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IDEALS OF IS-ALGEBRAS BASED ON N-STRUCTURES

HASHEM BORDBAR1∗, MOHAMMAD MEHDI ZAHEDI2, AND YOUNG BAE JUN3

Abstract. The notion of a left (resp., right) NI-ideal is introduced, and related
properties are investigated. Characterizations of a left (resp., right) NI-ideal are
considered. Translations of a left (resp., right) NI-ideal are studied. We show that
the homomorphic image (preimage) of a left (resp., right) NI-ideal is a left (resp.,
right) NI-ideal. The notion of retrenched left (resp., right) NI-ideals is introduced,
and their properties are investigated.

1. Introduction

Most of the generalization of the crisp set have been conducted on the unit interval
[0, 1] and they are consistent with the asymmetry observation because a (crisp) set A in
a universe X can be defined in the form of its characteristic function µA : X → {0, 1}
yielding the value 1 for elements belonging to the set A and the value 0 for elements
excluded from the set A. In other words, the generalization of the crisp set to fuzzy
sets relied on spreading positive information that fit the crisp point {1} into the
interval [0, 1]. Because no negative meaning of information is suggested, we now feel
a need to deal with negative information. To do so, we also feel a need to supply
mathematical tool. To attain such object, Jun et al. [3] introduced a new function
which is called negative-valued function, and constructed N-structures. They applied
N-structures to BCK/BCI-algebras, and discussed N-subalgebras and N-ideals in
BCK/BCI-algebras. The N-structures are applied to BE-algebras and subtraction
algebras (see [1] and [5]).

In this paper, using the N-structures, we introduce the notion of a left (resp., right)
NI-ideal, and investigate related properties. We consider characterizations of a left
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(resp., right) NI-ideal, and study translations of a left (resp., right) NI-ideal. We
show that the homomorphic image (preimage) of a left (resp., right) NI-ideal is a left
(resp., right) NI-ideal. We also introduction the notion of retrenched left (resp., right)
NI-ideals and investigate their properties.

2. Preliminaries

Let K(τ) be the class of all algebras with type τ = (2, 0). By a BCI-algebra we
mean a system X := (X, ∗, θ) ∈ K(τ) in which the following axioms hold:

(i) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = θ;
(ii) (x ∗ (x ∗ y)) ∗ y = θ;
(iii) x ∗ x = θ;
(iv) x ∗ y = y ∗ x = θ ⇒ x = y;

for all x, y, z ∈ X. If a BCI-algebra X satisfies θ ∗ x = θ for all x ∈ X, then we say
that X is a BCK-algebra. We can define a partial ordering � by

(∀x, y ∈ X) (x � y ⇛ x ∗ y = θ).

In a BCK/BCI-algebra X, the following hold:

(∀x ∈ X) (x ∗ θ = x),(2.1)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y).(2.2)

A subset I of a BCK/BCI-algebra X is called an ideal of X if it satisfies

(I1) 0 ∈ I;
(I2) (∀x, y ∈ X)(x ∗ y ∈ I, y ∈ I ⇒ x ∈ I).

We refer the reader to the books [2] and [6] for further information regarding
BCK/BCI-algebras.

An IS-algebra (see [4]) is a non-empty set X with two binary operations “∗” and
“·” and constant θ satisfying the conditions:

• I(X) := (X, ∗, θ) is a BCI-algebra;
• S(X) := (X, ·) is a semigroup;
• the operation “·” is distributive (on both sides) over the operation “∗”, that is,

x · (y ∗ z) = (x · y) ∗ (x · z) and (x ∗ y) · z = (x · z) ∗ (y · z),

for all x, y, z ∈ X.

In an IS-algebra X, the following hold:

(∀x ∈ X) (θx = xθ = θ);(2.3)

(∀x, y, z ∈ X) (x � y ⇒ xz � yz, zx � zy).(2.4)

In what follows we use the notation xy instead of x · y.
A nonempty subset A of an IS-algebra X is called a left (resp., right) I-ideal of X

(see [4]) if
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(i) A is a left (resp., right) stable subset of S(X), that is, xa ∈ A (resp., ax ∈ A)
whenever x ∈ S(X) and a ∈ A;

(ii) (∀x, y ∈ I(X)) (x ∗ y ∈ A, y ∈ A ⇒ x ∈ A).

For any family {ai | i ∈ Λ} of real numbers, we define

∨

{ai | i ∈ Λ} :=

{

max{ai | i ∈ Λ}, if Λ is finite,
sup{ai | i ∈ Λ}, otherwise.

∧

{ai | i ∈ Λ} :=

{

min{ai | i ∈ Λ}, if Λ is finite,
inf{ai | i ∈ Λ}, otherwise.

3. Ideals Based on N-structures

Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0]. We
say that an element of F(X, [−1, 0]) is a negative-valued function from X to [−1, 0]
(briefly, N-function on X). By an N-structure we mean an ordered pair (X, f) of
X and an N-function f on X. In what follows, let X denote an IS-algebra unless
otherwise specified.

Definition 3.1. An N-structure (X, f) is said to satisfy the left (resp., right) condition

in S(X) if f(xy) ≤ f(y) (resp., f(xy) ≤ f(x)) for all x and y in S(X).

Definition 3.2. An N-structure (X, f) is called a left (resp., right) NI-ideal of X if
(X, f) satisfies the left (resp., right) condition in S(X) and

(∀x, y ∈ X)
(

f(θ) ≤ f(x) ≤
∨

{f(x ∗ y), f(y)}
)

.(3.1)

Example 3.1. Define two binary operations “∗” and “·” on a set X = {θ, a, b, c} as
follows:

∗ θ a b c
θ θ θ c b
a a θ c b
b b b θ c
c c c b θ

,

· θ a b c
θ θ θ θ θ
a θ θ θ θ
b θ θ b c
c θ θ c b

.

Then X is an IS-algebra (see [4]). Let (X, f) be an N-structure in which f is given
as follows:

f =

(

θ a b c
−0.8 −0.6 −0.3 −0.3

)

.

It is routine to verify that (X, f) is both a left and a right NI-ideal of X.

We provide characterizations of a left (resp., right) NI-ideal.

Theorem 3.1. An N-structure (X, f) is a left NI-ideal of X if and only if the following

assertions are valid

(∀x, y ∈ X) (f(xy) ≤ f(y)) ,(3.2)

(∀x, y ∈ X)
(

f(x) ≤
∨

{f(x ∗ y), f(y)}
)

.(3.3)
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Proof. The necessity is clear. Assume that (X, f) satisfies two conditions (3.2) and
(3.3). Using (2.3) and (3.2) induce f(θ) = f(θy) ≤ f(y) for all y ∈ X. Hence (X, f)
is a left NI-ideal of X. �

Similarly we have the following theorem.

Theorem 3.2. An N-structure (X, f) is a right NI-ideal of X if and only if f satisfies

the condition (3.3) and

(∀x, y ∈ X) (f(xy) ≤ f(x)) .(3.4)

For any N-structure (X, f) and t ∈ [−1, 0), the set

C(f ; t) := {x ∈ X | f(x) ≤ t}

is called a closed t-support of (X, f) (see [3]).

Theorem 3.3. If an N-structure (X, f) is a left NI-ideal of X, then the closed t-
support of (X, f) is a left I-ideal of X for all t ∈ [f(θ), 0].

Proof. Let x ∈ S(X) and a ∈ C(f ; t) for t ∈ [f(θ), 0]. Then f(a) ≤ t, and so f(xa) ≤
f(a) ≤ t which shows that xa ∈ C(f ; t). It follows from (2.3) that θ = θa ∈ C(f ; t).
Let x, y ∈ X be such that x ∗ y ∈ C(f ; t) and y ∈ C(f ; t) for t ∈ [f(θ), 0]. Then
f(x ∗ y) ≤ t and f(y) ≤ t. It follows from (3.3) that

f(x) ≤
∨

{f(x ∗ y), f(y)} ≤ t

and so that x ∈ C(f ; t). Therefore C(f ; t) is an I-ideal of X for all t ∈ [f(θ), 0]. �

Theorem 3.4. If an N-structure (X, f) is a right NI-ideal of X, then the closed

t-support of (X, f) is a right I-ideal of X for all t ∈ [f(θ), 0].

Proof. It is similar to the proof of Theorem 3.3. �

Theorem 3.5. Given an N-structure (X, f), if the nonempty closed t-support of

(X, f) is a left I-ideal of X for all t ∈ [−1, 0), then (X, f) is a left NI-ideal of X.

Proof. Assume that C(f ; t) is a left I-ideal of X for all t ∈ [−1, 0) with C(f ; t) 6= ∅. If
f(ab) > f(b) for some a, b ∈ X, then there exists t ∈ [−1, 0) such that f(ab) > t ≥ f(b).
It follows that b ∈ C(f ; t) and ab /∈ C(f ; t), which is a contradiction. Hence (3.2) is
valid. Now suppose that (3.3) is false. Then there exists a, b ∈ X such that

f(a) >
∨

{f(a ∗ b), f(b)}.

Taking t := 1
2

(f(a) +
∨

{f(a ∗ b), f(b)}) implies that a ∗ b ∈ C(f ; t), b ∈ C(f ; t) and
a /∈ C(f ; t). This is a contradiction, and so (3.3) is valid. Therefore (X, f) is a left
NI-ideal of X by Theorem 3.1. �

Similarly we have the following theorem.

Theorem 3.6. Given an N-structure (X, f), if the nonempty closed t-support of

(X, f) is a right I-ideal of X for all t ∈ [−1, 0), then (X, f) is a right NI-ideal of X.
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Theorem 3.7. For any left I-ideal A of X and any fixed number t in an open interval

(−1, 0), there exists a left NI-ideal (X, f) of X on which A is the closed t-support of

(X, f).

Proof. Let (X, f) be an N-structure on which f is given as follows:

f(x) =

{

t, if x ∈ A,
0, if x /∈ A.

Let x, y ∈ X. If y /∈ A, then f(y) = 0 and thus

f(x) ≤ 0 =
∨

{f(x ∗ y), f(y)}.

Assume that y ∈ A. If x ∈ A, then x ∗ y may or may not belong to A. In any case,
we have

f(x) ≤
∨

{f(x ∗ y), f(y)}.

If x /∈ A, then x ∗ y /∈ A and hence

f(x) = 0 =
∨

{f(x ∗ y), f(y)}.

For any x, y ∈ X, if y ∈ A then xy ∈ A. Hence f(xy) = t = f(y). If y /∈ A, then
f(y) = 0 and so f(xy) ≤ 0 = f(y). It follows from Theorem 3.1 that (X, f) is a left
NI-ideal of X. Obviously, A = C(f ; t). �

Similarly, we have the following theorem.

Theorem 3.8. For any right I-ideal A of X and any fixed number t in an open

interval (−1, 0), there exists a right NI-ideal (X, f) of X on which A is the closed

t-support of (X, f).

Theorem 3.9. For any nonempty subset A of X and t ∈ [−1, 0), let (X, f) be an

N-structure on which f is given as follows:

f(x) =

{

t, if x ∈ A,
0, if x /∈ A.

If A is a left (resp., right) I-ideal of X, then (X, f) is a left (resp., right) NI-ideal

of X.

Proof. Suppose that A is a left I-ideal of X. Let x, y ∈ X. If y ∈ A, then xy ∈ A,
and

(i) x ∗ y may or may not belong to A whenever x ∈ A;
(ii) x ∗ y /∈ A whenever x /∈ A.

Hence f(xy) = t = f(y) and f(x ∗ y) ≤
∨

{f(x ∗ y), f(y)}. If y /∈ A, then f(xy) ≤
0 = f(y) and f(x ∗ y) ≤ 0 =

∨

{f(x ∗ y), f(y)}. Therefore (X, f) is a left NI-ideal of
X by Theorem 3.1. Similarly we can prove it for the right case. �

Corollary 3.1. For any nonempty subset A of X and an N-structure (X, f) with

Im(f) = {−1, 0}, the following assertions are equivalent.
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(1) A is a left (resp., right) I-ideal of X.

(2) (X, f) is a left (resp., right) NI-ideal of X.

Theorem 3.10. If an N-structure (X, f) is a left (resp., right) NI-ideal of X, then

the set

Xf := {x ∈ X | f(x) = f(θ)}

is a left (resp., right) I-ideal of X.

Proof. Assume that (X, f) is a left NI-ideal of X and let x, y ∈ X. If y ∈ Xf , then
f(xy) ≤ f(y) = f(θ) and so f(xy) = f(θ), that is, xy ∈ Xf . Obviously, θ ∈ Xf .
Suppose that x ∗ y ∈ Xf and y ∈ Xf . Then

f(x) ≤
∨

{f(x ∗ y), f(y)} = f(θ),

and so f(x) = f(θ), i.e., x ∈ Xf . Therefore Xf is a left I-ideal of X. Similarly, we
can prove it for the right case. �

Given an N-structure (X, f), we denote

⊥ := −1 −
∧

{f(x) | x ∈ X}.

For any α ∈ [⊥, 0], the α-translation of (X, f) is defined to be the new N-structure
(X, fα) on which fα is defined by fα(x) = f(x) + α for all x ∈ X.

Theorem 3.11. For every α ∈ [⊥, 0], the α-translation of a left (resp., right) NI-ideal

is a left (resp., right) NI-ideal of X.

Proof. Let α ∈ [⊥, 0] and let (X, f) be a left NI-ideal of X. For any x, y ∈ X, we
have fα(xy) = f(xy) + α ≤ f(y) + α = fα(y) and

fα(x) = f(x) + α ≤
∨

{f(x ∗ y), f(y)} + α

=
∨

{f(x ∗ y) + α, f(y) + α}

=
∨

{fα(x ∗ y), fα(y)}.

It follows from Theorem 3.1 that (X, fα) is a left NI-ideal of X. For the right case, it
is similar. �

Theorem 3.12. For N-structure (X, f), if there exists α ∈ [⊥, 0] such that every

α-translation of (X, f) is a left (resp., right) NI-ideal, then (X, f) is a left (resp.,

right) NI-ideal of X.

Proof. Assume that the α-translation (X, fα) of (X, f) is a left NI-ideal of X. For
any x, y ∈ X, we have f(xy) + α = fα(xy) ≤ fα(y) = f(y) + α and

f(x) + α = fα(x) ≤
∨

{fα(x ∗ y), fα(y)}

=
∨

{f(x ∗ y) + α, f(y) + α}

=
∨

{f(x ∗ y), f(y)} + α.
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It follows that f(xy) ≤ f(y) and f(x) ≤
∨

{f(x ∗ y), f(y)}. Therefore (X, f) is a left
NI-ideal of X by Theorem 3.1. �

For any N-structure (X, f), α ∈ [⊥, 0] and t ∈ [−1, α), the set

Cα(f ; t) := {x ∈ X | f(x) ≤ t − α}

is called the α-translation of closed t-support of (X, f)

Theorem 3.13. Let (X, f) be an N-structure and α ∈ [⊥, 0]. If (X, f) is a left (resp.,

right) NI-ideal of X, then the α-translation of closed t-support of (X, f) is a left (resp.,

right) I-ideal of X for all t ∈ [−1, α).

Proof. Let x, y ∈ X. If y ∈ Cα(f ; t), then f(y) ≤ t − α and so

(3.5) f(xy) ≤ f(y) ≤ t − α.

Thus xy ∈ Cα(f ; t). Suppose that x ∗ y ∈ Cα(f ; t) and y ∈ Cα(f ; t). Then

f(θ) ≤ f(x) ≤
∨

{f(x ∗ y), f(y)} ≤ t − α

by (3.1). Thus θ ∈ Cα(f ; t) and x ∈ Cα(f ; t). Consequently, Cα(f ; t) is a left I-ideal
of X for all t ∈ [−1, α). Similarly we can prove it for the right case. �

Theorem 3.14. For any N-structure (X, f) and α ∈ [⊥, 0], the following assertions

are equivalent.

(1) The α-translation of closed t-support of (X, f) is a left (resp., right) I-ideal of

X for all t ∈ [−1, α).
(2) The α-translation of (X, f) is a left (resp., right) NI-ideal of X.

Proof. Suppose that (X, fα) is a left NI-ideal of X for α ∈ [⊥, 0] and let t ∈ [−1, α).
For any x, y ∈ X, if x ∗ y ∈ Cα(f ; t) and y ∈ Cα(f ; t), then

f(x) + α = fα(x) ≤
∨

{fα(x ∗ y), fα(y)}

=
∨

{f(x ∗ y) + α, f(y) + α}

=
∨

{f(x ∗ y), f(y)} + α

≤ t − α + α = t

and so f(x) ≤ t − α. Thus x ∈ Cα(f ; t). Since

f(θ) + α = fα(θ) ≤ fα(x) = f(x) + α ≤ t − α + α = t,

for any x ∈ Cα(f ; t), we have f(θ) ≤ t − α, i.e., θ ∈ Cα(f ; t). Now if y ∈ Cα(f ; t),
then f(y) ≤ t − α which implies that

f(xy) + α = fα(xy) ≤ fα(y) = f(y) + α ≤ t,

that is, f(xy) ≤ t − α for all x ∈ X. Hence xy ∈ Cα(f ; t), and therefore Cα(f ; t) is a
left I-ideal of X.

Conversely, assume that the α-translation of closed t-support of (X, f) is a left
I-ideal of X for all t ∈ [−1, α). Suppose that there exist a, b ∈ X and t0 ∈ [−1, α)
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such that fα(ab) > t0 ≥ fα(b). Then f(ab) + α > t0 and f(b) + α ≤ t0, which imply
that b ∈ Cα(f ; t0) and ab /∈ Cα(f ; t0). This is a contradiction, and thus fα(xy) ≤ fα(y)
for all x, y ∈ X. If

fα(a) >
∨

{fα(a ∗ b), fα(b)},

for some a, b ∈ X, then there exists t1 ∈ [−1, α) such that

fα(a) > t1 ≥
∨

{fα(a ∗ b), fα(b)},

which implies that f(a) > t1 − α, f(a ∗ b) ≤ t1 − α and f(b) ≤ t1 − α. Hence
a ∗ b ∈ Cα(f ; t1) and b ∈ Cα(f ; t1), but a /∈ Cα(f ; t1), which is a contradiction. Hence
fα(x) ≤

∨

{fα(x ∗ y), fα(y)} for all x, y ∈ X. Therefore (X, fα) is a left NI-ideal of X
by Theorem 3.1. �

Given two N-structures (X, f) and (X, g), we say that (X, f) is a retrenchment of
(X, g) if f ⊆ g, that is, f(x) ≤ g(x) for all x ∈ X.

Definition 3.3. Given two N-structures (X, f) and (X, g), we say that (X, f) is a
retrenched left (resp., right) NI-ideal of (X, g), denoted by

(X, f) ⊆̃l (X, g) (resp., (X, f) ⊆̃r (X, g)),

if (X, f) is a retrenchment of (X, g), and (X, f) is a left (resp., right) NI-ideal of X
whenever (X, g) is a left (resp., right) NI-ideal of X.

Theorem 3.15. Let (X, g) be a left (resp., right) NI-ideal of X. For every α ∈ [⊥, 0],
the α-translation (X, gα) of (X, g) is a retrenched left (resp., right) NI-ideal of X.

Proof. For any x ∈ X, we have gα(x) = g(x) + α ≤ g(x). Thus (X, gα) is a retrench-
ment of (X, g). If (X, g) is a left NI-ideal of X, then Theorem 3.11 shows that (X, gα)
is a left NI-ideal of X. Therefore (X, gα) is a retrenched left NI-ideal of X. Similarly,
we can prove it for the right case. �

Theorem 3.16. Let (X, g) be a left (resp., right) NI-ideal of X. If (X, f1) and

(X, f2) are retrenched left (resp., right) NI-ideals of (X, g), then so is (X, f1 ∪ f2),
where (f1 ∪ f2)(x) =

∨

{f1(x), f2(x)} for all x ∈ X.

Proof. Assume that (X, f1) and (X, f2) are retrenched left NI-ideals of a left NI-
ideal (X, g) of X. Then f1(x) ≤ g(x) and f2(x) ≤ g(x), for all x ∈ X. Thus
(f1∪f2)(x) =

∨

{f1(x), f2(x)} ≤ g(x) for all x ∈ X, and so (X, f1∪f2) is a retrenchment
of (X, g). For any x, y ∈ X, we have

(f1 ∪ f2)(xy) =
∨

{f1(xy), f2(xy)}

≤
∨

{f1(y), f2(y)}

= (f1 ∪ f2)(y)
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and

(f1 ∪ f2)(x) =
∨

{f1(x), f2(x)}

≤
∨

{

∨

{f1(x ∗ y), f1(y)} ,
∨

{f2(x ∗ y), f2(y)}
}

=
∨

{

∨

{f1(x ∗ y), f2(x ∗ y)} ,
∨

{f1(y), f2(y)}
}

=
∨

{(f1 ∪ f2)(x ∗ y), (f1 ∪ f2)(y)} .

It follows from Theorem 3.1 that (X, f1 ∪ f2) is a left NI-ideal of X. Therefore
(X, f1 ∪ f2) is a retrenched left NI-ideal of (X, g). The proof is similar for the right
case. �

Theorem 3.17. Let (X, g) be a left NI-ideal of X and let α, β ∈ [⊥, 0]. If α ≤ β, then

the α-translation (X, gα) of (X, g) is a retrenched left NI-ideal of the β-translation

(X, gβ) of (X, g).

Proof. Note that the α-translation (X, gα) and the β-translation (X, gβ) of (X, g) are
left NI-ideal of X by Theorem 3.11. If α ≤ β, then

gα(x) = g(x) + α ≤ g(x) + β = gβ(x),

for all x ∈ X. Hence (X, gα) is a retrenchment of (X, gβ). Therefore (X, gα) is a
retrenched left NI-ideal of (X, gβ). �

Similarly we have the following theorem for the right case.

Theorem 3.18. Let (X, g) be a right NI-ideal of X and let α, β ∈ [⊥, 0]. If α ≤
β, then the α-translation (X, gα) of (X, g) is a retrenched right NI-ideal of the β-

translation (X, gβ) of (X, g).

Theorem 3.19. Let (X, g) be a left (resp., right) NI-ideal of X and let β ∈ [⊥, 0].
For every retrenched left (resp., right) NI-ideal (X, f) of the β-translation (X, gβ) of

(X, g), there exists α ∈ [⊥, 0] such that α ≤ β and (X, f) is a retrenched left (resp.,

right) NI-ideal of the α-translation (X, gα) of (X, g).

Proof. It is straightforward. �

A mapping ϕ : X → Y is called a homomorphism of IS-algebras if ϕ(x ∗ y) =
ϕ(x) ∗ ϕ(y) and ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ X.

Let ϕ : X → Y be an onto mapping. Given an N-structure (Y, g), the N-structure
(X, f), where f = g ◦ϕ, is called the preimage of (Y, g) under ϕ. Given an N-structure
(X, f), the image of (X, f) under ϕ is defined to be the N-structure (Y, g) on which g
is denoted by ϕ(f) and is given by

g(y) =
∧

x∈ϕ−1(y)

f(x),

for all y ∈ Y .
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Theorem 3.20. Every preimage of a left (resp., right) NI-ideal under onto homomor-

phism is a left (resp., right) NI-ideal.

Proof. Let ϕ : X → Y be an onto homomorphism of IS-algebras and let an N-
structure (X, f) is the preimage of a left NI-ideal (Y, g) of Y . For any x, y ∈ X, we
have

f(xy) = (g ◦ ϕ)(xy) = g(ϕ(xy))

= g(ϕ(x)ϕ(y)) ≤ g(ϕ(y))

= (g ◦ ϕ)(y) = f(y)

and

f(x) = (g ◦ ϕ)(x) = g(ϕ(x))

≤
∨

{g(ϕ(x) ∗ y′), g(y′)} for all y′ ∈ Y

=
∨

{g(ϕ(x) ∗ ϕ(y)), g(ϕ(y))}

=
∨

{g(ϕ(x ∗ y)), g(ϕ(y))}

=
∨

{(g ◦ ϕ)(x ∗ y), (g ◦ ϕ)(y)}

=
∨

{f(x ∗ y), f(y)}.

It follows from Theorem 3.1 that (X, f) is a left NI-ideal of X. Similarly we can verify
it for the right case. �

Lemma 3.1. Let ϕ : X → Y be an onto mapping. Given an N-structure (X, f) and

t ∈ [−1, 0), we have

C(ϕ(f); t) =
⋂

t<s<0

ϕ(C(f ; t − s)).

Proof. For any y = f(x) ∈ Y , if y ∈ C(ϕ(f); t), then
∧

z∈ϕ−1(ϕ(x))

f(z) = ϕ(f)(ϕ(x)) = ϕ(f)(y) ≤ t.

Hence, for every s ∈ (t, 0), there exists x0 ∈ ϕ−1(y) such that f(x0) ≤ t − s. Thus
y = ϕ(x0) ∈ ϕ(C(f ; t − s)), and so y ∈

⋂

t<s<0
ϕ(C(f ; t − s)).

Conversely, let y ∈
⋂

t<s<0
ϕ(C(f ; t − s)). Then y ∈ ϕ(C(f ; t − s)) for every s ∈ (t, 0),

and hence there exists x0 ∈ C(f ; t−s) such that y = ϕ(x0). It follows that f(x0) ≤ t−s
and x0 ∈ ϕ−1(y). Therefore

ϕ(f)(y) =
∧

x∈ϕ−1(y)

f(x) ≤
∧

t<s<0

{t − s} = t,

and thus y ∈ C(ϕ(f); t). �

Theorem 3.21. Every image of a left (resp., right) NI-ideal under onto homomor-

phism is a left (resp., right) NI-ideal.
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Proof. Let ϕ : X → Y be an onto homomorphism of IS-algebras and let an N-
structure (Y, g) is the image of a left NI-ideal (X, f) of X. Let t ∈ [−1, 0) be such
that C(ϕ(f); t) 6= ∅. Then

C(ϕ(f); t) =
⋂

t<s<0

ϕ(C(f ; t − s)),

by Lemma 3.1, and so ϕ(C(f ; t − s)) is nonempty for all s ∈ (t, 0). Since (X, f) is
a left NI-ideal of X, C(f ; t − s) is a left I-ideal of X and so the onto homomorphic
image ϕ(C(f ; t − s)) of C(f ; t − s) under ϕ is a left I-ideal of Y . Hence C(ϕ(f); t) is
a left I-ideal of Y . It follows from Theorem 3.5 that (Y, g) is a left NI-ideal of Y . �
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