A POINTFREE ANALOGUES OF LATTICE-VALUED BITOPOLOGICAL SPACES

M. AZAB ABD-ALLAH¹, K. EL-SAADY², A. GHAREEB², AND A. TEMRAZ²

Abstract. The concept of coupled semi-quantales is introduced. An adjunction between the category of coupled semi-quantales and the category of lattice-valued biquasi-topological spaces is established. The topological and the lattice-theoretic concepts of regularity and compactness are extended to both lattice-valued biquasi-topological spaces and coupled semi-quantales, respectively. Some relations among these axioms are established.

1. Introduction

In 1986 Mulvey [9], proposed the concept quantale as a non-commutative extension of frame (or pointfree topology) with aim to develop the concept of non-commutative topology [6] and provide a constructive foundations for both quantum mechanics and non-commutative logic [17]. Nowadays, the concepts of quantales and semi-quantales (as a generalization of quantales [14]) can boast many areas of applications, e.g., the area of non-commutative topology [5, 10, 11]. Further details about quantales can be found in [15].

In 2015 Höhle [7], established a non-commutative extension of the well known Papert-Papert-Isbell adjunction [8, 12] between the category of locales and the category of topological spaces to one between the category of quantales and the category of many valued topological spaces.

In [4], El-Saady extended the Höhle’s adjunction to a more general one between the category of semi-quantales and the category of lattice-valued quasi-topological spaces.

Key words and phrases. Semi-quantales, spatiality, sobriety, L-quasi-topology.

2010 Mathematics Subject Classification. Primary: 06F07. Secondary: 54A40, 54H10, 54D15.

Received: April 27, 2016.
Accepted: May 24, 2017.
In this paper we aim to introduce the concept of coupled semi-quantales as the pointfree analogues of lattice-valued bitopological spaces and extend the dual adjunction between the category of semi-quantales and the category of lattice-valued quasi-topological spaces to one between the category of coupled semi-quantales and the category of lattice valued biquasi-topological spaces. Also, the topological and the lattice-theoretic concepts of regularity and compactness are extended to lattice-valued biquasi-topological spaces and coupled semi-quantales, respectively. Some relations among these axioms are established.

2. Preliminaries

By a complete join-semilattice (or V-semilattice) we mean a partially ordered set (L, \leq) having arbitrary sups.

Definition 2.1. [14] A semi-quantale (L, \leq, \otimes) is a complete join-semilattice (L, \leq) equipped with a binary operation $\otimes : L \times L \to L$, with no additional assumptions, called a tensor product.

Definition 2.2. [14] Let L and M be semi-quantales. A function $h : L \to M$ is said to be:

1. a semi-quantale morphism if it preserves \otimes and arbitrary sups;
2. a strong semi-quantale morphism if it preserves \otimes, arbitrary sups and \top.

By SQuant (resp. SSQuant), we mean the category of all semi-quantales and semi-quantale morphisms (resp. strong semi-quantale morphism).

Definition 2.3. A semi-quantale (L, \leq, \otimes) is said to be:

1. a quantale [15] if whose multiplication \otimes is associative and distributes across \lor from both sides. Quant denotes the full subcategory of SQuant of all quantales.
2. a unital semi-quantale [14] if whose multiplication \otimes has an identity element $e \in L$ called the unit. USQuant denotes the category all unital semi-quantales together with all semi-quantale morphisms preserving the unit e.
3. a commutative semi-quantate [14] if whose multiplication \otimes satisfies that $q_1 \otimes q_2 = q_2 \otimes q_1$ for every $q_1, q_2 \in L$. CSQuant denotes the full subcategory of SQuant of all commutative semi-quantales.
4. a distributive semi-quantate [16] if whose multiplication \otimes distributes across finite \lor from both sides. DSQuant is the category of distributive semi-quantales.

Definition 2.4. [4] Let $L \in |\text{SQuant}|$, $M \subseteq L$, and $a, b \in M$. An element a is said to be well-inside of b (w.r.t. M), denoted $a \preceq b$, if exists $c \in M$ with $a \otimes c = \bot$ and $c \lor b = \top$.

An $L \in |\text{SQuant}|$ is said to be regular [4], if for each $a \in L$ there exists $D \subseteq I_a$, where $I_a = \{b \in L : b \preceq a\}$ such that $a = \lor D$.

Definition 2.5. [3] Let \(L = (L, \leq, \otimes) \) be a semi-quantale. A subset \(K \subseteq L \) is a subsemi-quantale of \(L \) if and only if the inclusion \(K \hookrightarrow L \) is a semi-quantale morphism, i.e., \(K \) is closed under \(\otimes \) and arbitrary sups. A subsemi-quantale \(K \) of \(L \) is said to be strong if and only if \(\top \) belongs to \(K \). If \(L \) is a unital semi-quantale with the identity \(e \), then a subsemi-quantale \(K \) of \(L \) is called a unital subsemi-quantale of \(L \) if and only if \(e \) belongs to \(K \).

Let \(L = (L, \leq, \otimes) \) be a semi-quantale. For any non-empty set \(X \), let \(L^X \) be the set of all \(L \)-valued maps \(X \rightarrow L \). We can extend the algebraic and lattice-theoretic structure from \(L \) to \(L^X \) pointwisely, i.e., for all \(x \in X, f, g \in L^X \) and \(\{f_j : j \in J\} \subseteq L^X \), we have

\[
\begin{align*}
 f \leq g & \iff f(x) \leq g(x), \\
 (f \otimes g)(x) & = f(x) \otimes g(x), \\
 \left(\bigvee_{j \in J} f_j \right)(x) & = \bigvee_{j \in J} (f_j(x)).
\end{align*}
\]

Then \(L^X \) is again a semi-quantale with respect to the multiplication \(\otimes \). If \(L \) is a unital semi-quantale with unit \(e \), then \(L^X \) becomes a unital semi-quantale with the unit \(e \) (a mapping from \(X \) to \(L \), defined by \(e(x) = e \) for all \(x \in X \)), where \(e \) is the unit of \(\otimes \) in \(L \).

For an ordinary mapping \(f : X \rightarrow Y \), the forward and backward powerset operators [13, 14]:

\[
\begin{align*}
 f^+_L : L^X & \rightarrow L^Y \text{ and } f^-_L : L^Y \rightarrow L^X,
\end{align*}
\]

defined by

\[
\begin{align*}
 f^+_L(A)(y) & = \bigvee\{A(x) : x \in X, f(x) = y\} \text{ and } f^-_L(B) = B \circ f,
\end{align*}
\]
respectively.

Theorem 2.1. [14] Let \(L \in |\text{SQuant}| \), \(X, Y \) be a nonempty ordinary sets and \(f : X \rightarrow Y \) be an ordinary mapping, then we have:

1. \(f^+_L \) preserves arbitrary \(\bigvee \);
2. \(f^-_L \) preserves arbitrary \(\bigvee \), \(\otimes \), and all constant maps;
3. \(f^-_L \) preserves the unit if \(L \in |\text{USQuant}| \).

For a fixed \(L \in |\text{SQuant}| \) and a set \(X \), an \(L \)-quasi-topology on \(X \) [14] is a subsemi-quantale \(\tau \) of \(L^X = (L^X, \leq, \otimes) \), i.e., satisfying the following conditions.

\((T_1) \) For all \(A, B \in L^X \), if \(A, B \in \tau \) then \(A \otimes B \in \tau \).
\((T_2) \) For all \(\{A_j : j \in J\} \subseteq L^X \), if \(\{A_j : j \in J\} \subseteq \tau \) then \(\bigvee_{j \in J} A_j \in \tau \).

An \(L \)-quasi-topology \(\tau \) is said to be strong [3] if and only if it is strong as a subsemi-quantale of \(L^X \), i.e., \(\tau \) satisfies the additional axiom:

\((T_3) \) \(\top \in \tau \).
If $L \in |\text{USQuant}|$ with unit e, a unital subsemi-quantale τ of L^X is called an L-topology on X [14], i.e., τ satisfies $(T_1), (T_2)$ and the following:

(T_3) $\emptyset \subseteq \tau$.

If $\tau \subseteq L^X$ is an L-quasi-topology (resp. L-topology), then the pair (X, τ) is said to be an L-quasi-topological (resp. L-topological) space. A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be L-continuous (resp. L-open) [13] if $(f_\sigma^T)^\tau: \tau \leftarrow \sigma$ (resp. $(f_\sigma^T)^\tau: \tau \rightarrow \sigma$).

An L-continuous bijection $f : (X, \tau) \rightarrow (Y, \sigma)$ is an L-homeomorphism [13] if f^{-1} is L-continuous.

It is clear that L-quasi-topological (resp. strong L-quasi-topological, L-topological) spaces and L-continuous maps form a category denoted by $L\text{-QTop}$ (resp. $L\text{-SQTop}$, $L\text{-Top}$).

One can easily prove that each of $L\text{-QTop}$, $L\text{-SQTop}$ and $L\text{-Top}$ is a topological category over the category Set.

Definition 2.6. [4] An $(X, \tau) \in |L\text{-QTop}|$ is called

1. $L\text{-QT}_0$ if for every $x, y \in X$ with $x \neq y$ there exists $\mu \in \tau$ with $\mu(x) \neq \mu(y)$;
2. $L\text{-qsober}$ if and only if $\eta_X : (X, \tau) \rightarrow (L\text{PT}(\tau), \Phi_L^{\tau}(\tau))$ is bijective.

3. **Coupled Semi-quantales and Lattice-valued Biquasi-topological Spaces**

Before we go on, this section, we begin our study by the following.

Lemma 3.1. If $\{A_j : j \in J\}$ is any collection of subsemi-quantales of a semi-quantale Q, then $\bigcap_j A_j$ is also a subsemi-quantale of Q, provided $\bigcap_j A_j \neq \phi$.

Proof. Let $M = \bigcap_j A_j$ and $a, b \in M$. Then $a, b \in A_j \Rightarrow a \otimes b \in A_j$ for each subsemi-quantale $A_j \Rightarrow a \otimes b \in M \Rightarrow M$ is closed under \otimes. Also, one can easily prove that M is closed under sups. \qed

For a fixed $Q \in |\text{SQuant}|$, it follows, as a consequence of the above lemma, that the family of all subsemi-quantales of Q, ordered by inclusion, forms a complete lattice, with the meet $Q_1 \wedge Q_2 = Q_1 \cap Q_2$ (the set-intersection), and the join $Q_1 \vee Q_2$ is the least subsemi-quantale of Q containing Q_1 and Q_2 (which is not their set-theoretical union). The supremum (joins) of a set $\{A_j : j \in J\}$ of subsemi-quantales of Q, is the intersection of subsemi-quantales of Q which contains the union $\bigcup_j A_j$. More generally there is for each subset $K \subseteq Q$ of a semi-quantale Q a smallest subsemi-quantale of Q (sometimes denoted by $[K]$) which contains K and is the subsemi-quantale generated by K.

Definition 3.1. (The category of coupled semi-quantales)

1. A coupled semi-quantale is a triple $Q = (Q_0, Q_1, Q_2)$ in which Q_0 is a semi-quantale, Q_1 and Q_2 are subsemi-quantales of Q_0 such that $Q_1 \cup Q_2$ generates Q_0.

(2) A map \(h : Q \to P \) between coupled semi-quantales is a semi-quantale morphism \(Q_0 \to P_0 \) for which the restrictions \(h|_{Q_i} : Q_i \to P_i \) are semi-quantale morphisms i.e., \(h(Q_i) \subseteq P_i \) for \(i = 1, 2 \).

(3) The resulting category will be denoted by \(\text{CSQuant} \).

We refer to \(Q_0 \) as the total part of \(Q \), and \(Q_1, Q_2 \) as its first and second parts, respectively.

Definition 3.2. A coupled semi-quantale \(Q = (Q_0, Q_1, Q_2) \) is said to be:

1. **unital** if and only if \(Q_0 \) is unital and \(e \) belongs to both \(Q_1 \) and \(Q_2 \).
 - \(\text{UnCSQuant} \) is the full subcategory of \(\text{CSQuant} \) of all unital coupled semi-quantales.
2. **coupled quantal** \([1]\) if \(Q_0 \) is a quantale and both \(Q_1 \) and \(Q_2 \) are subquantales.
 - \(\text{CQuant} \) is the full subcategory of \(\text{CSQuant} \) of all coupled quantales.
3. **strong coupled quantal** if both \(Q_1 \) and \(Q_2 \) are strong subquantales of \(Q_0 \).
4. **symmetric** if and only if \(Q_0 = Q_1 = Q_2 \).
5. **right-sided** (resp. left-sided) if and only if \(a \otimes \top \leq a \) (resp. \(\top \otimes a \leq a \)) for all \(a \in Q_0 \).
6. **idempotent** if and only if the total part \(Q_0 \) is idempotent, i.e., \(a \otimes a = a \) for all \(a \in Q_0 \).
7. **commutative** if the operation \(\otimes \) is commutative, i.e., \(q_1 \otimes q_2 = q_2 \otimes q_1 \) for every \(q_1 \in Q_i \) and \(q_2 \in Q_k \).
 - \(\text{ComCSQuant} \) is the full subcategory of \(\text{CSQuant} \) of all commutative coupled semi-quantales.

Example 3.1. For a fixed \(L \in |\text{SQuant}| \) and a non-empty set \(X \). For \(i = 1, 2 \), let \(\tau_i \subseteq L^X \) be a subsemi-quantale of \(L^X \), i.e., \(L \)-quasi-topologies on \(X \). The triple \((\tau_1 \lor \tau_2, \tau_1, \tau_2) \) is a coupled semi-quantale where \(\tau_1 \lor \tau_2 \) is the coarsest \(L \)-quasi-topology finer than both \(\tau_1 \) and \(\tau_2 \).

Example 3.2. Let \(Q = \{\bot, a, b, \top\} \) be the four Boolean lattice and let \(\otimes : Q \times Q \to Q \) defined by

<table>
<thead>
<tr>
<th></th>
<th>(\bot)</th>
<th>(a)</th>
<th>(b)</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bot)</td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>(\top)</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>(\top)</td>
</tr>
</tbody>
</table>

It is clear that \(Q \) is a coupled quantales with \(Q_0 = \{\bot, a, b, \top\} \) as the total part, \(Q_1 = \{\bot, a, \top\} \) as the first part and \(Q_2 = \{\bot, b, \top\} \) as the second part.

Example 3.3. Any biframe \(A = (A_0, A_1, A_2) \) \([2]\) is a commutative coupled quantale provided that \(\otimes = \land \) and any element of \(a \in A_0 \) can be expressed as \(a = \lor \{a_1 \otimes a_2 : a_1 \in A_1, a_2 \in A_2\} \).

Definition 3.3. (The category of \(L \)-biquasi-topological spaces)
(1) An \(L\)-biquasi-topological space is a triple \((X, \tau_1, \tau_2)\) consisting of a non-empty set \(X\) and two \(L\)-quasi-topologies \(\tau_1\) and \(\tau_2\) on \(X\).

(2) A morphism \(f : X \to Y\) between \(L\)-biquasi-topological spaces \((X, \tau_1, \tau_2)\) and \((Y, \sigma_1, \sigma_2)\) is a function between their underlying sets for which
\[
f : (X, \tau_1) \to (Y, \sigma_1) \text{ and } f : (X, \tau_2) \to (Y, \sigma_2)
\]
are \(L\)-continuous.

(3) The category of \(L\)-biquasi-topological spaces and their morphisms will be denoted by \(L\text{-BiQT op}\).

Between the category \(L\text{-QT op}\) and \(L\text{-BiQT op}\) there is a faithful functor \(E_S : L\text{-BiQT op} \to L\text{-QT op}\), which we describe as follows. If \(X = (X, \tau_1, \tau_2) \in |L\text{-BiQT op}|\), then
\[
E_S(X) = (X, \tau_1 \vee \tau_2),
\]
where \(\tau_1 \vee \tau_2\) is the coarsest \(L\)-quasi topology finer than both \(\tau_1\) and \(\tau_2\), \(E_S(f) = f\).

The left adjoint of \(S\) is the functor \(E_d : L\text{-QT op} \to L\text{-BiQT op}\), by the following correspondences:
\[
E_d(X, \tau) = (X, \tau, \tau), \quad E_d(f) = f.
\]

One notes that since \(E_S\) embeds \(L\text{-QT op}\) in \(L\text{-BiQT op}\), then we will regard the constructions in \(L\text{-BiQT op}\) as extensions of the constructions in the category \(L\text{-QT op}\).

For \(L \in |S\text{Quant}|\) and \((X, \tau_1, \tau_2) \in |L\text{-BiQT op}|\). The functor \(\mathcal{O}_L : L\text{-BiQT op} \to \text{CS\text{Quant} op}\)
is defined as follows
\[
\mathcal{O}_L(X, \tau_1, \tau_2) = (\tau_1 \vee \tau_2, \tau_1, \tau_2).
\]
For the \(L\)-biquasi-topological space \((X, \tau_1, \tau_2)\), the triple \((\tau_1 \vee \tau_2, \tau_1, \tau_2)\) is a coupled semi-quantale where \(\tau_1 \vee \tau_2\) is the coarsest \(L\)-quasi-topology finer than both \(\tau_1\) and \(\tau_2\), and
\[
\mathcal{O}_L(f : (X, \tau_1, \tau_2) \to (Y, \theta_1, \theta_2)) = [(f^{-1}_L)|_{\theta_i}]^\text{op} : \tau_i \to \theta_i, \quad i = 1, 2.
\]
Now, we will introduce some ideas needed to define a functor in the opposite direction. For a coupled semi-quantale \(Q = (Q_0, Q_1, Q_2)\), let
\[
LPT(Q_0) = \{p : Q_0 \to L : p \in |S\text{Quant}|\}.
\]
Also, we define a coupled semi-quantale map
\[
\Phi_L : (Q_0, Q_1, Q_2) \to (L^{LPT(Q_0)}, L^{LPT(Q_0)}, L^{LPT(Q_0)})
\]
such that
(1) \(\Phi_L : Q_0 \to L^{LPT(Q_0)}\) is a semi-quantale map, where \(\Phi_L(a)(p) = p(a)\);
(2) \(\Phi_L^+(Q_1) \subseteq L^{LPT(Q_0)}\);
(3) \(\Phi_L^-(Q_2) \subseteq L^{LPT(Q_0)}\).
As given in [4] the function Φ_L preserves \otimes and arbitrary \lor, where these are inherited by the codomain of Φ_L from L. Also, for $i = 1, 2$, we have $\Phi_L^i(Q_i)$ is closed under these operations and hence is an L-quasi topology on $LPT(Q_0)$. Thus we have

$$LPT : L\text{-BiQTop} \rightarrow \text{CSQuant}^{op},$$

defined by

$$(Q_0, Q_1, Q_2) \rightarrow (LPT(Q_0), \Phi_L^1(Q_1), \Phi_L^1(Q_2)),$$

where $LPT(f : A \rightarrow B) = [f]^{op}$, that is, $LPT(f)(p) = p \circ f^{op}$, $f^{op} : B \rightarrow A$, is a L-quasi-topology in CSQuant. It is clear that $\{\Phi_L(a_i) : a_i \in Q_i, i = 1, 2\}$ is an L-continuous map in $LPT(Q_0)$ and, therefore, we have $(LPT(Q_0), \Phi_L^1(Q_1), \Phi_L^1(Q_2)) \in [L\text{-BiQTop}]$.

Proposition 3.1. For a fixed $L \in |\text{SQant}|$ and $Q, P \in |\text{CSQuant}|$, the mapping

$$LPT(f) : (LPT(Q_0), \Phi_L^1(Q_1), \Phi_L^1(Q_2)) \rightarrow (LPT(P_0), \Phi_L^1(P_1), \Phi_L^1(P_2))$$

is L-bicontinuous.

Proof. We need to check the L-continuity of both the functions

1. $LPT(f) : (LPT(Q_0), \Phi_L^1(Q_1)) \rightarrow (LPT(P_0), \Phi_L^1(P_1))$ and
2. $LPT(f) : (LPT(Q_0), \Phi_L^1(Q_2)) \rightarrow (LPT(P_0), \Phi_L^1(P_2))$.

The first function is L-continuous since for all $q_2 \in P_0, p \in LPT(Q_0)$, we have

$$LPT(f)^r(\Phi_L(q_2)(p)) = \Phi_L(q_2)(LPT(f)(p))$$

$$= \Phi_L(q_2)(p \circ f^{op})$$

$$= \Phi_L(f^{op}(q_2))(p).$$

Similarly, we can check the L-continuity of the second function and this completes the proof. \qed

Then we have the spectrum or point functor

$$LPT : \text{CSQuant}^{op} \rightarrow L\text{-BiQTop}.$$

To study the adjunction between the functors

$$LPT : \text{CSQuant}^{op} \rightarrow L\text{-BiQTop}$$

and

$$\mathcal{O}_L : L\text{-BiQTop} \rightarrow \text{CSQuant}^{op}.$$

we give the following definitions.

For fixed $L \in |\text{SQant}|$, $(X, \tau_1, \tau_2) \in |L\text{-BiQTop}|$ and $Q \in |\text{CSQuant}|$ define the maps:

1. $\eta_X : (X, \tau_1, \tau_2) \rightarrow (LPT(\tau_1 \lor \tau_2), \Phi_L^1(\tau_1), \Phi_L^1(\tau_2))$, by setting, for all $x \in X$ and $\mu \in \mathcal{O}_L(X)$, $\eta_X(x)(\mu) = \mu(x)$;
2. $\varepsilon_Q^{op} : Q \rightarrow \mathcal{O}_L(LPT(Q))$, by setting $\varepsilon_Q^{op} = \Phi_L \phi^{op}(Q_0)$.

It is clear that by definition ε_Q^{op} always surjective.
Lemma 3.2. Let \(L \in |S\text{Quant}| \), \((X, \tau_1, \tau_2) \in |L\text{-BiQTop}| \) and \(Q \in |\text{CSQuant}| \). Then

1. the map \(\eta_X : (X, \tau_1, \tau_2) \to (LPT(\tau_1 \lor \tau_2), \Phi^+_L(\tau_1), \Phi^+_L(\tau_2)) \), is \(L \)-bicontinuous, and pairwise \(L \)-open w.r.t. its range in \((LPT(\tau_1 \lor \tau_2), \Phi^+_L(\tau_1), \Phi^+_L(\tau_2)) \)

2. the map \(\varepsilon^Q_\circ : Q \to \mathcal{O}_L(LPT(Q)) \) is a coupled semi-quantale morphism.

Proof. (1) To prove that the mapping \(\eta_X \) is \(L \)-bicontinuous, it suffices to prove that both the mappings \(\eta_X : (X, \tau_1) \to (LPT(\tau_1 \lor \tau_2), \Phi^+_L(\tau_1)) \) and \(\eta_X : (X, \tau_2) \to (LPT(\tau_1 \lor \tau_2), \Phi^+_L(\tau_2)) \) are \(L \)-continuous and \(L \)-open with respect to their respective ranges.

(i) \(L \)-continuity: for \(i \in \{1, 2\} \), for all \(\mu \in \Phi^+_L(\tau_i) \), and for all \(x \in X \), there exists \(\rho \in \tau_i \) such that \(\Phi^+_L(\rho) = \mu \), \(\eta_X^L(\mu)(x) = \eta_X^L(\Phi^+_L(\rho))(x) = \rho(x) \), that is, \(\eta_X^L(\mu) \in \tau_i \). Hence \(\eta_X \) is \(L \)-bicontinuous.

(ii) Openness: in fact, for \(\nu \in \tau_i \), \(i \in \{1, 2\} \), and \(\rho \in LPT(\tau_1 \lor \tau_2) \):

\[
(\eta_X^L(\nu)(p)) = \bigvee \{ \nu(x) : \eta_X(x) = p \} \\
= \bigvee \{ \eta_X(x)(\nu) : \eta_X(x) = p \} \\
= p(\nu) = \Phi^+_L(\nu)(p).
\]

Now, \(\Phi^+_L(\nu) \in \Phi^+_L(\tau_1) \), the \(L \)-quasi-topology on \(LPT(\tau_1 \lor \tau_2) \), and it follows that \((\eta_X^L(\nu) = \Phi^+_L(\nu) \), that is, \((\eta_X^L(\nu) = (\eta_X^L(\Phi^+_L(\rho))(x) = (\eta_X^L(\Phi^+_L(\rho))(x) \)

Thus \((\eta_X^L(\nu) \) is open w.r.t. the subspace topology of \((\eta_X^L(\tau_1)) \) induced from \(LPT(\tau_1 \lor \tau_2) \), that is, \(\eta_X \) is a pairwise \(L \)-open map.

(2) As given in [4], we note that the mapping \(\varepsilon^Q_\circ : Q_0 \to \mathcal{O}_L(LPT(Q_0)) \) is a semi-quantale homomorphism and so the mappings \(\varepsilon^Q_\circ : Q_0 \to \mathcal{O}_L(LPT(Q_0)) \), for \(i = 1, 2 \). Thus we have that the mapping \(\varepsilon^Q_\circ : Q \to \mathcal{O}_L(LPT(Q)) \) is a coupled semi-quantale morphism.

\[\square \]

Theorem 3.1. The functor

\[LPT : L\text{-BiQTop} \leftarrow \text{CSQuant}^{op} \]

is a right adjoint of the functor

\[\mathcal{O}_L : L\text{-BiQTop} \to \text{CSQuant}^{op} \]

with unit \(\eta_X : X \to LPT(\mathcal{O}_L(X, \tau_1, \tau_2)) \) and counit \(\varepsilon_Q : Q \leftarrow \mathcal{O}_L(LPT(Q)) \).

Proof. It will be enough to show that for every \(Q \in |\text{CSQuant}| \) and an \(L\text{-BiQTop}\)-morphism \((X, \tau_1, \tau_2) \overset{f}{\to} LPT(Q) \), there exists uniquely a \(\text{CSQuant} \)-morphism \(Q \overset{\varepsilon_Q}{\to} \mathcal{O}_L(X, \tau_1, \tau_2) \) such that the left diagram of the following diagram in Figure 1 is commutative, where by \(\tau_0 \) we mean the coarsest \(L \)-quasi-topology \(\tau_1 \lor \tau_2 \).

To prove the existence, let \(f^* = \mathcal{O}_L(f) \circ \varepsilon_Q \). From the definitions of \(\mathcal{O}_L(f) \) and \(\varepsilon_Q \), one can easily prove that \(f^* : Q \to \Omega(X, \tau_1, \tau_2) \) is a \(\text{CSQuant} \)-morphism. For commutativity of the above-mentioned left diagram notice that for \(x \in X \) and \(a \in Q_0 \), we have
A POINTFREE ANALOGUES OF LATTICE-VA

LUED BITOPOLITICAL SPACES

\[
\begin{array}{c}
LPT(Q) \\
\downarrow \text{f} \\
X \\
\downarrow \text{f} \\
LPT\left(f^* \right) \\
\downarrow \text{f} \\
\rightleftharpoons \end{array}
\]

\text{Figure 1.}

\[pt(f^*) \circ \eta_X(x)(a) = \eta_X(x)(f^*(a))
= \eta_X(x)(O_L(f) \circ \varepsilon_Q(a))
= (O_L(f)(\Phi_L(a)))(x)
= (f^*_L(\Phi_L(a)))(x)
= (\Phi_L(a) \circ f)(x)
= f(x)(a).\]

Uniqueness of the function \(f^* \) follows from the observation that given another \text{CSQuant}-morphism \(Q \xrightarrow{g} \Omega(X, \tau_1, \tau_2) \) with the same property: for all \(x \in X \), and for all \(a \in Q_0 \), we have

\[f(x)(a) = \eta_X(x)(g(a))
= \eta_X(x)(O_L(g) \circ \varepsilon_L(a))
= (g^*_L(\Phi_L(a)))(x)
= (\Phi_L(a) \circ g)(x)
= g(a)(a).\]

Hence for all \(x \in X \) and for all \(a \in Q_0 \), we have \(f^*(a) = g(a) \), i.e., \(f^* = g \). \hfill \Box

\textbf{Definition 3.4.} An \((X, \tau_1, \tau_2) \in |L-\text{BiQTop}|\) is said to be pairwise \(L-QT_0 \) (i.e., fulfills the \(T_0 \)-axiom) if and only if for every pair \((x, y) \in X \times X \) with \(x \neq y \), there exists \(\mu \in \tau_1 \vee \tau_2 \) such that \(\mu(x) \neq \mu(y) \).

By \(L-T_0\text{-BiQTop} \), we mean a full subcategory of \(L-\text{BiQTop} \) consisting of those \(L-\text{BiQTop} \) objects, which are pairwise \(L-QT_0 \).

As a consequence of \textbf{Definition 2.6}, we have the following easily established proposition.
Proposition 3.2. \((X, \tau_1, \tau_2) \in |L-T_0\text{BiQTop}|\) if and only if \(S(X, \tau_1, \tau_2) = (X, \tau_1 \lor \tau_2)\) is \(L-QT_0\).

Proposition 3.3. An \((X, \tau_1, \tau_2) \in |L\text{-BiQTop}|\) is pairwise \(L-QT_0\) if and only if the mapping
\[
\eta_x : (X, \tau_1, \tau_2) \to (LPT(\tau_1 \lor \tau_2), \Phi^+_L(\tau_1), \Phi^-_L(\tau_2))
\]

is pairwise \(L\)-embedding.

Proof. First, suppose that \((X, \tau_1, \tau_2) \in |L\text{-BiQTop}|\) is pairwise \(L-QT_0\), then for \(x \neq y \in X\), there exists \(\mu \in \tau_1 \lor \tau_2\) such that \(\mu(x) \neq \mu(y)\). Therefore, \(\eta_x(x)(\mu) = \mu(x) \neq \mu(y) = \eta_x(y)(\mu)\), that is, the mapping \(\eta_x\) is injective. Also, since the mapping \(\eta_x\) is pairwise \(L\)-continuous and \(L\)-open (see Lemma 3.2), then \(\eta_x\) is \(L\)-embedding. □

Now, we will introduce the concept of sobriety of objects in the category \(L-\text{BiQTop}\).

Definition 3.5. An \((X, \tau_1, \tau_2) \in |L\text{-BiQTop}|\) is \(L\)-sober if and only if the mapping
\[
\eta_x : X \to LPT_{\rightarrow}(O_L(X, \tau_1, \tau_2))
\]
is bijective.

By \(L\text{-SobBiQTop}\), we mean the full subcategory of \(L\text{-BiQTop}\) of all sober objects.

Lemma 3.3. An \((X, \tau_1, \tau_2) \in |L\text{-BiQTop}|\) is \(L\)-sober if and only if the mapping
\[
\eta_x : (X, \tau_1, \tau_2) \to (LPT(\tau_1 \lor \tau_2), \Phi^+_L(\tau_1), \Phi^-_L(\tau_2))
\]
is a pairwise homomorphism.

Proof. \(L\)-sobriety of an \((X, \tau_1, \tau_2) \in |L\text{-BiQTop}|\) is equivalent to the fact of bijectivity of the mapping
\[
\eta_x : (X, \tau_1, \tau_2) \to (LPT(\tau_1 \lor \tau_2), \Phi^+_L(\tau_1), \Phi^-_L(\tau_2)).
\]
Also, the mapping \(\eta_x\) is pairwise \(L\)-continuous and \(L\)-open (see Lemma 3.2), and this is equivalent to the fact that \(\eta_x\) is pairwise \(L\)-homomorphism. □

By the above and Definition 2.6, one have the following easily established result.

Proposition 3.4. An \((X, \tau_1, \tau_2) \in |L\text{-BiQTop}|\) is \(L\)-sober if and only if \((X, \tau_1 \lor \tau_2)\) is \(L\)-qsober.

Definition 3.6. The coupled semi-quantales \(Q = (Q_0, Q_1, Q_2)\) is spatial if and only if the total part \(Q_0\) is spatial. Equivalently the map
\[
\varepsilon^{op}_Q : Q_0 \to O_L(LPT(Q_0))
\]
is a semi-quantale isomorphism [4].

By \(\text{SpatCSQuant}\), we mean the full subcategory of the spatial coupled semi-quantales in \(\text{CSQuant}\).

Lemma 3.4. For all \(Q = (Q_0, Q_1, Q_2) \in |\text{CSQuant}|\), \(Q = (Q_0, Q_1, Q_2)\) is spatial if and only if the mapping
\[\varepsilon_{Q}^{op} : (Q_0, Q_1, Q_2) \to O_L(LPT(Q_0, Q_1, Q_2)) \]

is a coupled semi-quantale isomorphism.

Proof. Let \(Q = (Q_0, Q_1, Q_2) \) be a spatial coupled semi-quantale. Then, by the definition, the total part \(Q_0 \) is spatial, and this is equivalent to the fact that the map

\[\varepsilon_{Q}^{op} : Q_0 \to O_L(LPT(Q_0)) \]

is a semi-quantale isomorphism, and this implies that the map

\[\varepsilon_{Q}^{op} : (Q_0, Q_1, Q_2) \to O_L(LPT(Q_0, Q_1, Q_2)) \]

is a coupled semi-quantale isomorphism. \(\square \)

Lemma 3.5. For all \((X, \tau_1, \tau_2) \in |L-BiQTop|\) and for all \(Q \in |CSQuant|\), then

(i) \(O_L(X, \tau_1, \tau_2) = (\tau_1 \lor \tau_2, \tau_1, \tau_2) \) is spatial;

(ii) \(LPT(Q_0, Q_1, Q_2) = (LPT(Q_0), \Phi^+_L(Q_1), \Phi^+_L(Q_2)) \) is \(L\)-sober.

Proof. As to (i), clearly, the map

\[\varepsilon_{\tau_1 \lor \tau_2}^{op} : (\tau_1 \lor \tau_2) \to O_L(LPT(\tau_1 \lor \tau_2)) = \Phi^+_L(\tau_1 \lor \tau_2) \]

is a semi-quantale isomorphism, which implies that \(\tau_1 \lor \tau_2 \) is a spatial semi-quantale and, therefore, the coupled semi-quantale \(O_L(X, \tau_1, \tau_2) = (\tau_1 \lor \tau_2, \tau_1, \tau_2) \) is spatial.

As to (ii), by definition, it suffices to prove that the mapping

\[\eta_X : LPT(Q) \to LPT(O_L(LPT(Q))) = LPT((\Phi^+_L(Q_1) \lor \Phi^+_L(Q_2)), \Phi^+_L(Q_1), \Phi^+_L(Q_2)) \]

is bijective. Now, we have the following.

(a) \(\eta_X \) is one-to-one. For all \(p_1, p_2 \in LPT(Q_0) \) with \(p_1 \neq p_2 \), there exist some \(a \in Q_0 \) with \(p_1(a) \neq p_2(a) \), and this implies that

\[\eta_X(p_1)(\Phi^+_L(a)) = \Phi^+_L(a)(p_1) = p_1(a) \neq p_2(a) = \eta_X(p_2)(\Phi^+_L(a)). \]

Hence \(\eta_X \) is one-to-one.

(b) \(\eta_X \) is onto. For all \(q \in LPT(\Phi^+_L(Q_1 \lor Q_2)) \), let \(p = q \circ \Phi^+_L : Q_0 \to \Phi^+_L(Q_0) \to L \), then \(p \in LPT(Q_0) \) and \(a \in Q_0 \). We have \(\eta_X(p)(\Phi^+_L(a)) = \Phi^+_L(a)(p) = p(a) = q(\Phi^+_L(a)). \) Hence \(\eta_X(p) = q \), that is, \(\eta_X \) is onto. From (a) and (b), it follows that \(\eta_X \) is bijective, and this completes the proof. \(\square \)

Proposition 3.5. The following functors are valid:

(i) \(O_L : L-BiQTop \to SpatCSQuant^{op} ; \)

(ii) \(LPT : L-SobBiQTop \leftarrow CSQuant^{op} \).

The equivalence between the categories \(L-SobBiQTop \) and \(SpatCSQuant \) is proven as follows.

Theorem 3.2. For all \(L \in |SQuant| \), \(L-SobBiQTop \approx SpatCSQuant^{op} \).
Proof. The categorical equivalence \(L\text{-SobBiQTTop} \approx \text{SpatCSQuant}^{\text{op}} \) follows directly from the adjunction \(O_L \dashv \text{LPT} \) and the fact that both the unit and counit are isomorphisms in the categories \(L\text{-SobBiQTTop} \) and \(\text{SpatCSQuant}^{\text{op}} \), respectively. \(\square \)

4. Regularity and Pairwise Compactness

Now, we will define the regularity and compactness for a certain \(L\text{-BiQTTop} \) and \(\text{CSQuant} \) objects.

Definition 4.1. Let \(Q = (Q_0, Q_1, Q_2) \in |\text{CSQuant}| \) and \(a, b \in Q_i, \ i = 1, 2 \). An element \(a \) is said to be well inside of \(b \) (w.r.t. \(Q_i \)) and denoted by \(a \preceq_i b \), if and only if exists \(c \in Q_k, k \neq i \), such that \(a \otimes c = \bot \) and \(c \lor b = \top \).

Lemma 4.1. For any strong \(\text{CSQuant} \)-morphism \(h : Q \to P \)
\[a \preceq_i b \Rightarrow h(a) \preceq_i h(b). \]

Proof. Let \(a, b \in Q_i \) with \(a \preceq_i b \), then exists \(c \in Q_k, k \neq i \), with \(c \otimes a = \bot \), \(c \lor b = \top \). Since \(h : Q \to P \) is a strong semi-quantale homomorphism, then \(h(c \otimes a) = h(c) \otimes h(a) = \bot \) and \(h(c) \lor h(b) = h(c) \lor (h(b) = h(\top) = \top) \). So exists \(h(c) \in P_k, k \neq i \), such that \(h(c) \otimes h(a) = \bot \) and \(h(c) \lor h(b) = \top \) which means that \(h(a) \preceq_i h(b) \). \(\square \)

Definition 4.2. An \(Q = (Q_0, Q_1, Q_2) \in |\text{CSQuant}| \) is said to be regular if and only if both \(Q_1 \) and \(Q_2 \) are regular subsemi-quantales. Or equivalently

for all \(a \in Q_i \), exists \(D \subseteq \{b \in Q_i : b \preceq_i a\} \) such that \(a = \lor D, i = 1, 2 \).

By \(\text{RegCSQuant} \), we mean the full subcategory of \(\text{CSQuant} \) of regular objects.

A coupled semi-quantale map \(h : Q \to P \) is said to be surjective if and only if \(h|_{Q_i} : Q_i \to P_i \) is surjective for \(i = 1, 2 \).

Lemma 4.2. If \(h : Q \to P \) is a surjective strong coupled semi-quantale homomorphism and \(Q \in |\text{RegCSQuant}| \), then \(P \in |\text{RegCSQuant}| \).

Proof. For \(i = 1, 2 \), let \(x \in P_i \). Then \(x = h(a) \) for some \(a \in Q_i \). Regularity of \(Q \) means that exists \(D \subseteq \{b \in Q_i : b \preceq_i a\} \), \(a = \lor D, i = 1, 2 \). Therefore there exists \(E \subseteq \{h(b) \in P_i : b \preceq_i a\} \) such that \(E = h(D) \). Since \(a \preceq_i b \) implies \(x = h(a) \preceq_i h(b) = y \). Hence \(E \subseteq \{y \in P_i : y \preceq_i x\} \) and \(x = \lor E \). Thus \(P \in |\text{RegCSQuant}| \). \(\square \)

Definition 4.3. Let \(L \in |\text{SQuant}| \). An \((X, \tau_1, \tau_2) \) is regular if and only if \(O_L(X, \tau_1, \tau_2) \in |\text{RegCSQuant}| \).

By \(L\text{-RegBiQTTop} \), we mean the full subcategory of \(L\text{-BiQTTop} \) of regular objects.

Proposition 4.1. For \(Q = (Q_0, Q_1, Q_2) \in |\text{DCSQuant}| \) and \((X, \tau_1, \tau_2) \in |L\text{-BiQTTop}| \).

(1) An \(Q = (Q_0, Q_1, Q_2) \) is regular if and only if
Then

\begin{align*}
a &= \bigvee \{ b \in Q_i : b \preceq_i a \} \text{ for all } a \in Q_i.
\end{align*}

(2) For \(L \in \mathcal{DSQuant} \). An \((X, \tau_1, \tau_2)\) is regular if and only if

\[\mu = \bigvee \{ \nu \in \tau_i : \nu \preceq_i \mu \} \text{ for all } \mu \in \tau_i. \]

Proof. (1) Let \(Q = (Q_0, Q_1, Q_2) \in \mathcal{DSQuant} \). Distributivity and \(b \preceq_i a \) imply \(a \leq b \). Let \(D \subseteq \{ b \in Q_i : b \preceq_i a \} \) such that \(a = \bigvee D \). Then,

\[\bigvee D \leq \bigvee \{ b \in Q_i : b \preceq_i a \} \leq \bigvee \{ b \in Q_i : b \leq a \} = a = \bigvee D. \]

This shows \(a = \bigvee D = \bigvee \{ b \in Q_i : b \preceq_i a \} \) and from this follows the claims. (2) Follows from (1). \(\square \)

As the preceding proposition offers the preserving of the regular axiom under the functor

\[LPT : \text{L-BiQTop} \dashv \text{CSQuant}^{op}, \]

and with the aid of Definition 4.3, we have the following easily established proposition.

Proposition 4.2. The following functors holds:

\[\mathcal{O}_L : \text{L-RegBiQTop} \to \text{RegCSQuant}^{op}, \]

\[LPT : \text{L-RegBiQTop} \leftarrow \text{RegCSQuant}^{op}. \]

Definition 4.4. An \((X, \tau_1, \tau_2) \in \mathcal{L-BiQTop}\) is said to be pairwise compact if \(E_\alpha(X, \tau_1, \tau_2) = (X, \tau_1 \lor \tau_2) \) is compact.

Theorem 4.1. Let \(L \in \mathcal{SQuant} \), \(Q \in \mathcal{CSQuant} \) and \((X, \tau_1, \tau_2) \in \mathcal{L-BiQTop}\). Then

(1) \((X, \tau_1, \tau_2)\) is pairwise compact if and only if \(\mathcal{O}_L(X, \tau_1, \tau_2) = (\tau_1 \lor \tau_2, \tau_1, \tau_2) \) is compact;

(2) if \(Q \) is spatial, then \(Q \) is compact if and only if \(LPT(Q_0, Q_1, Q_2) \) is pairwise compact.

Proof. As to (1), if \((X, \tau_1, \tau_2)\) is a compact object of \(\text{L-BiQTop} \), that is, for all \(S \subseteq (\tau_1 \lor \tau_2) \), \(\forall S = \exists_\alpha \), \(\exists F(\text{finite}) \subseteq S \), \(\forall F = \exists_\alpha \) if and only if \((\tau_1 \lor \tau_2)\) is a compact semi-quantale if and only if \((\tau_1 \lor \tau_2, \tau_1, \tau_2)\) is a compact coupled semi-quantale.

As to (2), let \(Q = (Q_0, Q_1, Q_2) \) be spatial, then the mapping

\[\zeta^\alpha_Q : Q \to \mathcal{O}_L(LPT(Q_0, Q_1, Q_2)) \]

is a coupled semi-quantale isomorphism, that is, \(Q \approx \Phi^\alpha_L(Q) \).

Compactness of \((Q_0, Q_1, Q_2) \leftrightarrow Q_0 \) is compact

\[\iff \quad \text{LPT}(Q_0) = (\text{LPT}(Q_0), \Phi^\alpha_L(Q_0)) \text{ is compact} \]

\[\iff \quad (\text{LPT}(Q_0), \Phi^\alpha_L(Q_1) \lor \Phi^\alpha_L(Q_2)) \text{ is compact.} \]

\[\iff \quad \text{LPT}(Q) = (\text{LPT}(Q_0), \Phi^\alpha_L(Q_1), \Phi^\alpha_L(Q_2)) \]

is pairwise compact and this completes the proof. \(\square \)
5. Conclusion

The concept of coupled semi-quantales is introduced as a pointfree analogues of lattice-valued bitopological (or biquasi-topological spaces). An adjunction between the category of coupled semi-quantales and the category of lattice-valued biquasi-topological spaces is established. Through such adjunction topological and the lattice-theoretic concepts of regularity and compactness are defined and studied for both lattice-valued biquasi-topological spaces and coupled semi-quantales, respectively.

Acknowledgements. The authors thank the anonymous referees and the editors for their valuable comments and suggestions on the improvement of this paper.

References

1Department of Mathematics,
Faculty of Science,
Assuit University,
Assuit, Egypt
Email address: mazab57@yahoo.com

2Department of Mathematics,
Faculty of Science,
South Valley University,
Qena, 83523, Egypt
Email address: kehassan@sci.svu.edu.eg (K. El-Saady)
Email address: nasserfuzt@hotmail.com (A. Ghareeb)
Email address: ayat.temraz@yahoo.com (A. Temraz)