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PASSAGE OF PROPERTY (aw) FROM TWO OPERATORS TO
THEIR TENSOR PRODUCT

M. H. M. RASHID!

ABSTRACT. A Banach space operator S satisfies property (aw) if o(S5) \ 0,,(5) =
E2(S), where E9(S) is the set of all isolated point in the approximate point spectrum
which are eigenvalues of finite multiplicity. Property (aw) does not transfer from
operators A and B to their tensor product A ® B, so we give necessary and/or
sufficient conditions ensuring the passage of property (aw) from A and B to A® B.
Perturbations by Riesz operators are considered.

1. INTRODUCTION

For a bounded linear operator S € Z(X), let 0(5), 0,(5), 0,(S) denote, respectively,
the spectrum, the point spectrum and the approximate point spectrum of S and if G
is a subset of C, then G%°, G denote, the isolated points of G’ and the accumulation
points of G. Let a(S) and $(S) denote the nullity and the deficiency of S, defined
by «(S) = dimker(S) and 5(S) = codim R(S). If the range R(S) of S is closed and
a(S) < oo (resp. B(S) < 00), then S is called an upper semi-Fredholm (resp. a lower
semi-Fredholm) operator. If S € Z(X) is either upper or lower semi-Fredholm, then
S is called a semi-Fredholm operator, and ind(S), the index of S, is then defined by
ind(S) = a(S)—5(S). If both a(S) and B(S) are finite, then S is a Fredholm operator.
The ascent, denoted asc(S), and the descent, denoted dsc(S), of S are given by
asc(S) = inf {n € N : ker(S™) = ker(S™*1)}, dsc(S) = inf {n € N: R(S") = R(S"1)}
(where the infimum is taken over the set of non-negative integers); if no such integer
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n exists, then asc(S) = oo, respectively dsc(S) = oo). Let

{N€0a(S): X € s, (S) or asce(S — ) = oo},
E°(S) = {A € o™(5): 0 <a(S—\) < oo},

{Xeai(S):0<a(S—)) < oo},

{ (S): A€ D(S),as¢(S — A) < o0},

Let 7(S) be the set of all poles of the resolvent of S and 7°(T') is the set of all poles
of the resolvent of finite rank, that is, 7°(S) = {\ € 7(9) : a(S — \) < co}. Let

ow(S) ={A€a(S):S—A¢ ®(S) or ind(S—\) #0},
op(S) ={A€a(S):S—A¢ D(S) or asc(S — ) #dsc(S—A)} and
oap(S) ={A € 0,(S) : S — A'is not Fredholm or asc(T — \) = oo},

denote, respectively, the Weyl spectrum, the Browder spectrum and the essential
approximate Browder spectrum of 7. Now, let A(S) = o(5) \ 0, (S) and A,(S) =
04(S) \ 0aw(S). Then S satisfies Browder’s theorem (in symbol, S € B) if 0,(5) =
0, (S), or equivalently, A(S) = 7°(S). We say that S € .Z(X) satisfies a-Browder’s
theorem (in symbol, S € aB) if 6,4(S) = 04, (S), or equivalently, A,(S) = 72(S). S
satisfies Weyl’s theorem (in symbol, S € W) if A(S) = E°(S) and S satisfies a-Weyl’s
theorem (in symbol, S € aW) if A,(S) = E°(S).

Operators satisfying property (aw) have been studied in a number of papers, see [4,5]
for additional references. It is known that an operator S satisfying property (aw)
satisfies Browder’s theorem, but the reverse implication is generally false; property
(aw) neither implies nor is implied by a-Weyl’s theorem. Following [14], we say that
T € Z(X) satisfies property (w) if Ay(T) = 0,(T) \ Osp- (T) = Eo(T). The property
(w) has been studied in [2,14]. In [2, Theorem 2.8], it is shown that property (w)
implies Weyl’s theorem, but the converse is not true in general. According to [4], an
operator T' € Z(X) is said to satisfy property (b) if A (T) = mo(T). It is shown
in [4, Theorem 2.13] that an operator satisfies property (w) satisfies property (b)
but the converse is not true in general. An operator S € Z(X) is a-isoloid (resp.
isoloid) if points A € 0%°(S) (resp. A € 0%*°(9)) are eigenvalues of the operator. If S

is finitely a-isoloid (i.e., if A € ¢%*°(S) implies A is a finite multiplicity eigenvalue of
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S), R € Z(X) is a Riesz operator which commutes with S, then S satisfies Weyl’s
theorem implies S + R satisfies Weyl’s theorem [12, Theorem 2.7].
Given Banach space operators A € Z(X) and B € Z(Y), write

for the operator induced on the (algebraic completion of the) tensor product, endowed
with a reasonable cross norm, of X and Y. Property (aw) does not transfer from A and
B to A® B: a necessary and sufficient condition for property (aw) to transfer from
A and B to A® B is that A ® B satisfies the Weyl spectrum equality ¢,(A ® B) =
0(A)o,(B) Uoy,(A)o(B). We say that S has the single valued extension property, or
SVEP, at A € C if for every open neighborhood U of A, the only analytic solution f
to the equation (S — u)f(u) = 0 for all p € U is the constant function f = 0; we say
that S has SVEP if S has a SVEP at every A € C. It is well known that finite ascent
implies SVEP; also, an operator has SVEP at every isolated point of its spectrum
(as well as at every isolated point of its approximate point spectrum). An operator
S € Z(X) is polaroid if every A € 6°*°(9) is a pole of the resolvent operator (S — )71
If S is polaroid and S* (resp. S) has SVEP, then S (resp. S*) satisfies property (aw).
This property extends to tensor products A ® B: if A and B are polaroid, and if A*
and B* (resp. A and B) have SVEP, then A® B (resp. A*® B*) satisfies property (aw).
If @ € Z(X) and @y € Z(Y) are quasinilpotent operators such that ¢); commutes
with A and @)y commutes with B, then A ® B satisfies property (aw) if and only if
(A+ Q1) ® (B + Q) satisfies property (aw). For finitely a-isoloid A and B which
satisfy property (aw), and Riesz operators Ry and Ry such that A commutes with Ry,
B commutes with 0(A+ R;) = 0(A) and (B + Ry) = 0(B), A® B satisfies property
(aw) implies (A + R;) ® (B + Ry) satisfies property (aw) if and only if Browder’s
theorem transfers from A+ Ry and B + Ry to (A+ Ry) ® (B + Ra).

2. PROPERTY (aw) AND TENSOR PRODUCT

The problem of transferring generalized Weyl theorem, property (gw) and property
(b) from operators A and B to their tensor product A ® B was considered in [15-17].
The main objective of this section is to study the transfer of property (aw) from a
bounded linear operator A acting on a Banach space X and a bounded linear operator
B acting on a Banach space Y to their tensor product A ® B.

Let

0s(S) ={A € c(S5): S — X is not surjective},
os(S) = {X € 05(S) : S — X is not lower semi-Fredholm or dsc(S — A\) = oo} and
Tsw(S) = {\ € 04(5) : S — X is not lower semi-Fredholm or ind(S — \) < 0},
denote, respectively, the surjectivity spectrum, the Browder essential surjectivity

spectrum and the Weyl essential surjectivity spectrum of S € Z(X). Then S satisfies
s-Browder’s theorem if 04(S) = 04, (5). Apparently, S satisfies s-Browder’s theorem
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if and only if S* satisfies a-Browder’s theorem. A necessary and sufficient condition
for S to satisfy a-Browder’s theorem is that S has SVEP at every A € A,(S) [8,
Lemma 2.8]; by duality, S satisfies s-Browder’s theorem if and only if S* has SVEP at
every A € 04(5) \ 05w (S). More generally, if either of S and S* has SVEP, then S and
S* satisfy both a-Browder’s theorem and s-Browder’s theorem. Either of a-Browder’s
theorem and a-Browder’s theorem implies Browder’s theorem, but the converse is
false. a-Browder’s theorem fails to transfer from A and B to A ® B [9, Example 1].
Lemma 2.1. [1, Theorem 3.23] If S € Z(S) has SVEP at A € o(S)\osp, (S). Then
A € 0i5°(S) and asc(S — \) < co.
Lemma 2.2. [7] Let A € Z(X) and B € Z(Y). Then

(a) 0,(A® B) = 0,(A)o(B), where o, = 0 or o,

(b) osp, (A® B) = 0sp,(A)0a(B) Uoa(A)osr, (B).

Lemma 2.3. [9] Let A € Z(X) and B € Z(Y), then
0,°(A® B) € 0,°(A)o,(B) U {0}

Lemma 2.4. [11] Let A € Z(X) and B € f(%{') Then
(a) 0p(A)oy(B) C 0,(A® B);
(b) 0w(A®B) C 0(A)oy,(B)Uo,(A)o(B) C o(A)oy(B)Uoy(A)a(B) = op(A® B);
(c) 0¢ 0(A® B)\ 0u(A® B);
(d) If A® B € B, then 0,(A® B) = 0(A)o,(B) Uo,(A)o(B).
Example 2.1. Let U € Z({?) denote the forward unilateral shift, and let A, B €
ZL(0* ® %) be the operators

A:(l—UU*)@@U—l), B:—(1—UU*)(;U*—1>.

Then A and B* have SVEP, so A, B € aBB. Furthermore, 1 € 0(A® B) \ 0,(A ® B).
However, since

o(A® B) = {{0,1} U {;D— 1}} . {{o,—1} U {;Jm 1}}

where D is the closed unit disc in the complex plane C, 1 € 0°“(A® B) = 1 €
0p(A® B). Then A® B ¢ B, and hence A ® B does not obey property (aw).

Lemma 2.5. Suppose that A, B and A ® B satisfy property (aw). If p € w°(A) and
v € m°(B), then A = uv € 7°(A ® B).
Proof. Suppose that p € o(A) \ 0,(A), v € o(B) \ 0,(B) and 0,(A ® B) =
0(A)oy,(B)Uoy,(A)o(B). Then A= pv € 0(A® B) \ 0p(A® B) =n°(A® B). O
Theorem 2.1. If A € Z(X) and B € £ (Y) are a-isoloid operators which satisfy
property (aw), then the following conditions are equivalent.

(i) A® B satisfies property (aw).

(ii) The Weyl spectrum equality o,(A® B) = 0(A)o,(B)Uo,(A)o(B) is satisfied.

(iii) A® B satisfies Browder’s theorem.
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Proof. Since property (aw) implies Browder’s theorem, the equivalence (ii)<(iii) and
(i)=-(iii) follows from [9, Theorem 3]. We prove (iii)=-(i). The hypothesis A and B
satisfy property (aw) implies

o(A)\ 0w (A) = E(A), o(B)\ 0u(B) = E,(B).

Observe that (iii) implies Browder’s theorem transfers from A and B to A ® B:
hence 0(A ® B) \ 0,(A ® B) = 7°(A® B). Since 7°(A ® B) C E°(A ® B), we
have to prove E°(A® B) C m(A® B). Let A € E2(A® B). Then 0 # X and
there exist p € 0%*°(A) and v € 0%°(B) such that A = uv. By hypotheses, A and
B are a-isoloid, hence p is an eigenvalue of A and v is an eigenvalue of B. Since

A®B—(pl@vl)=(A—p) @B+ u(lI ® (B —v)), if either of a(A — ) or a(B —v)
is infinite then so is (A ® B — (ul ® vI)). Hence p € EY(A) = o(A) \ 0,(A)
and v € E)(B) = o(B) \ 0,(B), consequently, A € 0(A ® B) \ 0,(A ® B); hence
EXA® B) C 0(A® B) \ 0,(A® B). Conversely, if A € 0(A® B) \ 0,(A® B),
then by Lemma 2.4, we have A # 0, and there exist pu € o(A) \ 0,(4) = EX(A)
and v € o(B) \ 0,(B) = E?(B) such that A = uv. So, A € E%(A ® B). Therefore,
0(A® B)\ 0,(A® B) = EJ(A® B). O

The following example shows that property (aw) does not transfer from A € Z(X)
and B € Z(Y) to A® B.

Example 2.2. Let Q € £ (%) be an injective quasi-nilpotent, and let
A=B=(I+Q)dadpfeZ(*)dCaC,

where af = 1 # . Then

o(A) = o(B) ={L,a, B}, 0u(A) = 0u(B) = {1}, o(A® B) = {1, 8,0% 5*}.
The operators A, B have SVEP, hence Browder’s theorem transfers from A and B to
A ® B, which implies that

cw(A® B)={1,0,8}, 1¢ 0(A® B)\0u(A® B) and 1 = aff € E°(A® B).
Note that the operators A and B are not a-isoloid.
Theorem 2.2. Suppose that A € £ (X) and B € Z(Y) are a-isoloid operators which

satisfy property (aw). If 0,(A® B) = 0(A)o,(B) Uo,(A)o(B), then A® B satisfies
property (aw).

Proof. The hypotheses imply that A® B € B, that is, 0(A® B)\o,(A®B) = 1°(A®B).
Since ™(A® B) C E?(A® B), we have to prove that E(A® B) C 7°(A® B). Let A €
E%(A® B). Then (0 #) A = uv for some pu € 0%°(A) and v € ¢*°(B). The operators

A and B being a-isoloid, it follows (from A € E’(A ® B)) that u € E°(A) = n°(A)
and v € E%(B) = 7%(B). So it follows from Lemma 2.5 that A\ € 7°(A ® B). O

Definition 2.1. An operator 7' € .Z(X) is said to be polaroid if isoo(T") is empty or
every isolated point of o(7') is a pole of the resolvent.
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Definition 2.2. An operator 7' € .Z(X) is said to be a-polaroid if isoo,(7") is empty
or every isolated point of o,(T) is a pole of the resolvent.

Clearly,
T a-polaroid = T polaroid.

Observe that if 7* has SVEP then o(T) = 0,(T), see [1, Corollary 2.45], so that
T has SVEP and T polaroid = T a-polaroid.

If T is polaroid then 7™ is polaroid [3]. Moreover, if 7" has SVEP then o(T") = o,(T%),
see [1, Corollary 2.45|, hence

T has SVEP and T polaroid = T™ a-polaroid.
Lemma 2.6. If A € Z(X) and B € Z(Y) are a-polaroid, then A ® B is a-polaroid.

Proof. If 0'*°(A) = 0°(B) = (), then 0%°(A ® B) = ). Observe also that if either
of o%°(A) or o*°(B) is the empty set, say c/*°(A) = (), then 0%°(A ® B) C {0}.
If 0*°(A® B) = {0}, then 0 € UZSO(B). But then 0 € w(B), which implies that
0€m(A®B). Let A € 0%°(A® B) be such that A = pv, u € 0%°(A) and v € o°(B).
Then p € 7(A) and v € 7(B). Hence, we have A € 7(A ® B). O
Theorem 2.3. Suppose that the operators A € £ (X) and B € Z(Y) are polaroid.

(i) If A* and B* have SVEP, then A ® B satisfies property (aw).

(ii) If A and B have SVEP, then A* @ B* satisfies property (aw).
Proof. (i) The hypothesis A* and B* have SVEP implies

0(A) = 04(A), 0(B) = 04(B), 0auw(A) = 0u(A),, 0au(B) = 0u(B)
and
A*, B*, and A* ® B* satisfy s-Browder’s theorem.
Thus s-Browder’s theorem and Browder’s theorem transform from A* and B* to
A* @ B*. Hence
Oaw(A® B) = 04,(A* @ B*) = 04(A")05(B*) U 05 (A% )05 (B¥)
= 04(A)04u(B) U 0u(A)oy(B) = 0(A)o,(B)Uao,(A)a(B)

and
0w(A® B) = 0,(A"® B*) = 0(A")0w(B*) Uo,(A")o(B")
= 0(A)ow(B) Uow(A)o(B).
Consequently,
Oaw(A® B) = 0,(A® B).
Already,

0,(A® B) =0,(A)o,(B) =c(A)o(B) =0c(A® B).
Since A and B are a-polaroid, then A ® B is a-polaroid by Lemma 2.6. Combining
this with A ® B satisfies Browder’s theorem, it follows that A ® B satisfies property
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(aw). That is, 0(A® B) \ 0,(A® B) = E°(A® B).

(ii) In this case 0(A) = 0,(A%), 0(B) = 0,(B*), 0w(A*) = 04u(A*), 0w(B*) = 0aw(B*),
o(A*® B*) = 0,(A*® B*), a-polaroid property transfer from A and B to A*® B* and
both Browder’s theorem and s-Browder’s theorem transfer from A and B to A ® B.
Hence

Oaw(A* @ B*) = 05,(A® B) = 05(A)05u,(B) U 0gy,(A)os(B)

— 0u(A)(B) U 0 A%)00(B") = 0(A)3(B) U (A)o(B)

= 0,(A® B) =0,(A" ® B").
Thus, since A* ® B* is a-polaroid and A ® B) satisfies Browder’s theorem imply
A* ® B* satisfy Browder’s theorem,

o(A*® B*)\ 0,(A* ® B*) = 1°(A* ® B*) = EY(A* ® B¥),
that is, A* ® B* satisfies property (aw). O
A part of an operator is its restriction to an invariant subspace. S € Z(X) is said

to be hereditarily polaroid, S € HP, if every part of S is polaroid. HP operators
have SVEP [8, Lemma 2.8].

Corollary 2.1. Suppose that the operators A € £ (X) and B € Z(Y) are HP, then
A* @ B* satisfies property (aw).

The class of HP operators is substantial: it includes in particular subscalar opera-
tors and paranormal operators (see [8] for further examples).

3. PERTURBATIONS

Let [A, Q] = AQ — QA denote the commutator of the operators A and Q. If Q; €
Z(X) and Q2 € Z(Y) are quasinilpotent operators such that [Q, A] = [Q2, B] =0
for some operators A € Z(X) and B € Z(Y), then

(A+ Q1) ®(B+Q2) =(A®B) +Q,
where Q = Q1 @ B+ AR Qy+ Q1 ® Q2 € Z(X®Y) is a quasinilpotent operator. If
in the above, Q1 and @ are nilpotent then (A + Q1) ® (B + Q2) is the perturbation
of A® B by a commuting nilpotent operator.

A bounded operator S on a Banach space X is called finite a-isoloid if every isolated
point of ¢,(5) is an eigenvalue of S of finite multiplicity.

Theorem 3.1. Let Q1 € Z(X) and Q2 € ZL(Y) be quasinilpotent operators such that
[Q1, A] = [Qa, B] = 0 for some operators A € L (X) and B € Z(Y). If A® B is
finitely a-isoloid, then A ® B satisfies property (aw) implies (A + Q1) @ (B + Q2)
satisfies property (aw).

Proof. Start by recalling that o((A+ Q1) ® (B + Q2)) = 0(A® B), 0,((A+ Q1) ®
(B+Q2) = 0a(A® B), 0au((A+ Q1) ® (B+ Q2)) = 0aw(A® B), 7°(A® B) =
70((A+ Q) ® (B + @Q3)) and that the perturbation of an operator by a commuting
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quasinilpotent has SVEP if and only if the operator has SVEP. If A ® B satisfies
property (aw), then

E°(A® B) =0(A® B)\ 0,(A® B)
=0(A+Q1)®(B+Q2)\ouw((A+ Q1) ® (B+ Q2)).

We prove that EX(A® B) = E°((A+Q1)® (B+Qy)). Observe that if A € 0*°(A® B),
then A*® B* has SVEP at A, equivalently, (A*+ Q7) ® (B*+ Q%) has SVEP at A. Let
A€ EYA®B), then A € 0((A+ Q1) @ (B+ Q2)) \ 0u((A+ Q1) ® (B + Q5)). Since
(A4 Q1)* @ (B + Q2)* has SVEP at ), it follows that A\ ¢ 0,((A+ Q1) ® (B + Q3))
and A € 0%°((A+ Q) ® (B+ Q). Thus A € E°((A+ Q1) ® (B + Q,)). Hence
EY(A®B) C E%((A4+Q1)®(B+Q3)). Conversely, if A € EY((A+Q;)®(B+Q2)), then
A € 0°(A® B), and this, since A® B is finitely a-isoloid, implies that A € E°(A® B).
Therefore, EX((A+ Q1) ® (B+ Q1)) C E°(A ® B). So, the proof of the theorem is
achieved. O

Corollary 3.1. If Q; € Z(X) and Q2 € Z(Y) are nilpotent operators such that
(Q1,A] = [Q2, B] = 0 for some operators A € £ (X) and B € Z(Y), then A® B
satisfies property (aw) implies (A + Q1) ®@ (B + Q) satisfies property (aw).

The situation for perturbations by commuting Riesz operators is a bit more delicate.
The equality 0,(T) = 0,(T + R) does not always hold for operators T, R € .Z(X)
such that R is Riesz and [T, R] = 0; the tensor product 7'® R is not a Riesz operator
(the Fredholm spectrum o.(7T ® R) = 0(T)o.(R) Uoc.(T)o(R) = 0.(T)o(R) = {0} for
a particular choice of T" only). However, o, (also, ;) is stable under perturbation by
commuting Riesz operators [18], and so T satisfies Browder’s theorem if and only if
T + R satisfies Browder’s theorem. Thus, if 0(7T") = o(T + R) for a certain choice of
operators T, R € Z(X) (such that R is Riesz and [T, R] = 0), then

7(T) = o(T)\ 0,(T) = (T + R) \ 0(T + R) = (T + R),
where 7%(T) is the set of A € ¢°(T') which are finite rank poles of the resolvent of T
If we now suppose additionally that T satisfies property (aw), then
EXT) =0(T)\ 0(T) = o(T + R)\ 0,(T + R)
and a necessary and sufficient condition for 7'+ R to satisfy property (aw) is that

EX(T + R) = EX(T). One such condition, namely T is finitely a-isoloid.

Proposition 3.1. Let T, R € £ (X), where R is Riesz, [T, R| =0 and T is finitely
a-isoloid. Then T satisfies property (aw) implies T + R satisfies property (aw).

Proof. Since Browder’s theorem holds for 7'+ R by Lemma 2.2 of [12], it suffices to
show that 7%(T'+ R) = EX(T + R). If T — ) is invertible, then T+ R — X is a Fredholm,
and hence A € E°(T + R). Suppose A € o(T), then by Proposition 2.4 of [13] it
follows that A is an isolated point of o(7"), and since by assumption 7" is finite-isoloid,
we have A € E°(T'). But property (aw) holds for T implies that E%(T) N o, (T) = 0.
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Therefore, T — X is Fredholm and hence so is T+ R — A. Thus, A € 7°(T + R). The
other inclusion is trivial, therefore T'+ R satisfies property (aw). O

Theorem 3.2. Let A € L (X) and B € Z(Y) be finitely a-isoloid operators which
satisfy property (aw). If Ry € ZL(X) and Ry € L (Y) are Riesz operators such that
[A,R1] = [B, R3] =0, 0(A+ Ry) = 0(A) and 0(B+ Ry) = o(B), then A® B satisfies
property (aw) implies (A + Ry) @ (B + Ry) satisfies property (aw) if and only if
Browder’s theorem transforms from A+ Ry and B + Ry to their tensor product.

Proof. The hypotheses imply (by Proposition 3.1) that both A+ R; and B+ R; satisfy
property (aw). Suppose that A® B satisfies property (aw). Then 0(A® B) \ 04w(A®
B) = 1°(A® B). Evidently A® B satisfies Browder’s theorem, and so the hypothesis
A and B satisfy property (aw) implies that Browder’s theorem transfers from A and
B to A® B. Furthermore, since 0(A + R;) = 0(A), (B + Ry) = o(B) and g, is
stable under perturbations by commuting Riesz operators,

ow(A® B) =0(A)oy(B)Uao,(A)o(B)
= O'(A + Rl)O'w(B + RQ) U O'w<A + R1)0'<B + Rz)

Suppose now that Browder’s theorem transfers from A+ R; and B+ Ry to (A+ R;) ®
(B + Ry). Then
ow(A® B) =0,((A+ R1) ® (B + Ry))
and
EJ(A® B)=0((A+ R1) ® (B+ Ry)) \ 0w((A+ R1) ® (B+ Ry)).

Let A € E°(A® B). Then X # 0, and hence there exist p € o(A+ Ry) \ 0,(A+ Ry)
and v € 0(B + Ry) \ 0,(B + Ry) such that A = uv. As observed above, both A + R,
and B + Ry satisfy property (aw); hence u € E°(A+ Ry) and v € E%(B + Ry). This,
since A € 6(A® B) = 0((A+ R1) ® (B + Ry)), implies A € EX((A+ Ry) @ (B+ Ry)).
Conversely, if A € EX((A+ Ry) ® (B + Ry)), then A # 0 and there exist u €
E%(A+ Ry) C 0°(A) and v € E%(B + Ry) C ¢%*°(B) such that A = pv. Recall
that EX((A+ R1) ® (B+ Ry)) C E2(A+ Ry)EY(B + R,). Since A and B are finite
a-isoloid, u € E°(A) and v € E°(B). Hence, since o((A+ R;)® (B+ Ry)) = c(A® B),
A= uv € E°(A® B). To complete the proof, we observe that if the implication of
the statement of the theorem holds, then (necessarily) (A + R;) ® (B + Rs) satisfies
Browder’s theorem. This, since A+ Ry and B + R, satisfy Browder’s theorem, implies
Browder’s theorem transfers from A+ Ry and B+ Ry to (A+ Ry) ® (B+ Rp). O
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