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An Application of Continuum Theory
on the Case of One-Dimensional
Sedimentation

The fundamental balance laws of the fluid phase and the disperse phase of
suspension are presented. Constitutive equations are developed and the
method of Lagrangian multipliers is used. The objective of this paper is to
use the continuum theory of two-phase flow to model the one-dimensional
sedimentation of particle through a fluid in the direction of vertical axis.
After using the basic equations of motion and corresponding restrictions,
the diffusion equation of quasi-steady sedimentation is derived. The fact
that the diffusion equation is parabolic, when a diffusivity term is included,
suggests the possibility that sedimentation problem could be solved
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numerically and then graphically presented.
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1. INTRODUCTION

The sedimentation of particles in liquid is of interest in
many chemical engineering processes. The variables
associated with the liquid and the particles can be
introduced as continuous field from the beginning, and
balance equations and constitutive relations can be
postulated [1-5]. In paper [6] the equations for two-
phase flow are used to analyze the one-dimensional
sedimentation of solid particles in a stationary container
of liquid. A derivation of the equations of motion is
presented upon Hamilton’s externed variation principle.
The same result was obtained using the continuum
theory for suspension flow presented in [7].

In paper [7-10] the continuum theory for suspension
flow is developed. Fluid, the basic phase of suspension,
and the disperse phase are constituents of the mixture.
Using the basic balance laws of continuum mechanics and
the method of Lagrangian multipliers, a set of constitutive
equations for saturated suspension is deduced.

In this paper, the basic equations of motion of
different phases are derived. The model of one-
dimensional sedimentation of disperse phase is
considered. Using the basic equations of motion and
corresponding restrictions, the diffusion equation of
quasi-steady sedimentation is derived. This result is the
same as in paper [6].

2. BASIC LAWS OF MOTION

The basic phase (fluid) and the disperse phase

(constituents) of suspension must satisfy the basic laws

of motion of continuum mechanics [7]. In the absence

of chemical reaction between the phases and various

constituents, the following field equations must hold:
Conservation of mass
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where r = f or « for fluid and a-th constituent of
disperse phase of suspension.
Balance of momentum

dof
P =t R @
where tﬁ, f," and R" are stress tensor, body force per

unit mass and internal body force, respectively.
Balance of moment of momentum

t[rjk] =0. 3)

Balance of equilibrated force
d
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where k', n", h', I" and §" are equilibrated force,

the volume distribution function (concentration),

equilibrated stress vector, equilibrated force per unit

mass and internal equilibrated force, respectively.
Balance of energy
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where gy and r' are heat flux vector and internal heat

source per unit mass.
The following entropy inequality is postulated
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where 1" is entropy density per unit mass, 0" and 6%

is temperature for fluid and o~th constituent of disperse
phase of suspension.
Using the free energies of phases

y'=e"-n'o", (6a)

the constrains and the method of Lagrangian multipliers
A for the case of fully saturated suspension flows, the
entropy inequality is used in the form

f f
1 f.f fof K7k o f  pfef
H_f -p (y/ +n'0 )+ gy Ny ny+

f A .
+2 0ol (g7 -20" -2 )a' -
—(Pkf +/1¢9fn’fk)ukf}+

Ll o)

N+ 2500y —(9% - 26% -2 )i

+t|fid|(ﬁ +

—(Pk“+/w“nj§)udzo. )

3. CONSTITUTIVE EQUATIONS

Let the sets {Af } and {Aa} be the set of independent

constitutive variables of the basic and disperse phases of
suspension. The following independent variables are
postulated

{Af}z{pf;nf-n{, HECRRTAN] }

{A“}E{p“;n“;n,,, g de;0%; 9“} ®)

Using the principle of phase separation by Drew and

Segel [2], after lengthy calculation, we find the

following set of constitutive equations for the stress

tensors, equilibrated stress vectors, the internal forces

and the internal equilibrated forces of the basic phase
and disperse phase of suspension, i.e.
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eh :Zar(nr)nj(, (10)
f A f 7, f
R = > K*(vf ~y )-Znf (1)
a=1
A =K (g —of |- Znf., (12)

+nt +2+2"-G"A", (13)

62 = VOL. 39, No 2, 2011

where, as well known quantities, K are the drag
coefficients of a-th particulate constituent, ¢ are positive
material constants, " are the thermodynamic pressures
and G" are equilibrated drag coefficients and 4 = A6 .

4. GENERAL EQUATIONS OF MOTION

Direct substitution of the constitutive equations for the

stress vectors, equilibrated stress vectors, the internal

forces and the internal equilibrated forces of the basic

phase and the disperse phase into the equations of

balance (1) to (4), yield the general equations of motion:
Momentum of the basic phase

¢ dy f foff
P T:—Tc,l —2(0.’ n,kn’|)k+

+ZK“( —uk) ang+p't. s

Momentum of the disperse phase

do
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_dt T 2(0! nkn|) +
+E Ka(uk —Uk) an§ +p* . (15)

Equilibrated force of the basic phase and the
disperse phase

o (i) =2(atnf ) (&) 407 -
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Independent variation of variables n", I"l,rk and p"

appear linearly in (16) and then their coefficients can be
neglected. Then it follows that

k"=0,1"=0, (16a)
and also
&=0,G"=o0, (16b)

then (16) may be solved for Lagrangian multipliers, i.e.

da" o' ror r.r
At =-2a" nkk— —t— nknk—/1+a0n 17)
dn" n" )"
For Lagrangian multipliers 2" we find A" = n'/n".
If the thermodynamic pressures ' and n% are
replaced by A" and A°n“ in (14) and (15), then, by
using (17), these equations become
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5. THE ONE-DIMENSIONAL SEDIMENTATION

We apply the general equations of motion (18) and (19)
to suspension flow. For the reason of simplicity, we

suppose that the material constants ¢' and a5 are
independent of the fluid volume distribution function
and volume distribution function of a-th particulate
constituent. In this case (Fig. 1), the equations of motion

become:
Mass

on'
- +v( ) 0. (20)
Momentum
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where it is assumed that the body force accelerations are
the same, i.e. blf =b" =b.

If we keep a record, as pointed out in the
introduction that the one-dimensional sedimentation in
the X direction will be considered, then the equations of
masses are given by

on" o,y
E+&(n 0! )_0. (23)
X

o

Figure 1. Sedimentation configuration
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Neglecting derivatives of higher order and using the
total time derivatives for velocities, equations of
momentum in one-dimensional form are
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The linearized form of the equations of mass
conservations (20) are given by

i
%+n5Vu{ 0. (26)

Summing (26) for all species and using the

saturation condition given by nf=1-n (n= Z n%),
a
we find

v{ngu,f +an‘u,“]:o, 27)

a

from where it is
Z Go (28)
[24

where integration constant C can be neglected.
Eliminating VA between (24) and (25) and using
(28), we find
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The linearized form of (29) and (23) is
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Eliminating v between (30) and (31), yields the

single equation for n* , i.e.
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Then, if the acceleration terms in (29) are neglected
(the case of quasi-steady sedimentation), (32) becomes
the generalized diffusion equation
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For the case of simple suspension [3]
B
ag_ -0, (34a)
5 o
we obtain the diffusion equation
on“ o*n“
— = (35)
ot ox

the same as in paper [6], where the diffusion
coefficient

a 2
(16

B =8 @ (36)
out of which we can conclude that this equation is
parabolic.

The fact that (34) is parabolic suggests the
possibility that certain classes of sedimentation
problems could be solved.

A brief illustration of the theory for the particle
concentration and the diffusion coefficient, using (34)
and (35), yields.

Figure 2 shows the measured particle concentration
as a function of height in to the tube after 20,000 s of

elapsed time, using values from literature of af = 15
kg/m’, K% = 3.1-10" kg/m’s, and the diffusion
coefficient A in boundaries from 107 (data 1) to 10°'°
m?*/s (data 4).

Figure 3 shows the diffusion coefficient as a
function of the local particle concentration using values

of a§ and K in (35).
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Figure 2. Particle concentration profiles
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Figure 3. Diffusion particle coefficient

6. CONCLUSION

In this paper, the continuum theory has been applied to
the case of two-phase (suspension) flow. The
suspension is defined as a mixture of the basic phase
(fluid) and the disperse phase (rigid particles). The basic
equations of motion of different phases are derived as
the model of one-dimensional sedimentation of rigid
particles through the fluid in the direction of vertical
axis. After using the basic equations of motion, the
diffusion equation of quasi-steady sedimentation is
derived and then graphically presented. The analysis of
the obtained results shows that the suspension
concentration distribution of rigid particles depends
upon the diffusion coefficients. The diffusion equation
is the same as in the paper by Hill and Bedford but
derived using Hamilton’s externed variation principle.
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O IPUMEHHU TEOPUJE KOHTUHYYMA HA
CJIYYAJ JEAHOJIUMEH3UJCKE
CEJJUMEHTAIINJE

Bouko II. I{BeTrkoBuh, Iparocaas C. Ky3amanoBuh,
IIpeapar A. IlerkoBuh

VY pamy npuMmemeHa je TeopHja KOHTHHyyMa Ha KpeTame
cycneHsuja. 3a aucnep3Hy (asy y3eTH Ccy cacTojuu
MeIIaBUHE, KOjU CYy pPAacHoJesbeHH Y OCHOBHOj (asm,
¢mynny. Kopucrehm ocHoBHe 3akoHe OamaHca
MexXaHUKe KOHTHHyyMa u JlarpamxeBe MHOXHOIIE,
H3BEJCHE Cy KOHCTHTYTHBHE jelHaunHe 3acuheHe
cycnersuje. JloOWjeHe KOHCTHTYTHBHE jeJHAUWHE CE
KopucTe 3a usBoheme omnmre jeqHaYMHE KpeTama
OCHOBHE M Q-OT CacTojKa aucmep3He (asze y mpasily
BepTHKaiHe oce. Kopucrehu omiure jeqHaunHe Kperarba
u oxaroeapajyha orpaHnYema, W3BOIM CE jeIHAYMHA
nudysuje 3a ciydaj KBa3UCTaTHYKE CEAMMEHTAlUje Koja
ce ¥ rpaduKH IpeCTaBIba.
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