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PASSAGE OF PROPERTY (aw) FROM TWO OPERATORS TO
THEIR TENSOR PRODUCT

M. H. M. RASHID1

Abstract. A Banach space operator S satisfies property (aw) if σ(S) \ σw(S) =
E0

a(S), where E0
a(S) is the set of all isolated point in the approximate point spectrum

which are eigenvalues of finite multiplicity. Property (aw) does not transfer from
operators A and B to their tensor product A ⊗ B, so we give necessary and/or
sufficient conditions ensuring the passage of property (aw) from A and B to A⊗B.
Perturbations by Riesz operators are considered.

1. Introduction

For a bounded linear operator S ∈ L (X), let σ(S), σp(S), σa(S) denote, respectively,
the spectrum, the point spectrum and the approximate point spectrum of S and if G
is a subset of C, then Giso, Gacc denote, the isolated points of G and the accumulation
points of G. Let α(S) and β(S) denote the nullity and the deficiency of S, defined
by α(S) = dim ker(S) and β(S) = codim<(S). If the range <(S) of S is closed and
α(S) <∞ (resp. β(S) <∞), then S is called an upper semi-Fredholm (resp. a lower
semi-Fredholm) operator. If S ∈ L (X) is either upper or lower semi-Fredholm, then
S is called a semi-Fredholm operator, and ind(S), the index of S, is then defined by
ind(S) = α(S)−β(S). If both α(S) and β(S) are finite, then S is a Fredholm operator.
The ascent, denoted asc(S), and the descent, denoted dsc(S), of S are given by
asc(S) = inf {n ∈ N : ker(Sn) = ker(Sn+1)}, dsc(S) = inf {n ∈ N : <(Sn) = <(Sn+1)}
(where the infimum is taken over the set of non-negative integers); if no such integer
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n exists, then asc(S) =∞, respectively dsc(S) =∞). Let

Φ+(S) = {λ ∈ C : S − λ is upper semi-Fredholm} ,
Φ(S) = {λ ∈ C : S − λ is Fredholm} ,

σSF+(S) = {S − λ ∈ σa(S) : λ /∈ Φ+(S)} ,

σaw(S) =
{
λ ∈ σa(S) : λ ∈ σSF+(S) or ind(S − λ) > 0

}
,

σab(S) =
{
λ ∈ σa(S) : λ ∈ σSF+(S) or asc(S − λ) =∞

}
,

E0(S) =
{
λ ∈ σiso(S) : 0 < α(S − λ) <∞

}
,

E0
a(S) =

{
λ ∈ σiso

a (S) : 0 < α(S − λ) <∞
}
,

π0
a(S) =

{
λ ∈ σiso

a (S) : λ ∈ Φ+(S), asc(S − λ) <∞
}
,

H0(S) =
{
x ∈ X : lim

n−→∞
‖Snx‖1/n = 0

}
.

Let π(S) be the set of all poles of the resolvent of S and π0(T ) is the set of all poles
of the resolvent of finite rank, that is, π0(S) = {λ ∈ π(S) : α(S − λ) <∞}. Let

σw(S) = {λ ∈ σ(S) : S − λ /∈ Φ(S) or ind(S − λ) 6= 0} ,
σb(S) = {λ ∈ σ(S) : S − λ /∈ Φ(S) or asc(S − λ) 6= dsc(S − λ)} and
σab(S) = {λ ∈ σa(S) : S − λ is not Fredholm or asc(T − λ) =∞} ,

denote, respectively, the Weyl spectrum, the Browder spectrum and the essential
approximate Browder spectrum of T . Now, let ∆(S) = σ(S) \ σw(S) and ∆a(S) =
σa(S) \ σaw(S). Then S satisfies Browder’s theorem (in symbol, S ∈ B) if σb(S) =
σw(S), or equivalently, ∆(S) = π0(S). We say that S ∈ L (X) satisfies a-Browder’s
theorem (in symbol, S ∈ aB) if σab(S) = σaw(S), or equivalently, ∆a(S) = π0

a(S). S
satisfies Weyl’s theorem (in symbol, S ∈ W) if ∆(S) = E0(S) and S satisfies a-Weyl’s
theorem (in symbol, S ∈ aW) if ∆a(S) = E0

a(S).
Operators satisfying property (aw) have been studied in a number of papers, see [4,5]

for additional references. It is known that an operator S satisfying property (aw)
satisfies Browder’s theorem, but the reverse implication is generally false; property
(aw) neither implies nor is implied by a-Weyl’s theorem. Following [14], we say that
T ∈ L (X) satisfies property (w) if ∆a(T ) = σa(T ) \ σSF −

+
(T ) = E0(T ). The property

(w) has been studied in [2, 14]. In [2, Theorem 2.8], it is shown that property (w)
implies Weyl’s theorem, but the converse is not true in general. According to [4], an
operator T ∈ L (X) is said to satisfy property (b) if ∆a(T ) = π0(T ). It is shown
in [4, Theorem 2.13] that an operator satisfies property (w) satisfies property (b)
but the converse is not true in general. An operator S ∈ L (X) is a-isoloid (resp.
isoloid) if points λ ∈ σiso

a (S) (resp. λ ∈ σiso(S)) are eigenvalues of the operator. If S
is finitely a-isoloid (i.e., if λ ∈ σiso

a (S) implies λ is a finite multiplicity eigenvalue of
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S), R ∈ L (X) is a Riesz operator which commutes with S, then S satisfies Weyl’s
theorem implies S +R satisfies Weyl’s theorem [12, Theorem 2.7].

Given Banach space operators A ∈ L (X) and B ∈ L (Y), write

A⊗B :
∑

i

xi ⊗ yi 7→
∑

i

Axi ⊗Byi ∈ L (X⊗ Y),

for the operator induced on the (algebraic completion of the) tensor product, endowed
with a reasonable cross norm, of X and Y. Property (aw) does not transfer from A and
B to A⊗B: a necessary and sufficient condition for property (aw) to transfer from
A and B to A⊗B is that A⊗B satisfies the Weyl spectrum equality σw(A⊗B) =
σ(A)σw(B) ∪ σw(A)σ(B). We say that S has the single valued extension property, or
SVEP, at λ ∈ C if for every open neighborhood U of λ, the only analytic solution f
to the equation (S − µ)f(µ) = 0 for all µ ∈ U is the constant function f ≡ 0; we say
that S has SVEP if S has a SVEP at every λ ∈ C. It is well known that finite ascent
implies SVEP; also, an operator has SVEP at every isolated point of its spectrum
(as well as at every isolated point of its approximate point spectrum). An operator
S ∈ L (X) is polaroid if every λ ∈ σiso(S) is a pole of the resolvent operator (S−λ)−1.
If S is polaroid and S∗ (resp. S) has SVEP, then S (resp. S∗) satisfies property (aw).
This property extends to tensor products A⊗B: if A and B are polaroid, and if A∗
and B∗ (resp. A and B) have SVEP, then A⊗B (resp. A∗⊗B∗) satisfies property (aw).
If Q1 ∈ L (X) and Q2 ∈ L (Y) are quasinilpotent operators such that Q1 commutes
with A and Q2 commutes with B, then A⊗ B satisfies property (aw) if and only if
(A + Q1) ⊗ (B + Q2) satisfies property (aw). For finitely a-isoloid A and B which
satisfy property (aw), and Riesz operators R1 and R2 such that A commutes with R1,
B commutes with σ(A+R1) = σ(A) and σ(B+R2) = σ(B), A⊗B satisfies property
(aw) implies (A + R1) ⊗ (B + R2) satisfies property (aw) if and only if Browder’s
theorem transfers from A+R1 and B +R2 to (A+R1)⊗ (B +R2).

2. Property (aw) and Tensor product

The problem of transferring generalized Weyl theorem, property (gw) and property
(b) from operators A and B to their tensor product A⊗B was considered in [15–17].
The main objective of this section is to study the transfer of property (aw) from a
bounded linear operator A acting on a Banach space X and a bounded linear operator
B acting on a Banach space Y to their tensor product A⊗B.

Let
σs(S) = {λ ∈ σ(S) : S − λ is not surjective} ,
σsb(S) = {λ ∈ σs(S) : S − λ is not lower semi-Fredholm or dsc(S − λ) =∞} and
σsw(S) = {λ ∈ σs(S) : S − λ is not lower semi-Fredholm or ind(S − λ) < 0} ,
denote, respectively, the surjectivity spectrum, the Browder essential surjectivity
spectrum and the Weyl essential surjectivity spectrum of S ∈ L (X). Then S satisfies
s-Browder’s theorem if σsb(S) = σsw(S). Apparently, S satisfies s-Browder’s theorem
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if and only if S∗ satisfies a-Browder’s theorem. A necessary and sufficient condition
for S to satisfy a-Browder’s theorem is that S has SVEP at every λ ∈ ∆a(S) [8,
Lemma 2.8]; by duality, S satisfies s-Browder’s theorem if and only if S∗ has SVEP at
every λ ∈ σs(S) \σsw(S). More generally, if either of S and S∗ has SVEP, then S and
S∗ satisfy both a-Browder’s theorem and s-Browder’s theorem. Either of a-Browder’s
theorem and a-Browder’s theorem implies Browder’s theorem, but the converse is
false. a-Browder’s theorem fails to transfer from A and B to A⊗B [9, Example 1].
Lemma 2.1. [1, Theorem 3.23] If S ∈ L (S) has SVEP at λ ∈ σ(S)\σSF+(S). Then
λ ∈ σiso

a (S) and asc(S − λ) <∞.
Lemma 2.2. [7] Let A ∈ L (X) and B ∈ L (Y). Then

(a) σx(A⊗B) = σx(A)σx(B), where σx = σ or σa;
(b) σSF+(A⊗B) = σSF+(A)σa(B) ∪ σa(A)σSF+(B).

Lemma 2.3. [9] Let A ∈ L (X) and B ∈ L (Y), then
σiso

a (A⊗B) ⊆ σiso
a (A)σiso

a (B) ∪ {0} .
Lemma 2.4. [11] Let A ∈ L (X) and B ∈ L (Y). Then

(a) σp(A)σp(B) ⊆ σp(A⊗B);
(b) σw(A⊗B) ⊆ σ(A)σw(B)∪σw(A)σ(B) ⊆ σ(A)σb(B)∪σb(A)σ(B) = σb(A⊗B);
(c) 0 /∈ σ(A⊗B) \ σw(A⊗B);
(d) If A⊗B ∈ B, then σw(A⊗B) = σ(A)σw(B) ∪ σw(A)σ(B).

Example 2.1. Let U ∈ L (`2) denote the forward unilateral shift, and let A,B ∈
L (`2 ⊗ `2) be the operators

A = (1− UU∗)⊕
(1

2U − 1
)
, B = −(1− UU∗)

(1
2U
∗ − 1

)
.

Then A and B∗ have SVEP, so A,B ∈ aB. Furthermore, 1 ∈ σ(A⊗B) \ σw(A⊗B).
However, since

σ(A⊗B) =
{
{0, 1} ∪

{1
2D− 1

}}
·
{
{0,−1} ∪

{1
2D + 1

}}
,

where D is the closed unit disc in the complex plane C, 1 ∈ σacc(A ⊗ B) =⇒ 1 ∈
σb(A⊗B). Then A⊗B /∈ B, and hence A⊗B does not obey property (aw).

Lemma 2.5. Suppose that A,B and A⊗B satisfy property (aw). If µ ∈ π0(A) and
ν ∈ π0(B), then λ = µν ∈ π0(A⊗B).

Proof. Suppose that µ ∈ σ(A) \ σw(A), ν ∈ σ(B) \ σw(B) and σw(A ⊗ B) =
σ(A)σw(B) ∪ σw(A)σ(B). Then λ = µν ∈ σ(A⊗B) \ σw(A⊗B) = π0(A⊗B). �

Theorem 2.1. If A ∈ L (X) and B ∈ L (Y) are a-isoloid operators which satisfy
property (aw), then the following conditions are equivalent.

(i) A⊗B satisfies property (aw).
(ii) The Weyl spectrum equality σw(A⊗B) = σ(A)σw(B)∪ σw(A)σ(B) is satisfied.
(iii) A⊗B satisfies Browder’s theorem.
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Proof. Since property (aw) implies Browder’s theorem, the equivalence (ii)⇔(iii) and
(i)⇒(iii) follows from [9, Theorem 3]. We prove (iii)⇒(i). The hypothesis A and B
satisfy property (aw) implies

σ(A) \ σw(A) = E0
a(A), σ(B) \ σw(B) = E0

a(B).

Observe that (iii) implies Browder’s theorem transfers from A and B to A ⊗ B:
hence σ(A ⊗ B) \ σw(A ⊗ B) = π0(A ⊗ B). Since π0(A ⊗ B) ⊆ E0

a(A ⊗ B), we
have to prove E0

a(A ⊗ B) ⊆ π0(A ⊗ B). Let λ ∈ E0
a(A ⊗ B). Then 0 6= λ and

there exist µ ∈ σiso
a (A) and ν ∈ σiso

a (B) such that λ = µν. By hypotheses, A and
B are a-isoloid, hence µ is an eigenvalue of A and ν is an eigenvalue of B. Since
A⊗B − (µI ⊗ νI) = (A− µ)⊗B + µ(I ⊗ (B − ν)), if either of α(A− µ) or α(B − ν)
is infinite then so is α(A ⊗ B − (µI ⊗ νI)). Hence µ ∈ E0

a(A) = σ(A) \ σw(A)
and ν ∈ E0

a(B) = σ(B) \ σw(B), consequently, λ ∈ σ(A ⊗ B) \ σw(A ⊗ B); hence
E0

a(A ⊗ B) ⊆ σ(A ⊗ B) \ σw(A ⊗ B). Conversely, if λ ∈ σ(A ⊗ B) \ σw(A ⊗ B),
then by Lemma 2.4, we have λ 6= 0, and there exist µ ∈ σ(A) \ σw(A) = E0

a(A)
and ν ∈ σ(B) \ σw(B) = E0

a(B) such that λ = µν. So, λ ∈ E0
a(A ⊗ B). Therefore,

σ(A⊗B) \ σw(A⊗B) = E0
a(A⊗B). �

The following example shows that property (aw) does not transfer from A ∈ L (X)
and B ∈ L (Y) to A⊗B.

Example 2.2. Let Q ∈ L (`2) be an injective quasi-nilpotent, and let

A = B = (I +Q)⊕ α⊕ β ∈ L (`2)⊕ C⊕ C,

where αβ = 1 6= α. Then

σ(A) = σ(B) = {1, α, β}, σw(A) = σw(B) = {1}, σ(A⊗B) = {1, α, β, α2, β2}.

The operators A,B have SVEP, hence Browder’s theorem transfers from A and B to
A⊗B, which implies that

σw(A⊗B) = {1, α, β}, 1 /∈ σ(A⊗B) \ σw(A⊗B) and 1 = αβ ∈ E0
a(A⊗B).

Note that the operators A and B are not a-isoloid.

Theorem 2.2. Suppose that A ∈ L (X) and B ∈ L (Y) are a-isoloid operators which
satisfy property (aw). If σw(A⊗B) = σ(A)σw(B) ∪ σw(A)σ(B), then A⊗B satisfies
property (aw).

Proof. The hypotheses imply that A⊗B ∈ B, that is, σ(A⊗B)\σw(A⊗B) = π0(A⊗B).
Since π0(A⊗B) ⊆ E0

a(A⊗B), we have to prove that E0
a(A⊗B) ⊆ π0(A⊗B). Let λ ∈

E0
a(A⊗B). Then (0 6=) λ = µν for some µ ∈ σiso

a (A) and ν ∈ σiso
a (B). The operators

A and B being a-isoloid, it follows (from λ ∈ E0
a(A ⊗ B)) that µ ∈ E0

a(A) = π0(A)
and ν ∈ E0

a(B) = π0(B). So it follows from Lemma 2.5 that λ ∈ π0(A⊗B). �

Definition 2.1. An operator T ∈ L (X) is said to be polaroid if isoσ(T ) is empty or
every isolated point of σ(T ) is a pole of the resolvent.
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Definition 2.2. An operator T ∈ L (X) is said to be a-polaroid if isoσa(T ) is empty
or every isolated point of σa(T ) is a pole of the resolvent.

Clearly,
T a-polaroid⇒ T polaroid.

Observe that if T ∗ has SVEP then σ(T ) = σa(T ), see [1, Corollary 2.45], so that
T ∗ has SVEP and T polaroid⇒ T a-polaroid.

If T is polaroid then T ∗ is polaroid [3]. Moreover, if T has SVEP then σ(T ) = σa(T ∗),
see [1, Corollary 2.45], hence

T has SVEP and T polaroid⇒ T ∗ a-polaroid.

Lemma 2.6. If A ∈ L (X) and B ∈ L (Y) are a-polaroid, then A⊗B is a-polaroid.

Proof. If σiso
a (A) = σiso

a (B) = ∅, then σiso
a (A ⊗ B) = ∅. Observe also that if either

of σiso
a (A) or σiso

a (B) is the empty set, say σiso
a (A) = ∅, then σiso

a (A ⊗ B) ⊆ {0}.
If σiso

a (A ⊗ B) = {0}, then 0 ∈ σiso
a (B). But then 0 ∈ π(B), which implies that

0 ∈ π(A⊗B). Let λ ∈ σiso
a (A⊗B) be such that λ = µν, µ ∈ σiso

a (A) and ν ∈ σiso
a (B).

Then µ ∈ π(A) and ν ∈ π(B). Hence, we have λ ∈ π(A⊗B). �

Theorem 2.3. Suppose that the operators A ∈ L (X) and B ∈ L (Y) are polaroid.
(i) If A∗ and B∗ have SVEP, then A⊗B satisfies property (aw).
(ii) If A and B have SVEP, then A∗ ⊗B∗ satisfies property (aw).

Proof. (i) The hypothesis A∗ and B∗ have SVEP implies
σ(A) = σa(A), σ(B) = σa(B), σaw(A) = σw(A), , σaw(B) = σw(B)

and
A∗, B∗, and A∗ ⊗B∗ satisfy s-Browder’s theorem.

Thus s-Browder’s theorem and Browder’s theorem transform from A∗ and B∗ to
A∗ ⊗B∗. Hence

σaw(A⊗B) = σsw(A∗ ⊗B∗) = σs(A∗)σsw(B∗) ∪ σsw(A∗)σs(B∗)
= σa(A)σaw(B) ∪ σaw(A)σa(B) = σ(A)σw(B) ∪ σw(A)σ(B)

and
σw(A⊗B) = σw(A∗ ⊗B∗) = σ(A∗)σw(B∗) ∪ σw(A∗)σ(B∗)

= σ(A)σw(B) ∪ σw(A)σ(B).
Consequently,

σaw(A⊗B) = σw(A⊗B).
Already,

σa(A⊗B) = σa(A)σa(B) = σ(A)σ(B) = σ(A⊗B).
Since A and B are a-polaroid, then A⊗ B is a-polaroid by Lemma 2.6. Combining
this with A⊗B satisfies Browder’s theorem, it follows that A⊗B satisfies property
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(aw). That is, σ(A⊗B) \ σw(A⊗B) = E0
a(A⊗B).

(ii) In this case σ(A) = σa(A∗), σ(B) = σa(B∗), σw(A∗) = σaw(A∗), σw(B∗) = σaw(B∗),
σ(A∗⊗B∗) = σa(A∗⊗B∗), a-polaroid property transfer from A and B to A∗⊗B∗ and
both Browder’s theorem and s-Browder’s theorem transfer from A and B to A⊗ B.
Hence

σaw(A∗ ⊗B∗) = σsw(A⊗B) = σs(A)σsw(B) ∪ σsw(A)σs(B)
= σa(A∗)σaw(B∗) ∪ σaw(A∗)σa(B∗) = σ(A)σw(B) ∪ σw(A)σ(B)
= σw(A⊗B) = σw(A∗ ⊗B∗).

Thus, since A∗ ⊗ B∗ is a-polaroid and A ⊗ B) satisfies Browder’s theorem imply
A∗ ⊗B∗ satisfy Browder’s theorem,

σ(A∗ ⊗B∗) \ σw(A∗ ⊗B∗) = π0(A∗ ⊗B∗) = E0
a(A∗ ⊗B∗),

that is, A∗ ⊗B∗ satisfies property (aw). �

A part of an operator is its restriction to an invariant subspace. S ∈ L (X) is said
to be hereditarily polaroid, S ∈ HP , if every part of S is polaroid. HP operators
have SVEP [8, Lemma 2.8].

Corollary 2.1. Suppose that the operators A ∈ L (X) and B ∈ L (Y) are HP, then
A∗ ⊗B∗ satisfies property (aw).

The class of HP operators is substantial: it includes in particular subscalar opera-
tors and paranormal operators (see [8] for further examples).

3. Perturbations

Let [A,Q] = AQ−QA denote the commutator of the operators A and Q. If Q1 ∈
L (X) and Q2 ∈ L (Y) are quasinilpotent operators such that [Q1, A] = [Q2, B] = 0
for some operators A ∈ L (X) and B ∈ L (Y), then

(A+Q1)⊗ (B +Q2) = (A⊗B) +Q,

where Q = Q1 ⊗B +A⊗Q2 +Q1 ⊗Q2 ∈ L (X⊗Y) is a quasinilpotent operator. If
in the above, Q1 and Q2 are nilpotent then (A+Q1)⊗ (B +Q2) is the perturbation
of A⊗B by a commuting nilpotent operator.

A bounded operator S on a Banach space X is called finite a-isoloid if every isolated
point of σa(S) is an eigenvalue of S of finite multiplicity.

Theorem 3.1. Let Q1 ∈ L (X) and Q2 ∈ L (Y) be quasinilpotent operators such that
[Q1, A] = [Q2, B] = 0 for some operators A ∈ L (X) and B ∈ L (Y). If A ⊗ B is
finitely a-isoloid, then A ⊗ B satisfies property (aw) implies (A + Q1) ⊗ (B + Q2)
satisfies property (aw).

Proof. Start by recalling that σ((A + Q1) ⊗ (B + Q2)) = σ(A ⊗ B), σa((A + Q1) ⊗
(B + Q2)) = σa(A ⊗ B), σaw((A + Q1) ⊗ (B + Q2)) = σaw(A ⊗ B), π0(A ⊗ B) =
π0((A+Q1)⊗ (B +Q2)) and that the perturbation of an operator by a commuting



396 M. H. M. RASHID

quasinilpotent has SVEP if and only if the operator has SVEP. If A ⊗ B satisfies
property (aw), then

E0
a(A⊗B) = σ(A⊗B) \ σw(A⊗B)

= σ((A+Q1)⊗ (B +Q2)) \ σw((A+Q1)⊗ (B +Q2)).

We prove that E0
a(A⊗B) = E0

a((A+Q1)⊗(B+Q2)). Observe that if λ ∈ σiso
a (A⊗B),

then A∗⊗B∗ has SVEP at λ, equivalently, (A∗+Q∗1)⊗ (B∗+Q∗2) has SVEP at λ. Let
λ ∈ E0

a(A⊗B), then λ ∈ σ((A+Q1)⊗ (B +Q2)) \ σw((A+Q1)⊗ (B +Q2)). Since
(A+Q1)∗ ⊗ (B +Q2)∗ has SVEP at λ, it follows that λ /∈ σw((A+Q1)⊗ (B +Q2))
and λ ∈ σiso

a ((A + Q1) ⊗ (B + Q2)). Thus λ ∈ E0
a((A + Q1) ⊗ (B + Q2)). Hence

E0
a(A⊗B) ⊆ E0

a((A+Q1)⊗(B+Q2)). Conversely, if λ ∈ E0
a((A+Q1)⊗(B+Q2)), then

λ ∈ σiso
a (A⊗B), and this, since A⊗B is finitely a-isoloid, implies that λ ∈ E0

a(A⊗B).
Therefore, E0

a((A + Q1) ⊗ (B + Q2)) ⊆ E0
a(A ⊗ B). So, the proof of the theorem is

achieved. �

Corollary 3.1. If Q1 ∈ L (X) and Q2 ∈ L (Y) are nilpotent operators such that
[Q1, A] = [Q2, B] = 0 for some operators A ∈ L (X) and B ∈ L (Y), then A ⊗ B
satisfies property (aw) implies (A+Q1)⊗ (B +Q2) satisfies property (aw).

The situation for perturbations by commuting Riesz operators is a bit more delicate.
The equality σa(T ) = σa(T + R) does not always hold for operators T,R ∈ L (X)
such that R is Riesz and [T,R] = 0; the tensor product T ⊗R is not a Riesz operator
(the Fredholm spectrum σe(T ⊗R) = σ(T )σe(R)∪ σe(T )σ(R) = σe(T )σ(R) = {0} for
a particular choice of T only). However, σw (also, σb) is stable under perturbation by
commuting Riesz operators [18], and so T satisfies Browder’s theorem if and only if
T +R satisfies Browder’s theorem. Thus, if σ(T ) = σ(T +R) for a certain choice of
operators T,R ∈ L (X) (such that R is Riesz and [T,R] = 0), then

π0(T ) = σ(T ) \ σw(T ) = σ(T +R) \ σw(T +R) = π0(T +R),

where π0(T ) is the set of λ ∈ σiso(T ) which are finite rank poles of the resolvent of T .
If we now suppose additionally that T satisfies property (aw), then

E0
a(T ) = σ(T ) \ σw(T ) = σ(T +R) \ σw(T +R)

and a necessary and sufficient condition for T + R to satisfy property (aw) is that
E0

a(T +R) = E0
a(T ). One such condition, namely T is finitely a-isoloid.

Proposition 3.1. Let T,R ∈ L (X), where R is Riesz, [T,R] = 0 and T is finitely
a-isoloid. Then T satisfies property (aw) implies T +R satisfies property (aw).

Proof. Since Browder’s theorem holds for T +R by Lemma 2.2 of [12], it suffices to
show that π0(T +R) = E0

a(T +R). If T −λ is invertible, then T +R−λ is a Fredholm,
and hence λ ∈ E0

a(T + R). Suppose λ ∈ σ(T ), then by Proposition 2.4 of [13] it
follows that λ is an isolated point of σ(T ), and since by assumption T is finite-isoloid,
we have λ ∈ E0

a(T ). But property (aw) holds for T implies that E0
a(T ) ∩ σw(T ) = ∅.



PASSAGE OF PROPERTY (aw) FROM TWO OPERATORS TO THEIR TENSOR PRODUCT397

Therefore, T − λ is Fredholm and hence so is T +R− λ. Thus, λ ∈ π0(T +R). The
other inclusion is trivial, therefore T +R satisfies property (aw). �

Theorem 3.2. Let A ∈ L (X) and B ∈ L (Y) be finitely a-isoloid operators which
satisfy property (aw). If R1 ∈ L (X) and R2 ∈ L (Y) are Riesz operators such that
[A,R1] = [B,R2] = 0, σ(A+R1) = σ(A) and σ(B+R2) = σ(B), then A⊗B satisfies
property (aw) implies (A + R1) ⊗ (B + R2) satisfies property (aw) if and only if
Browder’s theorem transforms from A+R1 and B +R2 to their tensor product.

Proof. The hypotheses imply (by Proposition 3.1) that both A+R1 and B+R2 satisfy
property (aw). Suppose that A⊗B satisfies property (aw). Then σ(A⊗B)\σaw(A⊗
B) = π0(A⊗B). Evidently A⊗B satisfies Browder’s theorem, and so the hypothesis
A and B satisfy property (aw) implies that Browder’s theorem transfers from A and
B to A ⊗ B. Furthermore, since σ(A + R1) = σ(A), σ(B + R2) = σ(B) and σw is
stable under perturbations by commuting Riesz operators,

σw(A⊗B) = σ(A)σw(B) ∪ σw(A)σ(B)
= σ(A+R1)σw(B +R2) ∪ σw(A+R1)σ(B +R2).

Suppose now that Browder’s theorem transfers from A+R1 and B+R2 to (A+R1)⊗
(B +R2). Then

σw(A⊗B) = σw((A+R1)⊗ (B +R2))
and

E0
a(A⊗B) = σ((A+R1)⊗ (B +R2)) \ σw((A+R1)⊗ (B +R2)).

Let λ ∈ E0
a(A⊗B). Then λ 6= 0, and hence there exist µ ∈ σ(A+R1) \ σw(A+R1)

and ν ∈ σ(B +R2) \ σw(B +R2) such that λ = µν. As observed above, both A+R1
and B +R2 satisfy property (aw); hence µ ∈ E0

a(A+R1) and ν ∈ E0
a(B +R2). This,

since λ ∈ σ(A⊗B) = σ((A+R1)⊗ (B +R2)), implies λ ∈ E0
a((A+R1)⊗ (B +R2)).

Conversely, if λ ∈ E0
a((A + R1) ⊗ (B + R2)), then λ 6= 0 and there exist µ ∈

E0
a(A + R1) ⊆ σiso

a (A) and ν ∈ E0
a(B + R2) ⊆ σiso

a (B) such that λ = µν. Recall
that E0

a((A + R1) ⊗ (B + R2)) ⊆ E0
a(A + R1)E0

a(B + R2). Since A and B are finite
a-isoloid, µ ∈ E0

a(A) and ν ∈ E0
a(B). Hence, since σ((A+R1)⊗(B+R2)) = σ(A⊗B),

λ = µν ∈ E0
a(A ⊗ B). To complete the proof, we observe that if the implication of

the statement of the theorem holds, then (necessarily) (A+R1)⊗ (B +R2) satisfies
Browder’s theorem. This, since A+R1 and B+R2 satisfy Browder’s theorem, implies
Browder’s theorem transfers from A+R1 and B +R2 to (A+R1)⊗ (B +R2). �
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