NOVA GENERACIJA SISTEMA ZA UPRAVLJANJE STANJEM VAZDUHOPLOVNIH MOTORA

NEW SYSTEM GENERATION FOR HEALTH MANAGEMENT OF AIRCRAFT ENGINES

Prof. dr Dragoljub Vujić, dipl. inž.
Vojnotehnički institut, 11132 Beograd, Ratka Resanovića 1

REZIME

Razmatra se nova generacija sistema za upravljanje stanjem vazduhoplovnih motora visokih performansi. Izložen je opšti koncept sistema, baziran na komplementarnim tradicionalnim tehnikama monitoringa koje se poslednjih dvadesetak godina koriste, kako na vojnim tako i komercijalnim vazduhoplovima. Pokazano je da se fuzionisanjem podataka iz više različitih izvora može dobiti naprednija dijagnostička informacija, merodavna za anticipaciju budućeg stanja.

Ključne reči: Vazduhoplovni motori, monitoring sistemi, stanje motora, troškovi, menjadžment sistemi, održavanje.

ABSTRACT

This paper deals with a new system generation for health management of high performance aircraft engines. The general concept of the system, based to traditional complementary monitoring techniques using over past twenty years on military and as wel as commercial aircraft, is presented. It is shown, fusion data from a variety of sources can be achieved enhanced diagnostic and prognostic information regarding the the health on the engine in the future.

Key words: Aircraft engines, monitoring systems, engine health, costs, management systems, maintenance.

1. UVOD

Primena monitoring sistema za određivanje stanja vazduhoplova započela je pre dve decenije, prvo na helikopterima, a kasnije i na vojnim avionima [2], [3], [4]. Razlog za njihovo uvođenje bio je zahtev da se poveća bezbednost i sigurnost leta. Kod helikoptera je vršen monitoring stanja motora, transmisijske i sistema rotora. U određivanju stanja posebno je bila efikasna primena monitoringa vibracija. Primena ovih sistema je počela u Velikoj Britaniji, na helikopterima korišćenim u nepovoljnim uslovima Severnog mora.

Na pragu novog milenijuma prestižne svetske kompanije u oblasti vazduhoplovstva i svemirskih istraživanja rade na projektu tzv. inteligentnih motora visokih performansi [6], [9]. Takve motore karakterisate rad sa dopustivim oštećenjima, praćenje veća u realnom vremenu, proaktivni menjadžment stanja, itd. Pored zahteva po pitanju povećanja odnosa potiska i mase, traži se značajno smanjenje troškova razvoja, proizvodnje i održavanja motora [9].

Imajući to u vidu, jasno je da tradicionalne tehnike monitoringa, koje su doživele punu afirmaciju tokom proteklih dvadesetak godina uspešne primene, neće moći u potpunosti da ispune svoju funkciju koja se od njih zahteva. Zbog toga se uveliko radi na razvoju novih fleksibilnih tehnologija upravljanja stanjem, koje će, kroz integrirane dijagnostičke i prognošičke sisteme na zemlji i letu, omogućiti što duži rad motora uz minimalne troškove.


2. KARAKTERISTIKE I PRENOSTI MONITORINGA SISTEMA

Monitoring sistemov vazduhoplovnih motora postali su svojevrsan standard koji se stalno nadograđuje, uporedo sa napredovanjem tehnologije izrade motora, razvojem informacionih i računarskih tehnologija.

Najčešće se vrši monitoring temperature...
(ulaznog vazduha, kompresora, turbine, izduvnih gasova), pritiska (ulaznog, sabijanja kompresora, ulja za podmazivanje, odušnog vazduha), parametara uljne vrijednosti (količine ulja, potrošnje, kontaminacije), vibracija (rotora, vratila, reduktora, ležajeva, transmisije i pomoćnih uređaja), parametara potrošnog veka (časovi rada, broj startovanja, zanora, naprežanja, prskotina) i dodatnih parametara (brojeva obrtaja, protoka goriva, položaja ručice gasa, pozicije mlaznika). Kod komercijalnih vazduhoplova, glavni parametri koji se nadgledaju su: pritisak sabijanja, protok goriva, broj obrtaja, temperatura izduvnih gasova, položaj ručice gasa, amplitude vibracija i potrošnja ulja.

 Za siguran rad motora od suštinskog značaja je snabdjevanje uljem kritičnih delova, kao što su ležajevi. Pored količine, pritiska i temperature ulja, konstantno se vrši monitoring vibracija, koje nastaju kao posledica grešaka na rotacionim delovima ili pomoćnim uređajima. Bilo koji od navedenih parametara može da posluži kao rani indikator da se spriječi skupo oštećenje komponenata ili katastrofalni otkaz.

 Između vazduhoplovnih motora na komercijalnim avionima i motora na vojnim, posebno, borbenim avionima, postoje bitne razlike. Motori na komercijalnim avionima su izloženi niskom stepenu opterećenja. U civilnom putničkom ili teretnom saobraćaju ubiće je petominutni rad na maksimalnom broju obrtaja prilikom poletanja, zatim na redukovanim broju pri penjanju i konačno, na nižem broju obrtaja pri krštarenju tokom leta, koji može trajati 12 ili više časova.

 Motori na vojnim avionima rade na režimima koji su mnogo bliži maksimalnim i sa naglim promenama tokom leta. U pogledu njihovog korišćenja, izraženog brojem časova leta, ono je manje, i to više puta, od motora na civilnim avionima, koje može biti i preko 5.000 časova godišnje. Prema podacima još od pre desetak godina, svetski prosek je između 2.700 i 3.500 časa.

 Zbog toga su i zahtevi po pitanju monitoringa pojedinih parametara tokom leta različiti. Kod motora vojnih aviona prikupljaju se različiti podaci sa visokom učestanošću i u širokom spektaru, u toku celog, relativno kratkog leta, a kod motora komercijalnih aviona vrši se kratkotrajno beleženje pojedinih parametara u određenom režimu, u toku dugog leta. Prikupljanje podataka je potpuno automatski, preko sistema senzora i omogućuje zapisivanja na održavanju da svakodnevno imaju uvid u stanje motora i da na osnovu toga donesu odluku za prometnu akciju, ako je potrebna, odmah nakon sletanja aviona, odnosno pre sledećeg leta.

 Što se tiče monitoringa parametara tokom leta, treba reći da se stalno proširuju mogućnosti i količina obrađenih podataka. Tome je, naravno, znatno doprinelo razvoj elektroničke i računarske tehnologije kao i razvoj aplikativnog softvera, evidentan poslednjih deset godina. Najnovije verzije obuhvataju znatno veći broj parametara koji se prate i daju kompletnu sliku o stanju motora. Ovakvo prikupljeni podaci procesiraju se korišćenjem računarskih programi koji daju numeričke vrednosti i dijagramске prikaze trenutnog stanja performansi motora.

 Zahvaljujući primeni savremenih tehnologija došlo je do značajnog pomaka u kvalitetu podataka i analize. Dosadašnji monitoring sustavi, posebno oni na helikopterima, bili su od velike koristi za održavanje. U Britaniji, na primer, podaci prikupljeni pomoću monitoring sistem tokom helikopterskih operacija u oblasti Vojne vode, iskorišćeni su za preduzimanje značajnih akcija održavanja. Monitoring sustavi su uspešno identificirali oko 70% grešaka na motoru. Izvršena klasiﬁkacija otkaza je pokazala da bi od 6 potencijalnih kritičnih otkaza, 1 ili 2, sa velikom verovatnošću doveli do udesa, da nisu bili detektovani na vreme. U posebnim izveštajima je konstatovano da su monitoring sustavi prve generacije, korišćeni za monitoring vibracija, demonstrirali sposobnost identifikacije potencijalno opasnih ili katastrofalnih oblika otkaza. Upotreba monitoring sistema na helikopterima

* Pojednostavljena je procedura trakiranja i uravnotežavanja rotora.
* Redukovani su nivoi vibracije struktura, što je za posledicu imalo manji broj otkaza, a stoga i manje "vreme u otkazu".
* Ostvareno je bolje planiranje održavanja i mogućnost blagovremenog preuzimanja odgovaračkih akcija, zbog tačnije informacije o otkazu.

* Smanjen je broj havarija.

3. SISTEMI ZA UPRAVLJANJE STANJEM

Vodeće svetske kompanije u oblasti vazduhoplovstva i svemirskih istraživanja u okviru projekta visoko inteligentnih motora [6], [9], posebnu pažnju posvećuju smanjenju troškova. Na 8.1 dat je prikaz osnovnih ciljeva po pitanju smanjenja troško-
va, koji su postavljeni 2002. godine i važe za period do 2017. godine. Takođe, navedene su i neke teškoe koje su prisutne i otežavaju realizaciju postavljenih ciljeva.

3.1 Dijagnostika i anticipacija stanja

Glavni cilj tradicionalnog monitoringa stanja je bio da se na bazi detektovanih simptoma identificu greške i preduzmu korektivne akcije. Međutim, sa napredovanjem računarskih i informacionih dijagnostika i anticipacija budućeg stanja.

Firma Smiths Industries Aerospace, svetski lider u razvoju i primeni tehnologija monitoring sistema, razvija probabilistički dijagnostički i prognoščki sistem stanja motora, poznat kao ProDAPS (Probabilistic Diagnostic And Prognostic System)[1]. To je modularni sistem, otvorene arhitekture, koji koristi razvijene tehnologije u cilju obezbeđenja rane indikacije razvoja oštećenja i sraćunavanja napredovanja oštećenja. Očekuje se da sistem da kompletnu dijagnozu i prognozu budućeg stanja motora.

![INTELLIGENTNI MOTORI](image)

**Osnovni ciljevi**

- Potisak/masa (+ 300%)
- Troškovi razvoja (- 65%)
- Troškovi održavanja (- 70%)
- Troškovi proizvodnje (- 60%)

**Prosećno vreme rada bez skidanja motora**

- Srednje vreme između planiranih zamena + 100%
- Srednje vreme između neplaniranih zamena + 75%
- Vreme održavanja po postupku održavanja - 50%

**Ciljevi**

- Da se detektuju greške i smanji vreme pregleda usled nedovoljnog monitoringa
- Da se izoluju greške usled tumačenja podataka
- Da se smanji vreme održavanja usled složene logistike i obučavanja

**Teškoe**

- Poboljšani pregledi
- Senzori za praćenje i detekciju otkaza
- Algoritmi za učenje
- Tendencija podataka
- Fuzionisanje podataka i prosušivanje
- Fuzija logističkih informacija
- Autonomna logistika/obuka (prava podrška, u pravo vreme, pravi razlog)

Slika 1. Zahtevi po pitanju smanjenja troškova

-tehnologija, postavljeni su novi zahtevi u pogledu razvoja naprednijih dijagnostičkih algoritama i algoritama za prognozu budućeg stanja. Na pragu novog milenijuma sve više se govori o menadžmentu stanja koji ima znatno šire značenje od onog vezanog za monitoring stanja i podrazumeva mogućnost upravljanja stanjem. Cilj menadžmenta stanja je da se na bazi kombinovanih informacija o stanju, obezbedi Kompanija ima blisku saradnju sa firmom Pratt and Whitney, proizvođačem motora, i od projektanta motora obezbeđuje potrebne ulazne podatke. Sistem će biti ispitani korišćenjem programa za ispitivanje oštećenja na zemlji i niza testova u letu. Po završetku ispitivanja, očekuje se njegova implementacija u sistem vazduhoplova.
3.2 Komponentarne tehnike monitoringa

Savremenim menadžment stanja zahteva primenu više različitih komponentarnih tehnika monitoringa, koje su u stanju da detektiraju razna oštećenja. Pošto ne postoji nijedna pojedinačna tehnika koja bi mogla da detektuje sve vrste oštećenja, prelaze se da se u jedan sistem implementira više funkcija monitoringa stanja. Drugim rečima, potrebno je obezbediti integraciju izlaza iz različitih tehnika monitoringa i procenu opstog stanja vazduhoplova.

Jedna od tehnika monitoringa, koja vrši monitoring delića ili čestica u protočnom delu motora, na ulazu i izlazu, razvijena je pre više godina i proverena na brojnim testovima motora. Proizvedena su dva sistema, koja mogu da se koriste odvojeno ili zajedno. To su monitoring sistemi koji registruju kada je motor u opasnosti i kada se pojave delići u protočnom delu motora.

 Tehnika monitoringa ulja je novijeg datuma i koristi dve vrste senzora. Prvi je liniji senzor koji se montira u uljnom vodu i detektuje čestice u ulju, uključujući „line“ metalne i nemetalne čestice. Drugi senzor detekcije pojavu habanja, postavlja se blizu kritičnih komponenta ležaja i zupčanika i obezbeđuje blagovremeno upozorenje kada dođe do pogoršanja stanja, pre značajnog habanja komponente.

Obe monitoring tehnike, bazirane na elektrostatickoj tehnologiji senzora, razvio je Stewart Hughes Limited i uspešno verifikovao na testovima oštećenja motora borbene aviona.

3.3 Praćenje veka komponenata za zamor


3.4 Fuzionisanje podataka dobijenih iz više izvora

Za vazduhoplovne motore na raspolaganju je relativno veliki broj podataka koji se dobijaju iz više izvora, kao što su merenja pomoću senzora u letu i istorija rada motora. Ugradnjom viših prognostičkih senzora u sledeću generaciju gazoturbinskih motora, biće raspoloživi dodatni podaci. Postavlja se pitanje kako, na osnovu tih podataka iz različitih izvora, dobiti napredniju dijagnostičku informaciju u pogledu stanja motora. Na razvoju tehnologije za fuzionisanje ovih podataka rade NASA i Pratt & Whitney. Fuzionisanje podataka predstavlja, dakle, integraciju podataka iz više izvora u cilju povećanja tačnosti pri donošenju zaključaka. Fuzionisanje podataka će povećati sposobnost određivanja pratećih nepravilnosti komponenata, poboljšati dijagnostiku motora sa tačnom izolacijom otkaza, kao i procenu utroška veća komponente. Ova procedura fuzionisanja je usklađena sa programom letnih ispitivanja menadžmenta stanja propulzije aviona C-17 T-1.

Na Sl. 2 dat je šematski prikaz fuzionisanja podataka iz više izvora. Arhitektura se sastoji od modula za razvrstavanje podataka (konverziju podataka iz različitih izvora za narednu analizu), različitih dijagnostičkih modula (poboljšanog modela samopošćevanja u letu u realnom vremenu, detektora za odstupanje strujanja, empirijskog modela sistema za podmazivanje) i modula fuzije visokog nivoa.

Dijagnostička informacija, dobijena kao izlaz iz modula fuzionisanja, mora biti integrirana u postojeći računarski sistem logistike i u politiku održavanja vazduhoplova.
4. ZAKLJUČAK

Razvoj nove generacije vazduhoplovnih motora visokih performansi, zahteva nove dijagnostičke alate i nove algoritme za anticipaciju budućeg stanja motora. Predloženo je da tradicionalne tehnike monitoringa, korišćene poslednjih dvadesetak godina na vojnim i komercijalnim vazduhoplovima, evoluiraju u novu generaciju sistema za upravljanje stanjem. To su menadžment sistemi, koji na bazi postojećih komplementarnih tehnika monitoringa, fuzionisajem podataka iz više izvora daju napredniju dijagnostičku informaciju o stanju. Pored standardnih tehnika monitoringa ulja, vibracija, habanja, prisustva delica u protučnom delu motora, odstupanja strujanja, novi menadžment sistem uključuje i praćenje već komponenata na zamor. Razvoj novih fleksibilnih tehnologija upravljanja stanjem, omogućuje duži rad motora uz minimalne troškove.

5. LITERATURA


