Abstract. Assume that R is a commutative ring with nonzero identity. In this paper, we introduce and investigate zero-annihilator graph of R denoted by $\text{ZA}(R)$. It is the graph whose vertex set is the set of all nonzero nonunit elements of R and two distinct vertices x and y are adjacent whenever $\text{Ann}_R(x) \cap \text{Ann}_R(y) = \{0\}$.

1. Introduction

Throughout this paper all rings are commutative with nonzero identity. In [6], Beck associated to a ring R its zero-divisor graph $G(R)$ whose vertices are the zero-divisors of R (including 0), and two distinct vertices x and y are adjacent if $xy = 0$. Later, in [3], Anderson and Livingston studied the subgraph $\Gamma(R)$ of $G(R)$ (whose vertices are the nonzero zero-divisors of R). In the recent years, several researchers have done interesting and enormous works on this field of study. For instance, see [4, 5, 9]. The concept of co-annihilating ideal graph of a ring R, denoted by A_R was introduced by Akbari et al. in [1]. As in [1], co-annihilating ideal graph of R, denoted by A_R, is a graph whose vertex set is the set of all non-zero proper ideals of R and two distinct vertices I and J are adjacent whenever $\text{Ann}_R(I) \cap \text{Ann}_R(J) = \{0\}$. In the present paper, we introduce zero-annihilator graph of R denoted by $\text{ZA}(R)$. It is the graph whose vertex set is the set of all nonzero nonunit elements of R and two distinct vertices x and y are adjacent whenever $\text{Ann}_R(Rx + Ry) = \text{Ann}_R(x) \cap \text{Ann}_R(y) = \{0\}$. Note that $\text{ZA}(R)$ is an induced subgraph of A_R.

Let G be a simple graph with the vertex set $V(G)$ and edge set $E(G)$. For every vertex $v \in V(G)$, $N_G(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$. The degree of a vertex v is defined as $\deg_G(v) = |N_G(v)|$. The minimum degree of G is denoted
by \(\delta(G) \). Recall that a graph \(G \) is connected if there is a path between every two distinct vertices. For distinct vertices \(x \) and \(y \) of a connected graph \(G \), let \(d_G(x, y) \) be the length of the shortest path from \(x \) to \(y \). The diameter of a connected graph \(G \) is \(\operatorname{diam}(G) = \sup\{d_G(x, y) \mid x \text{ and } y \text{ are distinct vertices of } G\} \). The girth of \(G \), denoted by \(\operatorname{girth}(G) \), is defined as the length of the shortest cycle in \(G \) and \(\operatorname{girth}(G) = \infty \) if \(G \) contains no cycles. A bipartite graph is a graph all of whose vertices can be partitioned into two parts \(U \) and \(V \) such that every edge joins a vertex in \(U \) to a vertex in \(V \). A complete bipartite graph \(G \) is a bipartite graph with parts \(U, V \) such that every vertex in \(U \) is adjacent to every vertex in \(V \). A graph in which all vertices have degree \(k \) is called a \(k \)-regular graph. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. Also, if a graph \(G \) contains one vertex to which all other vertices are joined and \(G \) has no other edges, is called a star graph. A clique in a graph \(G \) is a subset of pairwise adjacent vertices and the number of vertices in a maximum clique of \(G \), denoted by \(\omega(G) \), is called the clique number of \(G \). The chromatic number of \(G \), denoted by \(\chi(G) \), is the minimum number of colors needed to color the vertices of \(G \) so that no two adjacent vertices have the same color. Obviously, \(\chi(G) \geq \omega(G) \).

2. Some Properties of \(\mathcal{ZA}(R) \)

Recall that, an empty graph is a graph with no edges. A Bézout ring is a ring in which all finitely generated ideals are principal.

Theorem 2.1. Let \(R \) be a ring. If \(\mathcal{ZA}(R) \) is an empty graph, then \(R \) is a local ring and \(\text{Ann}_R(x) \neq \{0\} \) for every nonunit element \(x \in R \). The converse is true if \(R \) is a Bézout ring.

Proof. Assume that \(\mathcal{ZA}(R) \) is empty. Let \(m_1, m_2 \) be two distinct maximal ideals of \(R \). Then \(m_1 + m_2 = R \) implies that there exist \(x \in m_1 \) and \(x_2 \in m_2 \) such that \(x + y = 1 \). So \(x \) and \(y \) are adjacent, which is a contradiction. Hence \(R \) is a local ring. Let \(m \) be the maximal ideal of \(R \) and \(x \) be an element of \(m \). Suppose that \(\text{Ann}_R(x) = \{0\} \). Then \(\{x^n \mid n \in \mathbb{N}\} \) is an infinite clique in \(\mathcal{ZA}(R) \) that is a contradiction. So \(\text{Ann}_R(x) \neq \{0\} \).

Suppose that \(R \) is a local Bézout ring and \(\text{Ann}_R(x) \neq \{0\} \) for every nonunit element \(x \in R \). Let \(x, y \) be two vertices in \(\mathcal{ZA}(R) \). Then \(x, y \in m \). Hence \(Rx + Ry = Rz \) for some nonzero nonunit element \(z \in R \). So \(x, y \) are not adjacent which shows that \(\mathcal{ZA}(R) \) is empty. \(\square \)

Remark 2.1. Suppose that \(R \) has a nontrivial idempotent element \(e \). Then \(e + (1 - e) = 1 \) implies that \(e \) and \(1 - e \) are adjacent. Hence \(\deg_{\mathcal{ZA}(R)}(e) \geq 1 \) and so \(\mathcal{ZA}(R) \) is not an empty graph.

Remark 2.2. Let \(R \) be a ring. Notice that if \(R \) is an Artinian ring or a Boolean ring, then \(\dim(R) = 0 \). By [2, Theorem 3.4], \(\dim(R) = 0 \) if and only if for every \(x \in R \) there exists a positive integer \(n \) such that \(x^{n+1} \) divides \(x^n \). Therefore, every nonzero
nonunit element of a zero-dimensional ring has a nonzero annihilator. Hence, if \(R \) is a zero-dimensional chained ring, then \(Z^*(R) \) is an empty graph.

Let \(Z^+(R) \) denote the zero divisors of \(R \) and \(Z(R) = Z^*(R) \cup \{0\} \).

Theorem 2.2. Let \(R \) be a ring and \(S \) be a multiplicative closed subset of \(R \) such that \(S \cap Z(R) = \{0\} \). Then \(Z^*(R) \approx Z^*(R_S) \).

Proof. Define the vertex map \(\Phi : V(Z^*(R)) \to V(Z^*(R_S)) \) by \(x \mapsto \frac{x}{y} \). We can easily verify that \(x = y \) if and only if \(\frac{x}{y} \in S \). Also, it is easy to see that \(\text{Ann}_R(x) \cap \text{Ann}_R(y) = \{0\} \) if and only if \(\text{Ann}_{R_S}(\frac{x}{y}) \cap \text{Ann}_{R_S}(\frac{y}{x}) = \{0\} \). \(\square \)

Theorem 2.3. Let \(R \) be a Bézout ring with \(|\text{Max}(R)| < \infty \) such that \(\delta(Z^*(R)) > 0 \). Then \(Z^*(R) \) is a finite graph if and only if every vertex of \(Z^*(R) \) has finite degree.

Proof. The “only if” part is evident.

Suppose that each vertex of \(Z^*(R) \) has finite degree. If \(\text{Ann}_R(x) = \{0\} \) for some nonzero nonunit element \(x \in R \), then \(x \) is adjacent to all vertices of \(Z^*(R) \) that implies \(Z^*(R) \) is a finite graph. Assume that \(\text{Ann}_R(x) \neq \{0\} \) for each nonzero nonunit element \(x \in R \). We claim that \(\text{Jac}(R) = \{0\} \). On the contrary, assume that there exists a nonzero element \(a \in \text{Jac}(R) \). Since \(Z^*(R) \) has no isolated vertex, \(a \) is adjacent to another vertex, say \(b \). Since \(R \) is a Bézout ring, \(Ra + Rb \) is generated by a nonzero nonunit element \(c \) of \(R \) and so \(\text{Ann}_R(Ra + Rb) = \text{Ann}_R(c) \neq \{0\} \), which is impossible. So \(\text{Jac}(R) = \{0\} \). Hence by Chinese Remainder Theorem we have \(R \approx F_1 \times F_2 \times \cdots \times F_n \), where \(F_i \)'s are fields and \(n = |\text{Max}(R)| \). Let \(0 \neq u \in F_1 \). Then \((u,0,\ldots,0)\) and \((0,1,\ldots,1)\) are adjacent. Since \((0,1,\ldots,1)\) has finite degree, so \(F_1 \) is a finite field. Similarly we can show that \(F_i \)'s are finite fields. Consequently \(R \) has finitely many nonzero nonunit elements and the proof is complete. \(\square \)

Theorem 2.4. Let \(R \) be a Bézout ring with \(|\text{Max}(R)| < \infty \). Then the following conditions are equivalent:

(a) \(Z^*(R) \) is a bipartite graph with \(\delta(Z^*(R)) > 0 \);
(b) \(Z^*(R) \) is a complete bipartite graph;
(c) \(R \approx F_1 \times F_2 \) where \(F_1 \) and \(F_2 \) are two fields.

Proof. (a)\(\Rightarrow\)(c) Suppose that \(Z^*(R) \) is a bipartite graph with \(\delta(Z^*(R)) > 0 \). If \(\text{Ann}_R(x) = \{0\} \) for some nonzero nonunit element \(x \) of \(R \), then \(\{x^n \mid n \in \mathbb{N}\} \) is an infinite clique that is a contradiction. Then, for every nonzero nonunit element \(x \) of \(R \) we have \(\text{Ann}_R(x) \neq \{0\} \). Similar to the proof of Theorem 2.3 we can show that \(R = F_1 \times F_2 \times \cdots \times F_n \), where \(F_i \)'s are fields and \(n = |\text{Max}(R)| \). Clearly \(n \neq 1 \). If \(n \geq 3 \), then \(\{(0,1,\ldots,1),(1,0,1,\ldots,1),(1,1,0,1,\ldots,1)\} \) is a clique in \(Z^*(R) \), a contradiction. So \(R \approx F_1 \times F_2 \).

(c)\(\Rightarrow\)(b) Suppose that \(R \approx F_1 \times F_2 \) where \(F_1 \) and \(F_2 \) are two fields. Every vertex in \(Z^*(R) \) is of the form \((u,0)\) or \((0,v)\) where \(0 \neq u \in F_1 \) and \(0 \neq v \in F_2 \). Also, two vertices \((u,0)\) and \((0,v)\) are adjacent. On the other hand, every two vertices \((u_1,0),(u_2,0)\) cannot be adjacent.
(b)⇒(a) is clear.

Theorem 2.5. Let \(R \) be a ring and \(n \geq 2 \) be a natural number. Then
\[
\text{girth}(\mathcal{Z}(M_n(R))) = 3.
\]

Proof. For \(n = 2 \), the following matrices are pairwise adjacent in \(\mathcal{Z}(M_2(R)) \):
\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
0 & 1
\end{pmatrix}.
\]
For \(n \geq 3 \), the following matrices are pairwise adjacent in \(\mathcal{Z}(M_n(R)) \):
\[
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix}.
\]

3. **When is \(\mathcal{Z}(R) \) Connected?**

A ring \(R \) is called *semiprimitive* if \(\text{Jac}(R) = 0 \), [7]. A ring \(R \) is semiprimitive if and only if it is a subdirect product of fields, [8, p. 179].

Theorem 3.1. Let \(R \) be a semiprimitive ring. If at least one of the maximal ideals of \(R \) is principal, then \(\mathcal{Z}(R) \) is a connected graph with \(\text{diam}(\mathcal{Z}(R)) \leq 4 \).

Proof. Suppose that \(m \) is a maximal ideal of \(R \) where \(m = Rt \) for some \(t \in R \). Let \(x, y \) be two different nonzero nonunit elements of \(R \). Consider the following cases.

Case 1. Let \(x, y \notin m \). Then \(Rx + m = R \) and \(Ry + m = R \). Hence \(x, y \) are adjacent to \(t \). So \(d_{\mathcal{Z}(R)}(x, y) \leq 2 \).

Case 2. Let \(x \in m \) and \(y \notin m \). Notice that \(y \) is adjacent to \(t \). Since \(\text{Jac}(R) = \{0\} \), there exists a maximal ideal \(m' \) different from \(m \) such that \(x \notin m' \). So \(Rx + m' = R \), and thus there exist elements \(r \in R \) and \(z \in m' \) such that \(rx + z = 1 \). Therefore \(\text{Ann}_R(x) \cap \text{Ann}_R(z) = \{0\} \). So \(x \) is adjacent to \(z \). Clearly \(z \notin m \). Then \(z \) is adjacent to \(t \). Hence \(d_{\mathcal{Z}(R)}(x, y) \leq 3 \).

Case 3. Let \(x, y \in m \). A manner similar to Case 2 shows that \(d_{\mathcal{Z}(R)}(x, t) \leq 2 \) and \(d_{\mathcal{Z}(R)}(y, t) \leq 2 \). Therefore \(d_{\mathcal{Z}(R)}(x, y) \leq 4 \).
Consequently $ZA(R)$ is a connected graph with $\text{diam}(ZA(R)) \leq 4$. □

Theorem 3.2. Let R be a Bézout ring. If $ZA(R)$ is connected, then one of the following conditions holds:

(a) there exists a nonzero nonunit element x of R such that $\text{Ann}_R(x) = \{0\}$;

(b) $\text{Jac}(R) = \{0\}$;

(c) $\text{Jac}(R) = \{0, x\}$ where x is the only nonzero nonunit element of R.

Proof. Assume that for every nonzero nonunit element u of R, $\text{Ann}_R(u) \neq \{0\}$ and also $\text{Jac}(R) \neq \{0\}$. Let x be a nonzero element in $\text{Jac}(R)$. Suppose that $ZA(R)$ has a vertex y different from x. Thus $Rx + Ry = Rz$ for some $z \in R$, because R is a Bézout ring. Notice that $y \in m$ for some maximal ideal m of R. Hence z is nonzero nonunit and so by assumption $\text{Ann}_R(z) \neq \{0\}$, which shows that x and y are not adjacent. This contradiction implies that $|V(ZA(R))| = 1$, and so $\text{Jac}(R) = \{0, x\}$. □

As a direct consequence of Theorem 3.1 and Theorem 3.2 we have the following result.

Corollary 3.1. Let R be a Bézout ring such that at least one of the maximal ideals of R is principal. Then $ZA(R)$ is connected if and only if one of the following conditions holds:

(a) there exists a nonzero nonunit element x of R such that $\text{Ann}_R(x) = \{0\}$;

(b) $\text{Jac}(R) = \{0\}$;

(c) $\text{Jac}(R) = \{0, x\}$ where x is the only nonzero nonunit element of R.

Theorem 3.3. Let $R = F_1 \times F_2 \times \cdots \times F_n$ where F_i’s are fields. Then $ZA(R)$ is a connected graph with

$$\text{diam}(ZA(R)) = \begin{cases}
1, & \text{if } n = 2 \text{ and } |F_1| = |F_2| = 2, \\
2, & \text{if } n = 2 \text{ and either } |F_1| > 2 \text{ or } |F_2| > 2, \\
3, & \text{if } n \geq 3.
\end{cases}$$

Proof. Let $n = 2$. In this case every vertex in $ZA(R)$ is of the form $(u, 0)$ or $(0, v)$ where $u \neq 0$ and $v \neq 0$. Furthermore, two vertices $(u, 0)$ and $(0, v)$ are adjacent.

In the case when $n = 2$ and $|F_1| = |F_2| = 2$, we have $R \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$. So $ZA(R) \simeq K_2$.

Let $n = 2$ and $|F_1| > 2$. In this case, every two different vertices $(u_1, 0)$ and $(u_2, 0)$ cannot be adjacent. On the other hand $(u_1, 0)$ and $(u_2, 0)$ are adjacent to $(0, 1)$. So $d_{ZA(R)}((u_1, 0), (u_2, 0)) = 2$. Hence $\text{diam}(ZA(R)) = 2$.

Now, let $n \geq 3$. Assume that $u = (u_1, u_2, \ldots, u_n)$ and $v = (v_1, v_2, \ldots, v_n)$ are two different vertices. There exist two indexes i, j such that $u_i \neq 0$ and $v_j \neq 0$. So $u = (u_1, u_2, \ldots, u_n)$ is adjacent to $(1, \ldots, 1, 0, 1, \ldots, 1)$. Also $v = (v_1, v_2, \ldots, v_n)$ is adjacent to $(1, \ldots, 1, 0, 1, \ldots, 1)$. If $i \neq j$, then the vertex $(1, \ldots, 1, 0, 1, \ldots, 1)$
is adjacent to \((1, \ldots, 1, 0, 1, \ldots, 1)\). Thus \(ZA(R)\) is connected and \(d_{ZA(R)}(u, v) \leq 3\).

In special case, we have the following path
\[(0, 1, 0, \ldots, 0) \rightarrow (1, 0, 1, \ldots, 1) \rightarrow (0, 1, \ldots, 1) \rightarrow (1, 0, \ldots, 0).
\]
Consequently \(\text{diam}(ZA(R)) = 3\).

\[\square\]

4. When is \(ZA(R)\) Star?

Lemma 4.1. Let \(R\) be a ring. If \(ZA(R)\) is a star, then \(|\text{Max}(R)| \leq 2\).

Proof. Suppose that \(ZA(R)\) is a star. If \(m\) and \(m'\) are two different maximal ideals of \(R\), then for every \(x \in m \setminus m'\) we have \(Rx + m' = R\). Hence there exist elements \(r \in R\)
and \(y \in m' \setminus m\) such that \(rs + y = 1\). Therefore \(\text{Ann}_R(x) \cap \text{Ann}_R(y) = \{0\}\). So \(x\) and \(y\) are adjacent. Let \(m_1, m_2\) and \(m_3\) be three different maximal ideals of \(R\). Then there are elements \(a \in m_1 \setminus (m_2 \cup m_3), b \in m_2 \setminus (m_1 \cup m_3)\) and \(c \in m_3 \setminus (m_1 \cup m_2)\). Then either \(a, b, c\) are pairwise adjacent or there exist at least two disjoint edges in \(ZA(R)\), which is a contradiction. Consequently \(|\text{Max}(R)| \leq 2\).

\[\square\]

Theorem 4.1. Let \(R\) be a Bézout ring that is not a field. Then \(ZA(R)\) is a star if and only if one of the following conditions holds:

1. \((R, m)\) when \(m = \{0, x\}\) in which \(x\) is a nonzero element of \(R\) with \(x^2 = 0\);
2. \(R \simeq \mathbb{Z}_2 \times F\) where \(F\) is a field.

Proof. \((\Rightarrow)\) Suppose that \(ZA(R)\) is a star. Hence \(|\text{Max}(R)| \leq 2\), by Lemma 4.1. Notice that if \(\text{Ann}_R(t) = \{0\}\) for some element \(t\) of a maximal ideal \(m\), then \(\{t^n \mid n \in \mathbb{N}\}\) is an infinite clique that is impossible. Consider the following cases:

Case 1. \(\text{Max}(R) = \{m\}\). Let \(x\) be a nonzero element in \(m\). Then by Theorem 2.1, \(ZA(R)\) is empty and so \(m = \{0, x\}\). On the other hand, by Nakayama’s Lemma we have that \(x^2 = 0\).

Case 2. \(\text{Max}(R) = \{m_1, m_2\}\). Since \(m_1 + m_2 = R\), there exist \(x \in m_1\) and \(y \in m_2\) such that \(x + y = 1\). Hence \(x\) and \(y\) are adjacent. Now, if there exists \(0 \neq z \in m_1 \cap m_2\), then \(z\) is not adjacent to \(x\) and \(y\), because \(R\) is a Bézout ring and \(\text{Ann}_R(t) = \{0\}\) for every nonzero nonunit element \(t\) of \(R\). This contradiction shows that \(m_1 \cap m_2 = \{0\}\). Hence by Chinese Remainder Theorem we deduce that \(R \simeq R/m_1 \oplus R/m_2\). If there exist nonzero elements \(a_1, a_2 \in R/m_1\) and \(b_1, b_2 \in R/m_2\), then we have the following path
\[(a_1, 0) - (0, b_1) - (a_2, 0) - (0, b_2),
\]
a contradiction. Hence we can assume that \(R/m_1 = \mathbb{Z}_2\).

\((\Leftarrow)\) If (a) holds, then clearly \(ZA(R)\) is a star. Assume that (b) holds. Notice that \((1, 0)\) is adjacent to all vertices \((0, u)\) where \(u\) is a nonzero element of \(F\). Also, for every two different elements \(u_1, u_2 \in F\), \((0, u_1)\) and \((0, u_2)\) are not adjacent. Consequently \(ZA(R)\) is a star.

\[\square\]
5. When is $ZA(R)$ Complete?

Proposition 5.1. Let R be a ring. If $ZA(R)$ is a complete graph, then A_R is a complete graph.

Proof. Assume that $ZA(R)$ is a complete graph. Let I, J be two nonzero proper ideals of R. Then there are two different nonzero nonunit elements $x, y \in R$ such that $x \in I$ and $y \in J$. Hence $Ann_R(I) \cap Ann_R(J) \subseteq Ann_R(x) \cap Ann_R(y) = \{0\}$. Therefore I and J are adjacent. □

The following remark shows that the converse of Proposition 5.1 is not true.

Remark 5.1. Consider the ring $R = \mathbb{Z}_5 \times \mathbb{Z}_5$. By [1, Theorem 6], $A_R(= K_2)$ is a complete graph. But $ZA(R)$ is a 4-regular graph that is not a complete graph.

![Figure 1. $ZA(R)$](image)

Theorem 5.1. Let R be a ring. Then $ZA(R)$ is a complete graph if and only if one of the following conditions holds:

(a) R has exactly one nonzero nonunit element;
(b) R is an integral domain;
(c) $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. (\Rightarrow) Assume that $ZA(R)$ is a complete graph. Then, by Proposition 5.1, A_R is a complete graph. Suppose that R is not an integral domain. So there exists a nonzero nonunit element $x \in R$ such that $Ann_R(x) \neq \{0\}$. Therefore, [1, Theorem 6] implies that either R has exactly one nonzero proper ideal or R is a direct product of two fields. Suppose that the former case holds. If y is a nonzero nonunit element of R different from x, then $Rx = Ry$. So $Ann_R(x) \cap Ann_R(y) = Ann_R(x) \neq \{0\}$, which is a contradiction. Therefore R has exactly one nonzero nonunit element. Now, let R be a direct product of two fields, say $R = F_1 \times F_2$. If there exist two different nonzero elements u, v in F_1, then $(u, 0)$ and $(v, 0)$ cannot be adjacent. Hence $F_1 = \mathbb{Z}_2$. Similarly, we can show that $F_2 = \mathbb{Z}_2$. Consequently $R = \mathbb{Z}_2 \times \mathbb{Z}_2$.

(\Leftarrow) Clearly, if (a) or (b) holds, then $ZA(R)$ is a complete graph. Assume that (c) holds. Then $ZA(R) \simeq K_2$ and we are done. □

6. Chromatic Number and Clique Number of $ZA(R)$

Recall that, a ring R is said to be reduced if it has no nonzero nilpotent elements.
Theorem 6.1. If \(R \) is a reduced Noetherian ring, then the chromatic number of \(\mathcal{Z}(R) \) is infinite or \(R \) is a direct product of finitely many fields.

Proof. The proof is similar to that of [1, Theorem 16].

Lemma 6.1. Let \(P_1 \) and \(P_2 \) be two prime ideals of a ring \(R \) with \(P_1 \cap P_2 = \{0\} \). Then every two nonzero elements \(x \in P_1 \) and \(y \in P_2 \) are adjacent.

Proof. Suppose that \(r \in \operatorname{Ann}_R(x) \cap \operatorname{Ann}_R(y) \). Since \(rx = 0 \in P_2 \) and \(x \notin P_2 \), then \(r \in P_2 \). Similarly it turns out that \(r \in P_1 \). Hence \(r \in P_1 \cap P_2 = \{0\} \).

Theorem 6.2. Let \(R \) be a ring and \(n \geq 2 \) be a natural number. If either \(\lvert \operatorname{Min}(R) \rvert = n \) or \(R = R_1 \times R_2 \times \cdots \times R_n \) where \(R_i \)'s are rings, then \(\omega(\mathcal{Z}(R)) \geq n \).

Proof. Assume that \(\operatorname{Min}(R) = \{p_1, p_2, \ldots, p_s\} \) where \(p_i \)'s are nonzero. So, by Lemma 6.1, \(n \leq \omega(\mathcal{Z}(R)) \). Now, suppose that \(R = R_1 \times R_2 \times \cdots \times R_n \) where \(R_i \)'s are rings. Then \(\{(1, \ldots, 1, 0, 1, \ldots, 1) \mid 1 \leq i \leq n\} \) is a clique in \(\mathcal{Z}(R) \) and the result follows.

7. When is \(\mathcal{Z}(R) \) \(k \)-regular?

Recall that a finite field of order \(q \) exists if and only if the order \(q \) is a prime power \(p^s \). A finite field of order \(p^s \) is denoted by \(\mathbb{F}_{p^s} \).

Theorem 7.1. Let \(R \) be a Bézout ring with \(\lvert \operatorname{Max}(R) \rvert < \infty \). Then \(\mathcal{Z}(R) \) is a \(k \)-regular graph \((0 < k < \infty)\) if and only if \(R \simeq \mathbb{F}_{p^s} \times \mathbb{F}_{k+1} \).

Proof. The “if” part has a routine verification. Let \(\mathcal{Z}(R) \) be a \(k \)-regular graph \((0 < k < \infty)\). If \(\operatorname{Ann}_R(x) = \{0\} \) for some nonzero nonunit element \(x \) of \(R \), then \(\{x^n \mid n \in \mathbb{N}\} \) is an infinite clique that is a contradiction. Then, for every nonzero nonunit element \(x \) of \(R \) we have \(\operatorname{Ann}_R(x) \neq \{0\} \). Similar to the manner that described in the proof of Theorem 2.3, we have \(R \simeq F_1 \times F_2 \times \cdots \times F_n \) where \(F_i \)'s are fields and \(n = \lvert \operatorname{Max}(R) \rvert \).

Since \(\operatorname{Ann}_R((1,0,\ldots,0)) = 0 \times F_2 \times F_3 \times \cdots \times F_n \) and \(\operatorname{Ann}_R((0,1,0,\ldots,0)) = F_1 \times 0 \times F_3 \times \cdots \times F_n \), then

\[
\mathcal{N}_{\mathcal{Z}(R)}((1,0,\ldots,0)) = \{(0,u_2,\ldots,u_n) \mid u_i \in F_i \setminus \{0\} \text{ for } 2 \leq i \leq n\}
\]

and

\[
\mathcal{N}_{\mathcal{Z}(R)}((0,1,0,\ldots,0)) = \{(u_1,0,u_3,\ldots,u_n) \mid u_i \in F_i \setminus \{0\} \text{ for } 1 \leq i \leq n, i \neq 2\}.
\]

So

\[
(|F_2| - 1)(|F_3| - 1)\cdots(|F_n| - 1) = (|F_1| - 1)(|F_3| - 1)\cdots(|F_n| - 1),
\]

because \(\mathcal{Z}(R) \) is \(k \)-regular. Hence \(|F_1| = |F_2| \). Similarly we can show that \(|F_1| = |F_2| = \cdots = |F_n| \). Let \(n \geq 3 \). Note that \(\mathcal{N}_{\mathcal{Z}(R)}((1,1,0,\ldots,0)) \) is the union of the following sets

\[
\{(u_1,0,u_3,\ldots,u_n) \mid u_i \in F_i \setminus \{0\} \text{ for } 1 \leq i \leq n, i \neq 2\},
\]
\{(0, u_2, \ldots, u_n) \mid u_i \in F_i \setminus \{0\} \text{ for } 2 \leq i \leq n\}

and

\{(0, 0, u_3, \ldots, u_n) \mid u_i \in F_i \setminus \{0\} \text{ for } 3 \leq i \leq n\}.

Therefore,

\(|F_1| - 1)|^{n-1} = 2(|F_1| - 1)^{n-1} + (|F_1| - 1)^{n-2},

since \(ZA(R)\) is \(k\)-regular. Thus \(|F_1| = 0\) which is a contradiction. Consequently \(n = 2\).

If there exist two different nonzero elements \(u, u'\) in \(F_1\), then \((u, 0)\) and \((u', 0)\) cannot be adjacent. On the other hand for every nonzero elements \(u \in F_1\) and \(v \in F_2\), \((u, 0)\) and \((0, v)\) are adjacent. So \(\deg_{ZA(R)}((u, 0)) = |F_1| - 1 = k\). Therefore \(R \cong F_{k+1} \times F_{k+1}\).

\textbf{Corollary 7.1.} Let \(R\) be a Bézout ring with \(|\text{Max}(R)| < \infty\). If \(ZA(R)\) is a \(k\)-regular graph \((0 < k < \infty)\), then \(k + 1\) is a prime power.

\textbf{Acknowledgements.} The author is deeply grateful to the referee for careful reading of the original manuscript and the valuable suggestions.

\textbf{References}

1Department of Mathematics and Applications, University of Mohaghegh Ardabili, P.O. Box. 179, Ardabil, Iran

Email address: h.mostafanasab@gmail.com