1 −1 · · · −1 4n − 1 0 · · · −1 −1
u2 −1 0 −1 · · · −1 0 4n − 1 · · · −1 −1
...

...
...

...
. . .

...
...

...
. . .

...
...

u2n −1 −1 −1 · · · −1 −1 −1 · · · 4n − 1 −1
u2n+1 −1 −1 −1 · · · 0 −1 −1 · · · −1 4n


.
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It is of the form
[
A0 A1
A1 A0

]
. Hence, from Lemma 2.1, we get Laplacian Spectrum

of (K(2n+1)×2)P
k(i) is {0, 4n(2n+ 1 times), 4n− 2(n times), 4n+ 2(n times)} and the

average degree of (K(2n+1)×2)P
k(i) is

4(4n2+n)
4n+2 . Hence,

LE
(
(K(2n+1)×2)P

k(i)

)
=4(4n2 + n)

4n+ 2 + (2n+ 1)
∣∣∣∣∣4n− 4(4n2 + n)

4n+ 2

∣∣∣∣∣
+ n

∣∣∣∣∣(4n− 2)− 4(4n2 + n)
4n+ 2

∣∣∣∣∣+ n

∣∣∣∣∣(4n+ 2)− 4(4n2 + n)
4n+ 2

∣∣∣∣∣
=4n(5n+ 2)

2n+ 1 .

Also from Theorem 2.1, Laplacian spectrum of (K(2n+1)×2)P
k is {0(n+ 1 times), 2(2n+

1 times), 4(n times)}. Average degree of (K(2n+1)×2)P
k is 4n+1

2n+1 . Thus,

LE
(
(K(2n+1)×2)P

k

)
=n+ 1

(4n+ 1
2n+ 1

)
+ (2n+ 1)

∣∣∣∣2− 4n+ 1
2n+ 1

∣∣∣∣+ n
∣∣∣∣4− 4n+ 1

2n+ 1

∣∣∣∣
= |8n

2 − 26n− 2|
2n+ 1 . �
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