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An Application of Continuum Theory 
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The fundamental balance laws of the fluid phase and the disperse phase of 
suspension are presented. Constitutive equations are developed and the 
method of Lagrangian multipliers is used. The objective of this paper is to 
use the continuum theory of two-phase flow to model the one-dimensional 
sedimentation of particle through a fluid in the direction of vertical axis. 
After using the basic equations of motion and corresponding restrictions, 
the diffusion equation of quasi-steady sedimentation is derived. The fact 
that the diffusion equation is parabolic, when a diffusivity term is included, 
suggests the possibility that sedimentation problem could be solved 
numerically and then graphically presented. 
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1. INTRODUCTION 
 

The sedimentation of particles in liquid is of interest in 
many chemical engineering processes. The variables 
associated with the liquid and the particles can be 
introduced as continuous field from the beginning, and 
balance equations and constitutive relations can be 
postulated [1-5]. In paper [6] the equations for two-
phase flow are used to analyze the one-dimensional 
sedimentation of solid particles in a stationary container 
of liquid. A derivation of the equations of motion is 
presented upon Hamilton’s externed variation principle. 
The same result was obtained using the continuum 
theory for suspension flow presented in [7]. 

In paper [7-10] the continuum theory for suspension 
flow is developed. Fluid, the basic phase of suspension, 
and the disperse phase are constituents of the mixture. 
Using the basic balance laws of continuum mechanics and 
the method of Lagrangian multipliers, a set of constitutive 
equations for saturated suspension is deduced. 

In this paper, the basic equations of motion of 
different phases are derived. The model of one-
dimensional sedimentation of disperse phase is 
considered. Using the basic equations of motion and 
corresponding restrictions, the diffusion equation of 
quasi-steady sedimentation is derived. This result is the 
same as in paper [6]. 

 
2. BASIC LAWS OF MOTION 

 
The basic phase (fluid) and the disperse phase 
(constituents) of suspension must satisfy the basic laws 
of motion of continuum mechanics [7]. In the absence 
of chemical reaction between the phases and various 
constituents, the following field equations must hold: 

Conservation of mass 
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where r = f or α for fluid and α-th constituent of 
disperse phase of suspension. 

Balance of momentum 

 ,
d
d

r
r r r r ri

ij j i it f P
t
υ

ρ ρ= + + , (2) 

where r
ijt , r

if  and r
iP  are stress tensor, body force per 

unit mass and internal body force, respectively. 
Balance of moment of momentum 
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Balance of equilibrated force 
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where rk , rn , r
ih , rl  and ˆ rg  are equilibrated force, 

the volume distribution function (concentration), 
equilibrated stress vector, equilibrated force per unit 
mass and internal equilibrated force, respectively. 

Balance of energy 
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where r
kq  and rr  are heat flux vector and internal heat 

source per unit mass. 
The following entropy inequality is postulated 
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where rη  is entropy density per unit mass, fθ  and αθ  
is temperature for fluid and α-th constituent of disperse 
phase of suspension. 

Using the free energies of phases 

 r r r reψ η θ= − , (6a) 

the constrains and the method of Lagrangian multipliers 
λ for the case of fully saturated suspension flows, the 
entropy inequality is used in the form 
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3. CONSTITUTIVE EQUATIONS 

 
Let the sets { }fA  and { }Aα  be the set of independent 

constitutive variables of the basic and disperse phases of 
suspension. The following independent variables are 
postulated 

 { } { }, , ,; ; ; ; ; ; ;f f f ff f f f f
i i ij iA n n n n dρ θ θ≡   

 { } { }, , ,; ; ; ; ; ; ;i i ij iA n n n n dα α α α α α α α αρ θ θ≡ . (8) 

Using the principle of phase separation by Drew and 
Segel [2], after lengthy calculation, we find the 
following set of constitutive equations for the stress 
tensors, equilibrated stress vectors, the internal forces 
and the internal equilibrated forces of the basic phase 
and disperse phase of suspension, i.e. 
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where, as well known quantities, Kα are the drag 
coefficients of α-th particulate constituent, αr are positive 
material constants, πr are the thermodynamic pressures 
and Gr are equilibrated drag coefficients and λ λθ= . 

 
4. GENERAL EQUATIONS OF MOTION 

 
Direct substitution of the constitutive equations for the 
stress vectors, equilibrated stress vectors, the internal 
forces and the internal equilibrated forces of the basic 
phase and the disperse phase into the equations of 
balance (1) to (4), yield the general equations of motion: 

Momentum of the basic phase 
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Momentum of the disperse phase 
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Equilibrated force of the basic phase and the 
disperse phase 
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Independent variation of variables rn , ,
r
kn  and rρ  

appear linearly in (16) and then their coefficients can be 
neglected. Then it follows that 

 0rk ≡ , 0rl ≡ , (16a) 

and also 

 0r
υξ ≡ , 0rG ≡ , (16b) 

then (16) may be solved for Lagrangian multipliers, i.e. 
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For Lagrangian multipliers λr we find λr = πr/nr. 
If the thermodynamic pressures πf and πα are 

replaced by λfnf and λαnα in (14) and (15), then, by 
using (17), these equations become 
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5. THE ONE-DIMENSIONAL SEDIMENTATION 

 
We apply the general equations of motion (18) and (19) 
to suspension flow. For the reason of simplicity, we 
suppose that the material constants rα  and 0

ra  are 
independent of the fluid volume distribution function 
and volume distribution function of α-th particulate 
constituent. In this case (Fig. 1), the equations of motion 
become: 

Mass 
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where it is assumed that the body force accelerations are 
the same, i.e. f

l llb b bα= = . 
If we keep a record, as pointed out in the 

introduction that the one-dimensional sedimentation in 
the x direction will be considered, then the equations of 
masses are given by 
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Figure 1. Sedimentation configuration 

Neglecting derivatives of higher order and using the 
total time derivatives for velocities, equations of 
momentum in one-dimensional form are 
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The linearized form of the equations of mass 
conservations (20) are given by 
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Summing (26) for all species and using the 
saturation condition given by 1fn n= −  ( n nα

α
= ∑ ), 

we find 

 00 0f f
iin nα α

α
υ υ

⎛ ⎞
∇ + =⎜ ⎟⎜ ⎟
⎝ ⎠

∑ , (27) 

from where it is 
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where integration constant C can be neglected. 
Eliminating λ∇  between (24) and (25) and using 

(28), we find 
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The linearized form of (29) and (23) is 
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Eliminating i
αυ  between (30) and (31), yields the 

single equation for nα , i.e. 
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Then, if the acceleration terms in (29) are neglected 
(the case of quasi-steady sedimentation), (32) becomes 
the generalized diffusion equation 
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i.e. 
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For the case of simple suspension [3] 
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we obtain the diffusion equation 
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the same as in paper [6], where the diffusion 
coefficient 
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out of which we can conclude that this equation is 
parabolic. 

The fact that (34) is parabolic suggests the 
possibility that certain classes of sedimentation 
problems could be solved. 

A brief illustration of the theory for the particle 
concentration and the diffusion coefficient, using (34) 
and (35), yields. 

Figure 2 shows the measured particle concentration 
as a function of height in to the tube after 20,000 s of 
elapsed time, using values from literature of 0aα  = 15 

kg/m2, Kα  = 3.1 · 107 kg/m3s, and the diffusion 
coefficient β in boundaries from 10–7 (data 1) to 10–10 
m2/s (data 4). 

Figure 3 shows the diffusion coefficient as a 
function of the local particle concentration using values 
of 0aα  and Kα  in (35). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Particle concentration profiles

Particle concentration

H
ei

gh
t [

cm
]

 

 

data1
data2
data3
data4

 
Figure 2. Particle concentration profiles 
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Figure 3. Diffusion particle coefficient 

 
6. CONCLUSION 

 
In this paper, the continuum theory has been applied to 
the case of two-phase (suspension) flow. The 
suspension is defined as a mixture of the basic phase 
(fluid) and the disperse phase (rigid particles). The basic 
equations of motion of different phases are derived as 
the model of one-dimensional sedimentation of rigid 
particles through the fluid in the direction of vertical 
axis. After using the basic equations of motion, the 
diffusion equation of quasi-steady sedimentation is 
derived and then graphically presented. The analysis of 
the obtained results shows that the suspension 
concentration distribution of rigid particles depends 
upon the diffusion coefficients. The diffusion equation 
is the same as in the paper by Hill and Bedford but 
derived using Hamilton’s externed variation principle. 
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О ПРИМЕНИ ТЕОРИЈЕ КОНТИНУУМА НА 

СЛУЧАЈ ЈЕДНОДИМЕНЗИЈСКЕ 
СЕДИМЕНТАЦИЈЕ 

 
Бошко П. Цветковић, Драгослав С. Кузмановић, 

Предраг А. Цветковић 
 
У раду примењена је теорија континуума на кретање 
суспензија. За дисперзну фазу узети су састојци 
мешавине, који су расподељени у основној фази, 
флуиду. Користећи основне законе баланса 
механике континуума и Лагранжеве множиоце, 
изведене су конститутивне једначине засићене 
суспензије. Добијене конститутивне једначине се 
користе за извођење опште једначине кретања 
основне и α-ог састојка дисперзне фазе у правцу 
вертикалне осе. Користећи опште једначине кретања 
и одговарајућа ограничења, изводи се једначина 
дифузије за случај квазистатичке седиментације која 
се и графички представља. 

 
 


