FIRST RECORD OF *Cylindroiulus horvathi* (DIPLOPODA, JULIDA, JULIDAE) IN SERBIA

Zvezdana S. Jovanović* and Dragan Ž. Antić

Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Republic of Serbia

*E-mail: z.jovanovic.bio@gmail.com

(Received March 6, 2015)

ABSTRACT. *Cylindroiulus horvathi* (Verhoeff, 1897), found at a single locality in Vojvodina, north Serbia, is the third representative of the genus *Cylindroiulus* Verhoeff, 1894 in Serbian millipede fauna. Brief description and ecological aspects are given. Key to the *Cylindroiulus* species in Serbia and distribution map with incorporated new data are also provided.

Key words: Serbia, Diplopoda, Julida, *Cylindroiulus*.

INTRODUCTION

Currently, the Serbian millipede fauna includes 101 species, belonging to 44 genera and 16 families of which Julidae, with 16 genera and 41 species, is the largest (Antić et al., 2013, 2014). Although the genus *Cylindroiulus* Verhoeff, 1894 includes about 100 species in Europe (Enghoff and Kime, 2013), only two of them were registered in Serbia up to now: *Cylindroiulus boleti* (C. L. Koch, 1847) and *C. luridus* (C. L. Koch, 1847) (Antić et al., 2013). *C. horvathi* (Verhoeff, 1897) is the third species of this genus and the 102. species of millipedes in Serbia. It belongs to the *horvathi* group of species, alongside *Cylindroiulus abaligetanus* Verhoeff, 1901 and *C. cambio* Korsós & Read, 1994. Similarities in external characteristics and in gonopod structure have been recognized (Attems, 1903; Verhoeff, 1905), which led to the establishment of the group. They are small animals, with a crenulated limbus and an indented apex of the gonopodal opisthomerite, separating the brachite from the solenomerite. Their distribution area extends from the middle Europe, Balkan Peninsula, Crimea, to northwest Russia (Korsós and Read, 1994). This paper represents the first report of *C. horvathi* in Serbia.

MATERIAL AND METHODS

Specimens were preserved in 70% ethanol and analyzed at the laboratories of the Institute of Zoology, University of Belgrade - Faculty of Biology. Examination of the whole specimens was done using a Carl Zeiss Stemi 2000-c binocular stereomicroscope with an AxioCamMRc camera and AxioVision Rel. 4.2 program. For adult specimens, dimensions...
and numbers of body rings were determined. Photographs of the gonopods were prepared on Carl Zeiss Axioscope 40 microscope with Canon PowerShot A80 digital camera connected and processed through Zerene Stacker program.

To illustrate the distribution of the genus *Cylindroiulus* in Serbia we used the UTM notation system. The map records the presence of the species in 10 km squares of the UTM grid. The map (Fig. 4) records the presence of the species in 10 km squares of the UTM grid.

RESULTS AND DISCUSSION

Cylindroiulus horvathi (Verhoeff, 1897) (Figs. 1 and 3)

Syns.: *Cylindroiulus vitosae* Strasser, 1962
Cylindroiulus dietli Verhoeff, 1989
Cylindroiulus ponticus Golovatch, 1978

![Image](image.png)

Fig. 1. *Cylindroiulus horvathi* (Verhoeff, 1897), a female from the shores of Lake Rusanda, Vojvodina, Serbia.

Material examined: 1 female, 1 male and a juvenile specimen from the shores of Lake Rusanda (Fig. 2), near Melenci, Vojvodina, north Serbia, collected on 3/18/2014, by M. Šćiban. Specimens are kept at the Institute of Zoology, University of Belgrade - Faculty of Biology.

Short description: Female with 43 body rings + telson, length 11.5 mm, maximum height 1.10 mm. Male with 40 body rings + telson, length 9.3 mm, maximum height 0.8 mm. Coloration light yellowish brown with distinctive ozadenes and lighter legs. Darker mid-dorsal stripe present. Head with antennae reaching first trunk body ring. Telson with an epiproctal projection directed downward. Gonopods: promerite and mesomerite of equal length. Projecting rim of promerite enwrapping mesomerite laterally. Oral margin of
mesomerite indented. Paracoxal rim prominent, embowed. Paracoxal process wide, blunt, with notches on posterior margin. Solenomerite projecting beyond tip of brachite (Fig. 3).

Fig. 2. Shore of Lake Rusanda, habitat of *Cylindroiulus horvathi* (Verhoeff, 1897) in Serbia (photo M. Šćiban).

Fig. 3. – *Cylindroiulus horvathi* (Verhoeff, 1897), gonopods, mesal view, male from the shores of Lake Rusanda, Vojvodina, Serbia.
Distribution: The distribution area of *C. horvathi* ranges from Poland in the north across Hungary and Romania to Bulgaria in the south. The eastern-most find of this species is in Crimea (KORSÓS and READ, 1994). Considering that this species has been reported in a few neighbouring countries, its presence in Serbia had been expected.

Ecology: This species is known to inhabit xeric environments such as dry grassland and steppe vegetation (KORSÓS and READ, 1994). These habitats are present in the northern part of Serbia, where the single known locality of this species is located. All three specimens were collected on a sunny day on the dry land on the shores of the lake.

Fig. 4. Distribution map of *Cylindrioiulus* species in Serbia.
Distribution of *Cylindroiulus* species in Serbia (Fig. 4):

Cylindroiulus boleti (C. L. Koch, 1847): Deliblatska peščara (Vučković, 1956); v. Gledjica, near Ivanjica (Čurčić and Makarov, 1998); Ljuboten, Mt. Šar planina (Attems, 1929); Kačanik (Vučković, 1956); Mt. Fruška Gora (Vučković, 1956); Mt. Kosmaj (Vučković, 1956); north and central Serbia (Čurčić and Makarov, 1997); Obedska Bara, v. Obrež, nr. Belgrade (Makarov et al., 2004); Ripanj, nr. Belgrade (Makarov et al., 2004); without precise locality (Strasser, 1971, 1971a; Mršić, 1985) east Serbia (Antić et al., 2013);

Cylindroiulus horvathi (Verhoeff, 1897): Rusanda Lake, nr. Melenci (present study).

Cylindroiulus luridus (C. L. Koch, 1847): Central Serbia (Čurčić and Makarov, 1997); Donji Jasmići, Mt. Goč (Mršić, 1985).

Key to the identification of *Cylindroiulus* species in Serbia:

1. Telson with downward directed epiproctal projection
 2. Without projection of telson beyond anal valves
 3. **Cylindroiulus boleti**
 4. Promerite and mesomerite subequal in length. Brachite well developed and wide, separated by a small indentation from solenomerite.
 5. **Cylindroiulus horvathi**
 6. Promerite and mesomerite short and broad, with mesomerite somewhat shorter than promerite. Opisthomerite with narrow, curved hook-shaped brachite.
 7. **Cylindroiulus luridus**

Acknowledgments

This work was supported by the Serbian Ministry of Education, Science, and Technology (Grant 173038). The authors are grateful to all collectors who sent *Cylindroiulus*
samples considered in this study. Marko Šćiban kindly provided a photo of habitat of C. horvathi.

References:

