An Exact Analytical Solution for the Second Order Slip-Corrected Reynolds Lubrication Equation

We derive a general slip-corrected compressible Reynolds lubrication equation, valid for any choice of the slip velocities, and show that it possesses the exact analytical solution. It is obtained by a suitable transformation of the dependent variable, and it yields both the pressure distribution in the bearing and the mass flow rate through it. It can be usefully applied for testing the other, experimental or numerical results obtained under the same or similar physical conditions, against this solution.

Keywords: microbearing, Reynolds lubrication equation, analytical solution, second order slip velocity.
Within the well known approximations made at the derivation of the Reynolds equation [5,6], the extremely simplified Navier-Stokes equations expressing the balance between the pressure forces and highest viscous forces only, reads:

$$\frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu} \frac{dp}{dx}$$ \hspace{1cm} (1)

where $p(x)$ is the pressure and $\mu = \text{const.}$ is the gas viscosity, while the other denotations clearly seen in Fig.1. The equation (1) should be solved with the following boundary conditions:

$$y = 0: u = u_0(x); \quad y = h(x): u = u_1(x),$$ \hspace{1cm} (2)

where $u_0(x)$ and $u_1(x)$ are arbitrary slip velocities. The solution of equation (1) with boundary conditions (2) is easily found to be:

$$u = \frac{h^2}{2\mu} \frac{v^2}{h^2} \left(u_0 - u_1 + \frac{h^2}{2\mu} \frac{dp}{dx} \right) \frac{y}{h} + u_0.$$ \hspace{1cm} (3)

This solution is further used in the continuity equation that expresses the constancy of the mass flow rate M through the bearing:

$$M = \int p dy = \rho(x) h(x) \left. \left(\frac{1}{\eta} \frac{d\eta}{dy} \right) \right|_{y=0} = \text{const.}$$ \hspace{1cm} (4)

where $\eta \equiv y/h$ and $\rho(x)$ is the variable gas density. Inserting (3) into (4) one gets an equation governing the pressure distribution in the bearing. At that, when the independent variable x is replaced by $h(x)$ (s. Fig.1) and the equation of state for an ideal gas $\rho = p/(RT)$, where R is the gas constant and T is the temperature (presumably constant) is utilized, it reads

$$M = -\frac{h^3}{12\mu RT} \frac{dh}{dx} \frac{dp}{dh} + \frac{u_0 + u_1}{2RT}.$$

For the solution of this equation two boundary conditions are available (s. Fig.1): $h = h_i : p = p_i = p_c$; $h = h_e : p = p_e$, where indices i and e refer to inlet and exit bearing cross sections respectively. Any type of integration of this equation (analytical or numerical) as a result yields not only the already mentioned pressure distribution, but also the mass flow rate M, which is not know beforehand. In what follows it is instructive to write (5) and the belonging boundary conditions in non-dimensional form. We introduce the non-dimensional quantities in the following way (s. Fig.1): $X = x/l$, $H = h/h_e$, $P = p/p_c$, $U_0 = u_0/u_w$, $U_1 = u_1/u_w$, (u_w is the velocity of the infinite plate positioned at $y = 0$), so that the equation (5) with its boundary conditions becomes:

$$-\frac{1}{\Lambda} \frac{dH}{dX} H^3 P \left(\frac{dP}{dH} \right) = A_1 K_n + 2A_2 K_n^2$$

$$H = H_i > 1; \quad P = 1; \quad H = 1; \quad P = 1$$

In there $A = \frac{6\mu u_w l}{2RT}$ is the bearing number and $M_C = \frac{P_l h_i u_w}{2RT}$ is the mass flow rate in a Couette flow.

Before proceeding further we will evaluate the sum of the slip velocities $U_0 + U_1$ for the case of the second order boundary conditions. For the problem considered herein they are [2]:

$$U_0 = u_w + A_1 \frac{\partial u}{\partial y} \bigg|_{y=0} - A_2 \frac{\partial^2 u}{\partial y^2} \bigg|_{y=0}$$

$$U_1 = -A_1 \frac{\partial u}{\partial y} \bigg|_{y=h} - A_2 \frac{\partial^2 u}{\partial y^2} \bigg|_{y=h}$$

where, in addition to denotations already used earlier, λ is the molecular free path, and A_1 and A_2 are some constant corrective factors (first and second order slip coefficients). For an isothermal flow λ is simply inversely proportional to the pressure, thus depend on x only [9]. The first and second order slip coefficients, A_1 and A_2, are differently defined by several authors in the literature. Schamberg [10] predicted theoretical values for the slip coefficients as $A_1 = 1, \quad A_2 = 5\pi/12$, Deissler [11] as $A_1 = 1, \quad A_2 = 9/8$, Hsia and Domoto [12] as $A_1 = 1, \quad A_2 = 1/2$, while Beskok et al. [4] found that $A_1 = 1, \quad A_2 = -1/2$. The review of the second order velocity slip boundary conditions are presented by Barber and Emerson [2] and Lockerby et al. [13] and according to them there is no consensus concerning the values of A_1 and A_2.

Careful evaluation of slip velocities (8) by using the general velocity field (3) yields now the following expression for the desired sum of the non-dimensional slip velocities:

$$U_0 + U_1 = 1 - \frac{6}{\Lambda} \frac{dH}{dX} H^2 \left(A_1 K_n + 2A_2 K_n^2 \right)$$

where K_n is the local value of the Knudsen number:

$$K_n = \frac{\lambda}{h} \frac{h_e}{PH}$$
and \(Kn_v = \lambda_c / h_c \) is its value at the exit cross section. If the upper boundary in Fig. 1 is in the form of an inclined plate, we will have: \(dH/dx = -(H_1 - 1) \), and the equation (6) will finally attain the form:

\[
\frac{H_1 - 1}{H} \frac{dH}{dH} + 1 + 6Kn(\Lambda + 2A2Kn) + PH = \frac{M}{M_C}.
\]

(11)

3. ANALYTICALLY EXACT SOLUTION OF THE SLIP-CORRECTED REYNOLDS LUBRICATION EQUATION

Suitable transformation of the dependent variable \(P \) that enables us to get analytically exact solution of equation (11) with the boundary conditions (7) reads:

\[
\Pi = \frac{1}{PH}.
\]

(12)

A simple physical meaning can be given to the new dependent variable \(\Pi(H) \). It follows from (10) that \(\Pi = Kn/Kn_v \), i.e. it is the ratio between the local value of the Knudsen number and its exit value. Now the equation (11) is transformed into:

\[
\frac{H_1 - 1}{H} \left(\frac{d\Pi}{dH} + \Pi \right) \left[1 + F(Kn, \Pi) \right] = \Pi^2 (1 - m\Pi)
\]

where

\[
F(Kn, \Pi) = 6Kn\Pi(\Lambda + 2A2Kn)\Pi.
\]

(13)

and \(m = \frac{M}{M_C} \). At the same time boundary conditions (7) become:

\[
H = H_1, \Pi > 1: \Pi = 1/H_1;
\]

\[
H = 1: \Pi = 1.
\]

(15)

We tested the form of equation (13) against some other models of slip velocities existing in the literature and widely used [2] and obtained the same form of the equation for \(\Pi(H) \), with \(F(Kn, \Pi) = F(Kn) \) varying from model to model. However, in all cases tested \(F(0) = 0 \) and, as expected, the equations (11) and (13) reduce to their well known form for a no-slip compressible flow through a bearing.

Equation (13) can be written in the form in which variables \(H \) and \(\Pi \) are separated:

\[
\frac{dH}{H} = \frac{1 + F(Kn, \Pi)}{\Pi^2 (1 - m\Pi) - \Pi \left[1 + F(Kn, \Pi) \right]} d\Pi
\]

(16)

and its solution can be obtained by quadratures. For example, when applying the second of boundary conditions (15) we get:

\[
\ln \Pi = \int \frac{1 + F(Kn, \Pi)}{1 + F(Kn, \Pi) - \frac{\Lambda}{H_1 - 1} t(1 - mt)} dt.
\]

(17)

where \(t \) is dummy variable.

Application of the first of boundary conditions (15) in (17) leads to:

\[
\ln \Pi = \int \frac{1 + F(Kn, \Pi)}{1 + F(Kn, \Pi) - \frac{\Lambda}{H_1 - 1} t(1 - mt)} dt.
\]

(18)

The expression (18) serves for the determination of \(m \) by iterations, provided other parameters (\(H_1, \Lambda, Kn_v \)) are known, while (17) serves for the determination of \(\Pi(H) \), and thus \(P(H) \).

For \(F(Kn, \Pi) \) given by the second order slip velocity (14) the integral (17) can be found as:

\[
\ln \Pi = \int \frac{1 + 6AKn, \Pi + 12A2Kn, \Pi}{1 + F(Kn, \Pi) - \frac{\Lambda}{H_1 - 1} t(1 - mt)} dt
\]

(19)

where \(C_1 = 6AKn, \Pi - \Lambda(H_1 - 1) \) and \(C_2 = 12A2Kn, \Pi + m\Lambda(H_1 - 1) \). There are two possible solutions for integral (19). First, if \(C_1^2 - 4C_2 \geq 0 \) the solution is

\[
\ln \Pi = -\ln \Pi - \frac{m\Lambda}{2C_2(H_1 - 1)} \ln \left(\frac{C_2 + C_1 + 1}{C_2\Pi^2 + C_1\Pi + 1} \right)
\]

(20)

\[
+ \frac{\Lambda}{H_1 - 1} \left(\frac{1 + mC_1}{2C_2} \right) \frac{1}{\sqrt{C_1^2 - 4C_2}} \times \left[\frac{C_2 + C_1 - \sqrt{C_1^2 - 4C_2}}{C_2 + C_1 + \sqrt{C_1^2 - 4C_2}} \right]
\]

where parameter \(m \) is found by putting the first of boundary conditions (15) in into eq. (20).

\[
m = \frac{2C_2}{\sqrt{C_1^2 - 4C_2}} \left(1 + \frac{mC_1}{2C_2} \right) \frac{1}{\sqrt{C_1^2 - 4C_2}} \ln \left[\frac{C_2 + C_1 + 1}{C_2 + C_1 + 1} \right]
\]

(21)

For the case \(C_1^2 - 4C_2 < 0 \) the solution of eq. (19) is

\[
\ln \Pi = -\ln \Pi - \frac{m\Lambda}{2C_2(H_1 - 1)} \ln \left(\frac{C_2 + C_1 + 1}{C_2\Pi^2 + C_1\Pi + 1} \right)
\]

(20)

\[
+ \frac{2\Lambda}{H_1 - 1} \left(\frac{1 + mC_1}{2C_2} \right) \frac{1}{\sqrt{4C_2 - C_1^2}} \times \left[\frac{C_2 + C_1 - \sqrt{4C_2 - C_1^2}}{C_2 + C_1 + \sqrt{4C_2 - C_1^2}} \right]
\]

(21)
\[
\times \arctg \left(\frac{(1 - \Pi) \sqrt{4C_2 - C_1^2}}{2(1 + C_2\Pi) + C_1(1 + \Pi)} \right).
\]

Now parameter \(m \) is found by putting the first of boundary conditions (15) into eq. (22)

\[
m = \frac{4C_2 + 2mC_1}{\sqrt{4C_2 - C_1^2}} \frac{1}{\ln H_i^2 (C_2 + C_1 + 1)} \times \ln \frac{H_i^2 (C_2 + C_1 + 1)}{C_2 + H_i C_1 + H_i^2} \times \arctg \left(\frac{(H_i - 1) \sqrt{4C_2 - C_1^2}}{2(H_i + C_2) + C_1 (H_i + 1)} \right)
\]

(23)

The pressure distribution, which is obtained by eqs. (20) and (21) or by eqs. (22) and (23), is defined by the bearing number \(\Lambda \), the reference Knudsen number \(Kn_{c} \), and the ratio of the inlet and exit microbearing height \(H_i \). First, parameter \(m \) is determined from eqs. (21) or (23) iteratively by supposing the initial value for \(m \) taking into account whether \(C_1^2 - 4C_2 \) is positive or negative. Although variable \(\Pi \) could not be explicitly expressed from eqs. (20) and (22), correlation between \(\Pi \) and \(H \) is completely defined by eqs. (20) and (22). According to the boundary conditions (15), the value of \(\Pi \) is between \(\Pi = 1/H_i \) at the bearing inlet and \(\Pi = 1 \) at the bearing outlet. For the \(\Pi \) values in that range, appropriate values of \(H \) are found from eq. (20) or (22) while the coordinate \(X \) is determined from the channel cross section varying function. Then, for each pair of \(\Pi \) and \(H \) the pressure is defined as \(P = 1/(\Pi H) \).

In Fig. 2 the pressure distribution is presented for bearing number \(\Lambda = 1 \). Results are obtained for the ratio of the inlet and outlet microbearing height \(H_i = 2 \) and three \(Kn_{c} \) values (\(Kn_{c} = 0.1, Kn_{c} = 0.2 \) and \(Kn_{c} = 0.5 \)). The presented results show the reliability of obtained analytical solution for the slip flow regime (\(Kn_{c} = 0.1 \)), as well as for the part of the transitional regime (\(Kn_{c} = 0.2, Kn_{c} = 0.5 \)). The second order boundary condition defined by Schamberg [10] leads to the best fit of the analytical solution with the numerical solution of the Boltzmann equation obtained by Fukui and Kaneko [15] in the slip regime (\(Kn_{c} = 0.1 \)), while for the beginning of the transition flow regime (\(Kn_{c} = 0.2 \)) Deissler [11] boundary condition is the most appropriate. For the higher Knudsen number value (\(Kn_{c} = 0.5 \)) the analytical solution obtained with Hsia and Domoto [12] slip coefficients value is in good agreement with the numerical solution of the Boltzmann equation. Thus, it is confirmed that the analytical solution is valid even for a higher Knudsen number value up to \(Kn_{c} = 0.5 \).

For all results presented in Fig. 2 Beskok et al. [4] boundary condition gives pronounced deviation from the Fukui and Kaneko [15] results.

In Figs. 2 the analytical solutions which correspond to the Maxwell first order boundary condition are also depicted. It is obvious that Schamberg [10], Daissler [11] and Hsia and Domoto [12] second order boundary conditions provide higher accuracy then the Maxwell [14] first order boundary condition.

![Figure 2](image-url)
4. CONCLUSION

This paper presents a new approach to the derivation of the analytical solutions of the compressible slip corrected Reynolds lubrication equation and the classical compressible Reynolds lubrication equation for continuum flow conditions. The first analytical solution of the isothermal steady compressible quasi-unidirectional lubrication problem was first reported in the open literature in [8]. It was achieved by the proper change of independent variable. Here presented new approach is based on the suitable transformation of the dependent variable (pressure). The obtained differential approach is based on the suitable transformation of the change of independent variable. Here presented new approach is based on the suitable transformation of the dependent variable (pressure). The obtained differential equation written in the form in which variables \(H \) and \(II \) are separated (eq. 16) can be transformed in the differential equation with separated variables presented by equation (2.14) in [8]. This indicates that despite the fact that final analytical solutions obtained by transformations of the dependent and independent variable don’t have the same form, the both solutions give the same result. Beside results presented in Fig. 2, more extensive validation of this analytical solution was already presented in [8] by comparison of the analytically obtained results with available numerical results. Namely, the slip flow results for a wide range of Knudsen number and the continuum flow conditions, provided by the general analytical solution from this paper and [8], are in excellent agreement with Fukui and Kaneko [15] numerical solution of the Boltzmann equation.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science of the Republic of Serbia (Grant 174014)

REFERENCES

http://resolver.caltech.edu/CaltechETD:etd-12272004-161736

ТАЧНО АНАЛИТИЧКО РЕШЕЊЕ РЕЈНОЛДСКОВЕ ЈЕДНАЧИНЕ ПОДМАЗИВАЊА ЗА СТРУЈАЊЕ ГАСА СА КЛИЗАЊЕМ

Невена Д. Стевановић, Владан Д. Ђорђевић