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ABSTRACT. This study examines the influence of magnetic isitgrand internal heat
generation on a flow system with variable-viscosiljannel with varying wall
temperatures. The fluid is assumed to be steadgnipressible with both the variable
viscosity and internal heat generation to be aalinfunction of temperature. The
approximate solutions are secured by using AdordeEcomposition method (ADM) for
the momentum and energy distributions as well asréte of entropy generation and
other thermophysical aspects of the flow regimeeuriie impact of both the magnetic
influence and internal heat generation are illustran tables and graphs.

Keywords: Hydromagnetic; internal heat generation; variabiscasity; non—uniform
wall temperature; entropy generation and Adomiasodgosition method (ADM).

INTRODUCTION

Various researches on hydromagnetic fluid flowehbeen of high interest to scientists
and engineers for the numerous applications anevaete in geophysics, engineering,
industry and technology. For instanc&kABAD and KUMAR (2011) considered hydromag-
netic flow within porous medium between two permedieds in the presence of exponent-
tially decaying pressure gradient because of itdespread industrial and environmental
applications. To support the study, the relevanageiothermal, oil reservoir engineering and
astrophysics, to mention a few have been highl@lteBaoku et al. (2012), where the
paired &ects of thermal radiation and magnetic field on tiydromagnetic Couette flow
within porous medium has been investigated. RegemthssaN and MrRITZ (2017b)
scrutinized the feects of heat source on hydromagnetic Poiseuillie fllow between two
parallel plates stating the applications in manyustrial and engineering processes
especially in the purification of crude oil magnétygdrodynamics generators. Other studies
on hydromagnetic fluids can be found extensively Sk RAVANAN and KANDASWAMY
(2004), 3HA and GHAKRABARTI (2013), ZLALEM €t al. (2013), Kim (2014), XA0 and Km
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(2014), FhssaN and GBADEYAN (2015a,b), IRISHNAMURTHY et al. (2015), MAKINDE et al.
(2015), FhssaN and MARITZ (2016a,b) and WANTA and Hamza (2016).

Moreover, extensive survey with experimental, tb&oal and numerical approaches on
fluid behaviour with so many thermo physical prdigsr which varies from one to many
properties such as in AKINDE et al. (2015) that employed laws of thermodynamics to
examine the behaviour of fluid flow on thermal degmsition in hydromagnetic variable
viscosity Couette flow in a rotating system withllhaurrent. On the other hand,
SHEIKHOLESLAMI €t al. (2016) investigated heat and mass transfer charsiit involving
unsteady Nano fluid flow between parallel plateswidver, flow within parallel plates with
different characteristics such as through porous mediubtiassan and MaRITz (2016b)
together with magnetic and thermal radiatidieet as in Baoket al. (2012). Also, variable
— viscosity as found in WKINDE (2008) and HssaN and MaRITz (2017a) with non—uniform
wall temperature. Other properties include heatsoas found in BBASHBESHY and B\zID
(2004), E-AMIN (2004), 3iA and AlBADE (2009), QANREWAJU et al. (2011), FhssaN and
GBADEYAN (2015b) and HssaN and MaRITz (2016a).

Furthermore, the combination of two or morffeets on fluid flow need serious
attention, especially when heat source is involvedause heat is normally produced when
fluid particles interact and may alter the tempamatdistribution as well as the particle
deposition rate as discussed imddaN and MhRITZ (2017b). Motivated by this study,
brought the idea to extend the study iak¥kDE (2008), by incorporating the impacts of heat
source and magnetic strength on the irreversibilibyv of a variable — viscosity fluid
through a channel with non-uniform wall temperatasewell as on the entropy generation
rate and other thermophysical properties of thev flegime. This study is significant to
technological applications such as in biomedicaimgering, material and food processing.
The coupled dferential equations governing the fluid motion ameérgy are secured by
using semi—analytical decomposition method namedr &. Adomian. This particular
method has been proved to H&agent for obtaining solutions to fierential equations and
converge rapidly with sizeable number of iteratidasrther studies on ADM are extensively
discussed in \WzwaAz (1999, 2000), WzwaAz and E-SAYED (2001) and Ry (2014).

MATHEMATICAL MODEL

Consider the steady flow of an hydromagnetic, ingmssible and electrically con-

ducting fluid flowing in thex - direction through fixed plates of widtl)(and length (),
with  non-uniform  wall
temperatures at the up

TA

(Tw) and lower Tv) plate: y
under the influence of  ~_, l l FTU l l l B
constant pressure gradi m— v=a
together with that of il '
transverse magnetic fie ol -
strength Bo) as displaye u(y)
in figure 1. "
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The temperature dependent viscosi]zT/)(as described in MKINDE (2008), HFhssaN and

MARITZ (2017b), and the heat sourcE)( that is assumed to be a linear function of

temperature as irHd and AIBADE (2009),HAssAN and GBADEYAN (2015b) andHASSAN and
MARITZ (2016a) can be expressed as

1= wlt- BT -T,)| and 6=4,fT-T,] (1)

where y, is the fluid dynamic viscosity at the lower wadintperature T, ), S is the
viscosity - variation parameted, represents the dimensional heat generation cesftiand
T is the fluid temperature.

Neglecting the reactant consumption of the fluige tontinuity, momentum (along and y

axes) and energy equations governing the fluid flowon-dimensionless form may be given
as in MAKINDE (2008), FhssaN and BADEYAN (2015b) and WssAN and MhRITZ (2017Db):
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where p stands for the fluid densitk for thermal conductivityp is the pressureg for
electrical conductivity,c, is the specific heat at constant presswrerepresent the axial

velocity, v is the normal velocity, alsa andy are distances measured in the streamline and
normal direction respectively. It is worthy to nakeat the bar on each variable represents the
non-dimensionless form. However, the additionaihtein equations (3) and (5) represent the
magnetic intensity influence and internal heat seun the flow regime as ireZALEm et al.
(2013), FhssaN and BADEYAN (2015a,b) antiAssAN and MARITZ (2016a).

However, the rate of entropy which is an accourdisérderliness in a system is also a
way of providing another variable that can be usedlescribe the state of flow regime.
Following WooDs (1975), MaKINDE (2008), HhssaN and BADEYAN (2015a,b) anéHAssAN
and MaRITz (2016a, 2017b), the general equation for the oatentropy generation™)
under the influence of magnetic field is expresssd

—\2 — —\2 22
qm :L a_I +£ a_E +OBLU (6)
T dy T oy T
Also, the first term in (6) represents the irreyl@tisy due to heat transfer, the second

term is the entropy generation due to viscous pl¢®in and the third term is the local
entropy generation due to the effects of magnatength.



Introducing the following non - dimensional quaiett in equations (1) - (6) as

follows:
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whereG is the pressure gradienfy is the upper wall temperature, is the is the channel
aspect ratio antd is the velocity scale. In addition to thatand o respectively stand for the
parameters of viscosity — variation and internathgeneration; whil@®r, Re, Pe andH are
numbers respectively standing for Brinkman, ReysoREeclet and Hartmann.

Introducing (7) into equations (1) - (6), the follmg are the equations regulating the
fluid flow:

ou 6v
8
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2
where ¢ = 2¢ (auj +2¢? av o 52%
0x 6y ay 0x

Since the channel aspect ratio is narrow, thatOis,e <<1, the lubrication estimation
essentially on asymptotic simplification of the gaving equations (8) - (11) is invoked
following MAKINDE (2008) and HssAN and MARITZ (2017b) to obtain:

0 ou
— H’u+G+0O 0 12
ay(ﬂ 6y] ) (2
_op
++0 0 13
ay 1ol (13
2 2
aI+Br U+ LY INTER +0T+O(£2):0 (14)
oy oy
where 1 =1-aT with the following boundary conditions at the epgvall of the channel as:
u=0, T=1 at y=1 (15)

and at the lower wall of the channel as:

u=0,T=0 at y=0 (16)

Note that (15) and (16) indicate that the tempeeatu both fixed upper and lower walls are
not the same.
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Finally, the dimensionless form of (6) using theéseng variables in (7) is expressed
as follows:

ma2o1 2 2
Ns zsa—TLZ: a_T Br luau +H 2u2 (17)
KT, -T)? Loy dy

where Q stands for the wall temperature difference paramet

METHOD OF SOLUTION [Adomian decomposition method (ADM)]

The ADM is a semi-analytical method of solving diéntial equations which has
been proved to be efficient and converge with silleaumber of iterations. The literature is
rich in the following WAzwaz (2000), WazwAaz and E-SAYED (2001), Hhssan and
GBADEYAN (2015a,b) and kssaN and MhRITZ (2016a).

Equations (12) and (14) are coupled equationsrtbatl to be solved simultaneously.
It is good to note that (13), upon integration give constant pressure along yzeaxis
direction. Therefore, substituting which is equal td-aT into the equations (12) and (14)
subjected to the boundary conditions (15) and &) integrating appropriately to obtain the
following couple equations:

_ G 5 y au 2yy
u(y) =agy-—y* +a[T(y)——dY +H?| [u(y) dYdY (18)
2 0 ay 00
Y (AU 2 Yy ou 2
T(y) =b,y—-Br (—J dydyY +Bra T(y)(—j dydy (29)
o Tty

~BrH Zﬁ[u(y)]z dy dy —5ﬁT(y)deY

where a, =u '(O)and b, =T '(O)are constants of integration to be determined byguthe

boundary condition (15). However, to solve the dedpequations (18) and (19), we assume
infinite series solutions in the form of:

u(y) = > u,(y) and  T(y)=> T.(y) (20)
n=0 n=0
such that When (20) is substituted in (18) and,(iv@) obtain,

u(y) = aoy——y +aJ(ZT (y)j (Zu (y)]dY+H [ j(Zu (y)]deY (21)

T(y)=b,y- Brﬁ( (iu (y)D deY+BraJy'Jy(ZT (y)j(a—y(iun(y)jj dydy
—Berfy[Zun(y)j deY—é'ﬁ(ZTn(y)JdeY (22)

Here, in order to use ADM, we let non — linear terim (21) and (22) be represented as:

Eror-(Ero)3{En0). Zao(3{E0)]
(3

>cm=|3 Tn(y)](ai(iun(y)n i F0,m=(Tum| e
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where the respective component®,,A,A, ,,.B,,B,B,,.., C,,C,C,,.. and
D,,D,,D,,...are called Adomian polynomials. Then (23) is thgrekpanded such that

A =To(NUo (¥), A =T (MU (Y) + To (W)U (), A =T, (W)U (V) + To (VU (Y) + To (YU, (y)
By = U (¥)*, B = 25 (Y)U, (Y), B, =uy(y)* +2u,(Y)u(y), -

Co = To(MUs (M, C, = Uy ([T (MU (¥) + 2Ty (MU ().

C, =T, (NUs () + 2T, (VU (MU () + Ty (U (%) + 205 (U (1)), -

D, = uo(y)z’ D, =2u,(y)u,(y), D, = u1(Y)2 +2u, (Y)u, (Y), - (24)
With (23), the energy and motion equations respelgtireduce to:
G y yy
U(y) = 2y == y* +a A (y)dY +H2[ Ju,(y) dvd¥ (25)
0 00

T(y) =byy- BrjﬁjX B, (y)dYdy + BraJXJXCn(y)deY
00 00
- BrHZﬁDn(y)deY—5ﬁTn(y)deY (26)
00 00

Then, following recursive relation with the zeratbmponent as already discussed inZ2WAz
(1999), WazwAz and E.-SAYED (2001), BaBoLIAN and BAzAR (2002) and Ry (2014), we
obtain the following:

uo(y)=aoy—%y2, To(y) = by (27)

() = @] ALY+ H2] [u,(y) dv Y

T..(y)= —BrJXJX B,(y)dYdY + Br aJXJXCn (y)dydy (28)
00 00
—BrHZTJXDn(y)deY—5ﬁTn(y)deY, n=0
00 00

Moreover, equations (27) - (28) are thereby coded Mathematica software
package, then substituting the results back ind {@ obtain the solutions for the velocity and
temperature profiles which are hereby discussethénnext section because of the large
volume of outputs.

Finally, for easy computations of equation (17¢, assigned the first termN() and

other terms asN,) such that:

2 2
N, =[a—Tj andN, :E{(ua—uJ +H 2u2] (29)
oy Q oy

where N, is the irreversibility due to heat transfer aNd is the entropy generation rate due

to the compound impacts of viscous dissipation amabnetic strength. However, it is
essential to understand the supremacy of heatféramseversibility over fluid friction, as a
result of that, BJAN (1996) defined irreversibility distribution ratas

=22 (30)
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Relation (30) shows that heat transfer has domimiben 0< ¢ <1 and fluid friction has
dominion wherg >1. But, when the rate of entropy production of hHeatsfer is equal to that
of fluid friction, it implies that,¢ =1. As an alternative to irreversibility parametére Bejan

number Be) which shows the contribution of both the heangfar and fluid friction to
entropy generation rate is defined as
N, 1

Be= —— where 0<Bes<l (32)
N, 1+¢

S

The expressions for (29) to (31) can be determfrmd the solutions in (20) using code on
Mathematica software package as well.

DISCUSSION OF RESULTS

This section discussed the effects of the intelmedht generation and magnetic
intensity together with other important flow pardere on a variable-viscosity fluid flow with
non-uniform wall temperature. Table 1 shows thedrapnvergence of the series solutions for
the numerical constants,and b, from the equations (18) and (19) which convergéftat

iteration.

Table 1: Rapid convergence of the series solutoméimerical constanta,and b, .

a=0=01H=05,G=1and Br =10
n a b,

0 0.5000( 1.0000(

1 0.5014: 1.4416.

2 0.4986( 1.4544(

3 0.49787 1.4504!

4 0.49788: 1.449'6

5 0.4979:. 1.449¢

6 0.4979. 1.449¢

Table 2 shows the comparison of numerical resafts/elocity and temperature
profiles with previously obtained results inAKINDE (2008), where perturbation method was
used and the present result of which ADM was ubedm the table, it is observed that the
absolute error obtained had an average orde® bfvhich shows that ADM is also another
efficient means of obtaining solutions to diffeiahequations.

The velocity distributions of the fluid system adésplayed in figures 2 to 5 for
variations ina,d, Br and H respectively. The graphs show that the maximunedps
obtained at the centerline of the flow channel bfcl the rising values aff , 0 andBr amount
to greatest motion in the flow regime as in figuPe® 4 while the reverse is noticed in figure 5
where the least speed is recorded with rising valud. Of course, the rising values af,

o andBr allows the fluid to interact and hence increase fthid internal energy by moving
faster while the magnetic strength paramétenas a retarding effect due to the presence of
Lorentz forces across the flow channel.
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Table 2: Comparison of numerical results of veloaid temperature profiles.

0=H=0.a0=01G=1,Br =10

y u(y) PM u(y) ADM Absolute Error  T(y) PM  T(y) ADM Absolute Error
0.0 0.00000( 0.00000t 0 0 0 0
0.1 0.04612- 0.04618I 6.1631 x 1°° 0.13266. 0.13291¢ 2.5646 x1°*
0.2 0.08261! 0.08276! 1.4976 x 1°4 0.248291 0.24874( 4.4964 x 1%
0.3 0.10918: 0.10943:i 25724 x 1°4 0.35405. 0.3546: 5.7812x1-4
0.4 0.12560: 0.12598: 3.7284 x 14 0.45516° 0.45581' 6.5202 x 1%
0.5 0.13168. 0.13216! 4.8189 x 1-% 0.55490. 0.55459: 6.9283 x 14
0.6 0.12720: 0.12777. 5.644 x 11~ 0.65445! 0.65518; 7.2408 x 14
0.7 0.11198: 0.11257. 59319 x 1-4 0.75293( 0.75368¢ 7.5278 x 14
0.8 0.08581! 0.08634. 5.3337 x 1-4 0.84726. 0.84800- 7.4246x1-4
0.9 0.04852¢ 0.04887: 3.4651 x 1-4 0.93271: 0.93271: 5.7590 x 1-4
1.0 0.000000 5.98x 1C-' 59¢x1C Y 1 1 0
{(G=H=6=1,Br=10} {G=H=1a=01,Br=10}
] R
- . 0.12f S S
0.10 \ o o-10p \ .
. Al 008- \‘\
\, 0.06f
0051 \ 0.04f
0.02f
D.IZ D.I4 O.IB D.I8 1.0 Y D.IZ D.I4 D.IB D.IB 1.0 Y

Figure 2: Velocity profile with change .
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Figure 3: Velocity profile with change id .
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Figure 4: Velocity profile with change Br.
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Figure 5: Velocity profile with change .

The temperature profiles of the fluid flow are désgd in figures 6 to 9. The

observation showed that the maximum temperatuied/at the centreline and maintains
equilibrium at both the upper and lower wall chdangth different temperatures stated in
the boundary conditions (15) and (16). The increasalues ofd , H andBr in figures 6 to 8
make the temperature to rise due to interactighefluid in the channel while the viscosity —
variation parameterd ) tries to reduce the temperature at the centtieagalue increases as
shown in figure 9.
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Figure 6: Temperature profile with changedn  Figure 7: Temperature profile with changélin
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Figure 8: Temperature profile with changdBm  Figure 9: Temperature profile with changeain

{6=01,6=H=0=1Br=10} {G=H=Q=1a=01,Br=10
Ns

Figure 10: Entropy generation rate Figure 11: Entropy generation rate
with change im . with change ind .

The rates of entropy production in the fluid flawe illustrated in figures 11 to 13. The
rate is maximum at both lower and upper plate sedaand increases with greatest values of
aanddin figures 10 and 11 while the reverse is discavere figure 12 with the wall
temperature paramete€(). Meanwhile, in figure 13, the rate of entropytdimution reduces
at both the lower and upper plate surfaces withgisalues oH but increases at around the
central region with rising values &f. This showed that more disturbances occurredeat th
core region due to the influence of magnetic stiteng



(G=H=1a=6=0.1,Br=10) (G=Q=1a=6=01,Br=10}

Figure 12: Entropy generation rate FigureBr®ropy generation rate
with change inQ . with change .

Figures 14 to 17 represent the graphical presentaf Bejan number of the fluid
flow. The heat transfer irreversibility dominatedtse central region where maximum value is
recorded and goes down the plates surfaces. Theasing values @f reduce the dominion
in figure 14. In figure 15, the dominion increaseth rising values oH at the lower wall,
reduces at the central region and maintain eqiuhbat the upper plate surface. Moreover, in
figure 16, the heat transfer irreversibility dontes at the central region where maximum
value is noticed with rising values of)() across the flow channel. Meanwhile, the heat
transfer irreversibility dominates at the lower Waith increasing values of internal heat
generation §), maintain equilibrium at the central region amluces at the upper plate
surface.

{G=H=Q=1,6=0.1,Br=10} {G=Q=1a=6=0.1Br=10}
Be Be

0.8f
06}
0.4}

0.2F

D.I2 D.I4 D.IG D.I8 1.ID v D.I2 D.I4 D.I6 D.IS 1.ID y
Figure 14: Bejan number with changedn Figure 15: Bejan number with changélin
{(G=H=1,a=6=0.1,Br=10} {(G=H=Q=1,a=0.1Br=10
Be Be

¥ ¥

D.I2 D.I4 D.I6 D.IB 1.I0 0:2 D.I4 D.IG D.IB 1.ID
Figure 16: Bejan number with changelin. Figure 17: Bejan number with chaingd .
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CONCLUSION

In this study, a critical examination on the impatmagnetic strength and internal
heat generation on a variable-viscosity fluid flevith non-uniform wall temperature that
varies linearly is carried out. The analytical eegsions for the fluid velocity and temperature
distributions are secured using Adomian decommositnethod (ADM) and the results
showed that the increasing parameters of viscouariation, internal heat generation and
Brinkman allow the fluid to interact and hence gase the fluid internal energy by moving
faster while the magnetic strength paraméias a retarding effect due to the presence of
Lorentz forces across the flow channel. Also, tih@easing values of heat source, magnetic
strength and Brinkman number make the temperaturisé due to interaction of the fluid in
the channel while the viscosity — variation paranetduces the fluid temperature. On a
general note, the results significantly emphasittedeffects of magnetic strength and heat
source which cannot be neglected as it plays armraje in engineering and industrial
applications.

NOMENCLATURE

a Channel width L Channel characteristic length
Bo Magnetic field strength Tu Upper wall temperature
TL Lower wall temperature 7 Temperature dependent parameter
Yo, The fluid density G Pressure gradient

Q Wall temperature difference parameter & Channel aspect ratio
K Thermal conductivity p The pressure

) Electrical conductivity u The axial velocity

C, The specific heat at constant pressure v The normal velocity
U Velocity scale Pe Peclet number

a Viscosity — variation parameter H Hartmann number

o) Internal heat generation parameter Br Brinkman number
Re Reynolds number
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