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ABSTRACT.  This study examines the influence of magnetic intensity and internal heat 
generation on a flow system with variable–viscosity channel with varying wall 
temperatures. The fluid is assumed to be steady, incompressible with both the variable 
viscosity and internal heat generation to be a linear function of temperature. The 
approximate solutions are secured by using Adomian decomposition method (ADM) for 
the momentum and energy distributions as well as the rate of entropy generation and 
other thermophysical aspects of the flow regime under the impact of both the magnetic 
influence and internal heat generation are illustrated in tables and graphs.  

Keywords: Hydromagnetic; internal heat generation; variable–viscosity; non–uniform 
wall temperature; entropy generation and Adomian decomposition method (ADM). 

 
 
 

INTRODUCTION 
 

 Various researches on hydromagnetic fluid flow have been of high interest to scientists 
and engineers for the numerous applications and relevance in geophysics, engineering, 
industry and technology. For instance, PRASAD and KUMAR (2011) considered hydromag-
netic flow within porous medium between two permeable beds in the presence of exponent-
tially decaying pressure gradient because of its widespread industrial and environmental 
applications. To support the study, the relevance in geothermal, oil reservoir engineering and 
astrophysics, to mention a few have been highlighted in BAOKU et al. (2012), where the 
paired effects of thermal radiation and magnetic field on the hydromagnetic Couette flow 
within porous medium has been investigated. Recently, HASSAN and MARITZ (2017b) 
scrutinized the effects of heat source on hydromagnetic Poiseuille fluid flow between two 
parallel plates stating the applications in many industrial and engineering processes 
especially in the purification of crude oil magneto-hydrodynamics generators. Other studies 
on hydromagnetic fluids can be found extensively in SARAVANAN  and KANDASWAMY  
(2004), SAHA  and CHAKRABARTI  (2013), ZELALEM  et al. (2013), KIM  (2014), XIAO and KIM  
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(2014), HASSAN and GBADEYAN  (2015a,b), KRISHNAMURTHY et al. (2015), MAKINDE  et al. 
(2015), HASSAN and MARITZ (2016a,b) and UWANTA  and HAMZA  (2016). 
 Moreover, extensive survey with experimental, theoretical and numerical approaches on 
fluid behaviour with so many thermo physical properties which varies from one to many 
properties such as in MAKINDE  et al. (2015) that employed laws of thermodynamics to 
examine the behaviour of fluid flow on thermal decomposition in hydromagnetic variable 
viscosity Couette flow in a rotating system with hall current. On the other hand, 
SHEIKHOLESLAMI et al. (2016) investigated heat and mass transfer characteristic involving 
unsteady Nano fluid flow between parallel plates. However, flow within parallel plates with 
different characteristics such as through porous medium in HASSAN and MARITZ (2016b) 
together with magnetic and thermal radiation effect as in Baoku et al. (2012). Also, variable 
– viscosity as found in MAKINDE  (2008) and HASSAN and MARITZ (2017a) with non–uniform 
wall temperature. Other properties include heat source as found in ELBASHBESHY and BAZID  
(2004), EL-AMIN  (2004), JHA and AJIBADE (2009), OLANREWAJU et al. (2011), HASSAN and 
GBADEYAN  (2015b) and HASSAN and MARITZ (2016a). 
 Furthermore, the combination of two or more effects on fluid flow need serious 
attention, especially when heat source is involved because heat is normally produced when 
fluid particles interact and may alter the temperature distribution as well as the particle 
deposition rate as discussed in HASSAN and MARITZ (2017b). Motivated by this study, 
brought the idea to extend the study in MAKINDE  (2008), by incorporating the impacts of heat 
source and magnetic strength on the irreversibility flow of a variable – viscosity fluid 
through a channel with non-uniform wall temperature as well as on the entropy generation 
rate and other thermophysical properties of the flow regime. This study is significant to 
technological applications such as in biomedical engineering, material and food processing. 
The coupled differential equations governing the fluid motion and energy are secured by 
using semi–analytical decomposition method named after G. Adomian. This particular 
method has been proved to be efficient for obtaining solutions to differential equations and 
converge rapidly with sizeable number of iterations. Further studies on ADM are extensively 
discussed in WAZWAZ  (1999, 2000), WAZWAZ  and EL-SAYED (2001) and RAY  (2014). 

 
 

MATHEMATICAL MODEL 
 

Consider the steady flow of an hydromagnetic, incompressible and electrically con-
ducting fluid flowing in the x  - direction through fixed plates of width (a) and length (L), 
with non-uniform wall 
temperatures at the upper 
(Tu) and lower (TL) plates 
under the influence of a 
constant pressure gradient 
together with that of a 
transverse magnetic field 
strength (B0) as displayed 
in figure 1.  

 

 

Figure 1: Geometry of the 
Problem 
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The temperature dependent viscosity (µ ) as described in MAKINDE  (2008), HASSAN and 

MARITZ (2017b), and the heat source (δ ) that is assumed to be a linear function of 
temperature as in JHA and AJIBADE (2009), HASSAN and GBADEYAN  (2015b) and HASSAN and 
MARITZ (2016a) can be expressed as  

[ ])(10 LTT −−= βµµ    and  [ ]LTT −= 0δδ       (1) 

where 0µ  is the fluid dynamic viscosity at the lower wall temperature (LT ), β  is the 

viscosity - variation parameter, 0δ  represents the dimensional heat generation coefficient and 

T  is the fluid temperature. 
 
Neglecting the reactant consumption of the fluid; the continuity, momentum (along x  and y  
axes) and energy equations governing the fluid flow in non-dimensionless form may be given 
as in MAKINDE  (2008), HASSAN and GBADEYAN  (2015b) and HASSAN and MARITZ (2017b): 
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where ρ  stands for the fluid density, k for thermal conductivity, p is the pressure, σ  for 

electrical conductivity, pc  is the specific heat at constant pressure, u  represent the axial 

velocity, v  is the normal velocity, also, x and y are distances measured in the streamline and 
normal direction respectively. It is worthy to note that the bar on each variable represents the 
non-dimensionless form. However, the additional terms in equations (3) and (5) represent the 
magnetic intensity influence and internal heat source on the flow regime as in ZELALEM  et al. 
(2013), HASSAN and GBADEYAN  (2015a,b) and HASSAN and MARITZ (2016a). 

However, the rate of entropy which is an account of disorderliness in a system is also a 
way of providing another variable that can be used to describe the state of flow regime. 
Following WOODS (1975), MAKINDE  (2008), HASSAN and GBADEYAN  (2015a,b) and HASSAN 
and MARITZ (2016a, 2017b), the general equation for the rate of entropy generation (mS ) 
under the influence of magnetic field is expressed as: 
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Also, the first term in (6) represents the irreversibility due to heat transfer, the second 
term is the entropy generation due to viscous dissipation and the third term is the local 
entropy generation due to the effects of magnetic strength.  
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Introducing the following non - dimensional quantities in equations (1) - (6) as 
follows: 
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where G is the pressure gradient, Tu is the upper wall temperature, ε  is the is the channel 
aspect ratio and U is the velocity scale. In addition to that,α and δ  respectively stand for the 
parameters of viscosity – variation and internal heat generation; while Br, Re, Pe and H are 
numbers respectively standing for Brinkman, Reynolds, Peclet and Hartmann. 

Introducing (7) into equations (1) - (6), the following are the equations regulating the 
fluid flow: 
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Since the channel aspect ratio is narrow, that is, 10 <<< ε , the lubrication estimation 
essentially on asymptotic simplification of the governing equations (8) - (11) is invoked 
following MAKINDE  (2008) and HASSAN and MARITZ (2017b) to obtain: 
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where Tαµ −= 1  with the following boundary conditions at the upper wall of the channel as: 

 0=u ,  1=T   at  1=y        (15) 

and at the lower wall of the channel as: 

 0=u ,  0=T   at  0=y        (16) 

Note that (15) and (16) indicate that the temperature at both fixed upper and lower walls are 
not the same. 



9 
 

 Finally, the dimensionless form of (6) using the existing variables in (7) is expressed 
as follows: 
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where Ω  stands for the wall temperature difference parameter. 
 
 

METHOD OF SOLUTION [Adomian decomposition method (ADM)] 
 

The ADM is a semi-analytical method of solving differential equations which has 
been proved to be efficient and converge with sizeable number of iterations. The literature is 
rich in the following WAZWAZ  (2000), WAZWAZ  and EL-SAYED (2001), HASSAN and 
GBADEYAN  (2015a,b) and HASSAN and MARITZ (2016a). 

Equations (12) and (14) are coupled equations that need to be solved simultaneously. 
It is good to note that (13), upon integration gives a constant pressure along the y–axis 
direction. Therefore, substituting µ  which is equal to Tα−1   into the equations (12) and (14) 
subjected to the boundary conditions (15) and (16) and integrating appropriately to obtain the 
following couple equations: 
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where )0('0 ua = and )0('0 Tb = are constants of integration to be determined by using the 

boundary condition (15). However, to solve the coupled equations (18) and (19), we assume 
infinite series solutions in the form of: 
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such that when (20) is substituted in (18) and (19), we obtain, 

    






+








∂
∂








+−=
∞

=

∞

=

∞

=

y y y

n
n

n
n

n
n dYdYyuHdYyu

y
yTy

G
yayu

0 0 0 0

2

00

2
0 )()()(

2
)( α  (21) 

     
















∂
∂








+
















∂
∂−=

∞

=

∞

=

∞

=

y y

n
n

n
n

y y

n
n dYdYyu

y
yTBrdYdYyu

y
BrybyT

0 0

2

000 0

2

0
0 )()()()( α   

      






−






−
∞

=

∞

=

y y

n
n

y y

n
n dYdYyTdYdYyuBrH

0 0 00 0

2

0

2 )()( δ    (22) 

Here, in order to use ADM, we let non – linear terms in (21) and (22) be represented as: 
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where the respective components ...,,, 210 AAA , ...,,, 210 BBB , ...,,, 210 CCC  and 

...,,, 210 DDD are called Adomian polynomials. Then (23) is thereby expanded such that 
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With (23), the energy and motion equations respectively reduce to: 
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Then, following recursive relation with the zeroth component as already discussed in WAZWAZ  
(1999), WAZWAZ  and EL-SAYED (2001), BABOLIAN  and BIAZAR  (2002) and RAY  (2014), we 
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 Moreover, equations (27) - (28) are thereby coded on Mathematica software 
package, then substituting the results back into (20) to obtain the solutions for the velocity and 
temperature profiles which are hereby discussed in the next section because of the large 
volume of outputs.  
 Finally, for easy computations of equation (17), we assigned the first term, (1N ) and 

other terms as ( 2N ) such that: 
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where 1N  is the irreversibility due to heat transfer and 2N  is the entropy generation rate due 
to the compound impacts of viscous dissipation and magnetic strength. However, it is 
essential to understand the supremacy of heat transfer irreversibility over fluid friction, as a 
result of that, BEJAN (1996) defined irreversibility distribution ratio as  
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Relation (30) shows that heat transfer has dominion when 10 << φ  and fluid friction has 
dominion when 1>φ . But, when the rate of entropy production of heat transfer is equal to that 
of fluid friction, it implies that, 1=φ . As an alternative to irreversibility parameter, the Bejan 
number (Be) which shows the contribution of both the heat transfer and fluid friction to 
entropy generation rate is defined as 

 .10
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11 ≤≤
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N
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The expressions for (29) to (31) can be determined from the solutions in (20) using code on 
Mathematica software package as well.  

 
 

DISCUSSION OF RESULTS 
 

 This section discussed the effects of the internal heat generation and magnetic 
intensity together with other important flow parameters on a variable-viscosity fluid flow with 
non-uniform wall temperature. Table 1 shows the rapid convergence of the series solutions for 
the numerical constants 0a and 0b  from the equations (18) and (19) which converge at fifth 

iteration.  
 
Table 1: Rapid convergence of the series solution for numerical constants 0a and 0b . 

 
,1.0== δα 5.0=H , 1=G  and 10=Br  

n 0a  0b  

0 0.50000 1.00000 
1 0.50143 1.44162 
2 0.49860 1.45440 
3 0.497877 1.45045 
4 0.497882 1.44956 
5 0.49792 1.4496 
6 0.49792 1.4496 

 

 Table 2 shows the comparison of numerical results of velocity and temperature 
profiles with previously obtained results in MAKINDE  (2008), where perturbation method was 
used and the present result of which ADM was used. From the table, it is observed that the 
absolute error obtained had an average order of410− which shows that ADM is also another 
efficient means of obtaining solutions to differential equations. 

The velocity distributions of the fluid system are displayed in figures 2 to 5 for 
variations in α ,δ , Br and H respectively. The graphs show that the maximum speed is 
obtained at the centerline of the flow channel of which the rising values of α , δ and Br amount 
to greatest motion in the flow regime as in figures 2 to 4 while the reverse is noticed in figure 5 
where the least speed is recorded with rising value of H. Of course, the rising values of α , 
δ and Br allows the fluid to interact and hence increase the fluid internal energy by moving 
faster while the magnetic strength parameter H has a retarding effect due to the presence of 
Lorentz forces across the flow channel. 
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Table 2: Comparison of numerical results of velocity and temperature profiles. 
 

.0== Hδ 1.0=α , 1=G , 10=Br  

y u(y) PM u(y) ADM Absolute Error T(y) PM T(y) ADM Absolute Error 
0.0 0.000000 0.000000 0 0 0 0 
0.1 0.046124 0.046186 6.1631 × 10 - 5 0.132661 0.132918 2.5646 × 10 - 4 
0.2 0.082610 0.082760 1.4976 × 10 - 4 0.248296 0.248746 4.4964 × 10 - 4 
0.3 0.109181 0.109438 2.5724 × 10 - 4 0.354051 0.35463 5.7812 × 10 – 4 
0.4 0.125608 0.125981 3.7284 × 10 - 4 0.455167 0.455819 6.5202 × 10 – 4 
0.5 0.131684 0.132166 4.8189 × 10 – 4 0.554901 0.554593 6.9283 × 10 - 4 
0.6 0.127208 0.127772 5.644 × 10 – 4 0.654458 0.655182 7.2408 × 10 – 4 
0.7 0.111981 0.112574 5.9319 × 10 – 4 0.752936 0.753689 7.5278 × 10 – 4 
0.8 0.085810 0.086343 5.3337 × 10 – 4 0.847262 0.848004 7.4246 × 10 – 4 
0.9 0.048528 0.048871 3.4651 × 10 – 4 0.932713 0.932713 5.7590 × 10 – 4 
1.0 0.000000 5.98 × 10 – 17 5.98 × 10 - 17 1 1 0 

 
  

   

      Figure 2: Velocity profile with change in α .  Figure 3: Velocity profile with change in δ . 

   

    Figure 4: Velocity profile with change in Br.   Figure 5: Velocity profile with change in H.  

The temperature profiles of the fluid flow are displayed in figures 6 to 9. The 
observation showed that the maximum temperature varied at the centreline and maintains 
equilibrium at both the upper and lower wall channels with different temperatures stated in 
the boundary conditions (15) and (16). The increasing values of δ , H and Br in figures 6 to 8 
make the temperature to rise due to interaction of the fluid in the channel while the viscosity – 
variation parameter (α ) tries to reduce the temperature at the centre as the value increases as 
shown in figure 9. 
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   Figure 6: Temperature profile with change in δ .      Figure 7: Temperature profile with change in H. 
 
  

   

  Figure 8: Temperature profile with change in Br.     Figure 9: Temperature profile with change in α . 
 
 

   

Figure 10: Entropy generation rate        Figure 11: Entropy generation rate 
        with change in α .    with change in δ . 

 
 The rates of entropy production in the fluid flow are illustrated in figures 11 to 13. The 
rate is maximum at both lower and upper plate surfaces and increases with greatest values of 
α andδ in figures 10 and 11 while the reverse is discovered in figure 12 with the wall 
temperature parameter (Ω ). Meanwhile, in figure 13, the rate of entropy distribution reduces 
at both the lower and upper plate surfaces with rising values of H but increases at around the 
central region with rising values of H. This showed that more disturbances occurred at the 
core region due to the influence of magnetic strength. 
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Figure 12: Entropy generation rate      Figure 13: Entropy generation rate  
  with change in Ω .    with change in H. 
 
 Figures 14 to 17 represent the graphical presentation of Bejan number of the fluid 
flow. The heat transfer irreversibility dominates at the central region where maximum value is 
recorded and goes down the plates surfaces. The increasing values ofα reduce the dominion 
in figure 14. In figure 15, the dominion increases with rising values of H at the lower wall, 
reduces at the central region and maintain equilibrium at the upper plate surface. Moreover, in 
figure 16, the heat transfer irreversibility dominates at the central region where maximum 
value is noticed with rising values of (Ω ) across the flow channel. Meanwhile, the heat 
transfer irreversibility dominates at the lower wall with increasing values of internal heat 
generation (δ ), maintain equilibrium at the central region and reduces at the upper plate 
surface. 
 

   
   Figure 14: Bejan number with change in α .               Figure 15: Bejan number with change in H. 
 

 

   
   Figure 16: Bejan number with change in Ω  .               Figure 17: Bejan number with change in δ . 
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CONCLUSION 
 

 In this study, a critical examination on the impact of magnetic strength and internal 
heat generation on a variable-viscosity fluid flow with non-uniform wall temperature that 
varies linearly is carried out. The analytical expressions for the fluid velocity and temperature 
distributions are secured using Adomian decomposition method (ADM) and the results 
showed that the increasing parameters of viscous – variation, internal heat generation and 
Brinkman allow the fluid to interact and hence increase the fluid internal energy by moving 
faster while the magnetic strength parameter has a retarding effect due to the presence of 
Lorentz forces across the flow channel. Also, the increasing values of heat source, magnetic 
strength and Brinkman number make the temperature to rise due to interaction of the fluid in 
the channel while the viscosity – variation parameter reduces the fluid temperature. On a 
general note, the results significantly emphasized the effects of magnetic strength and heat 
source which cannot be neglected as it plays a major role in engineering and industrial 
applications. 

 
 

NOMENCLATURE 
 

a  Channel width     L Channel characteristic length 
B0 Magnetic field strength   Tu Upper wall temperature 
TL Lower wall temperature   µ  Temperature dependent parameter 
ρ  The fluid density    G  Pressure gradient 
Ω  Wall temperature difference parameter ε  Channel aspect ratio 
K Thermal conductivity    p The pressure  
σ  Electrical conductivity   u  The axial velocity 

pc  The specific heat at constant pressure  v  The normal velocity 

U Velocity scale     Pe Peclet number 
α  Viscosity – variation parameter  H Hartmann number   
δ  Internal heat generation parameter  Br Brinkman number 
Re Reynolds number     
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