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On the Use of Load-Transformation 
Matrices When Working with Internal 
Wind Tunnel Balances 
 
Internal wind tunnel balances are often classified by the design as “force”, 
“moment” or “direct-read” balances. Only the direct-read balances can 
immediately yield the total loads; with other designs, balance-type-specific 
transformations of actually measured loads to total loads are necessary. It 
is shown that a representation of these transformations in matrix form, as 
a “load transformation matrix”, beside being a convenient method to 
perform the calculations, enables significant generalizations in data 
processing, practically dispensing with the “type” of a balance. The use of 
a transformation matrix also facilitates exchanges of balance calibration 
data or the balances themselves between wind tunnel communities using 
different axes- and component-sign conventions. It is proposed that, 
because of the advantages it offers, the load transformation matrix be 
generally used to describe balance designs and to accompany a balance 
together with a calibration matrix. 
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1. INTRODUCTION 
 
Internal wind tunnnel balances, possibly the most 
important tools of experimental aerodynamics, are 
multi-component force sensors that are used to measure 
total aerodynamic loads on wind tunnel test objects and 
resolve them into principal components of axial force 
X , side force Y , normal force Z , rolling moment L , 

pitching moment M  and yawing moment N . 
Measurement is commonly achieved by acquiring and 
processing the signals from strain gauge bridges sensing 
the minute elastic deformations of certain parts of the 
balance subjected to load. These actually-measured 
local loads (physical-components loads) may or may not 
be equivalent to components of total loads, depending 
on a particular balance design. 
 Measured component loads are obtained by applying 
a calibration matrix  to the signals  from strain gauge 
bridges on the balance. In the prevailing iterative model 
[1] of the balance, the relation between the physical-
components loads { }F  and normalized output signals 

{ }e  from strain gauge bridges is expressed as: 

 { } [ 1]{ } [ 2]{ *}e C F C F   (1) 

where [ 1]C  and [ 2]C  are the linear and the nonlinear 

part of a balance calibration matrix [ ] [ 1 | 2]C C C  and 

{ *}F  is the vector of load products, containing suitable 

simple (e.g. polynomial) functions of the members of 
{ }F , and modelling the slightly nonlinear behaviour of 

the balance. Component loads { }F  are computed from 

(1) in a number of converging iterations i as: 

 1 1
1{ } lim{ } lim [ 1] { } [ 1] [ 2]{ *}i ii i

F F C e C C F 
 

     (2) 

  While the mathematical model (1) can be applied to 
all balance designs, the transformations needed to 
combine physical-components loads into total loads, are 
balance-design dependent. This paper presents a logical 
concept by which that procedure can be generalized, 
and its dependence on balance design eliminated. 

 
2. TRANSFORMATIONS FROM COMPONENT 

LOADS TO TOTAL LOADS 
 
According to their design, internal wind tunnel balances 
can be generally classified into several basic types. The 
well-known reference [1] notes the existence of the 
“force”, “moment” and “direct-read”, balances, 
depending on whether the strain gauges on a balance are 
positioned and wired so that the majority of the 
“physical”  (i.e. actually measured) load components are 
forces, moments, or a particular combination of the two.  

Of the main three types of internal wind tunnel 
balances, only the direct-read six-component balance, 
measuring three components of force and three 
components of moments, can immediately yield the 
total loads ( X ,Y , Z , L , M , N ), reduced to the balance 
moment reduction centre (BMC), from loads 
{ } { }T

X Y Z X Y ZF F ,F ,F ,M ,M ,M  on physical balance 

components: 
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With all other balance types, a transformation of 
physical-components loads to total loads is necessary. 
This transformation is dependent on the design of a 
balance, but also on the conventions regarding the 
orientations of axes systems and positive directions of 
load components. 

Unfortunately, neither the orientations of the axes 
systems, nor the conventions for positive directions of  
the forces and moments acting on a wind tunnel balance 
nor the order (sequence) of load components are 
universal. While weight and trust are positive in most of 
West-European wind tunnel practice (Fig. 1), lift (or 
normal force) and drag (or axial force) are defined as 
positive in the North-American practice (Fig. 2), and, 
contrary to European practice, they are not all positive 
in the same directions as the axes. The European system 
is mathematically consistent (right-handed), while the 
American one is not [2][3][4].  

 
Figure 1. Positive directions of axes and load components 
in West-European wind tunnel practice 

 
Figure 2. Positive directions of axes and load components 
in North-American wind tunnel practice 

There are other conventions as well: e.g. in Russian 
wind tunnel practice [5][6], a right-handed system is 
used, with the y  axis being in the direction of lift, not 

parallel to the side force (Fig. 3). Also, at some wind 
tunnel sites, e.g. [7][8], positive directions of forces and 
moments are in accordance with a mathematically 
consistent left-handed system, having lift and drag as 
positive, with positive side force being in the direction 
opposite to that in the prevailing West-European and 
North-American practice.  

It can be noticed from Fig. 1 to Fig. 3 that the 
nomenclatures for components of aerodynamic loads are 
different in different communities. Besides, the order 
(sequence) of components of total loads in European 

practice follows the x, y,z,...  sequence of axes for the 

axial-, side- and normal force components followed by 
the three moments components around the these axes 
(i.e. X ,Y ,Z ,L,M ,N ), while e.g. the sequence and 
names of components in recommended North-American 
practice [1] are NF ,PM ,SF ,YM ,RM ,AF  (normal 
force, pitching moment, side force …etc.).  

 
Figure 3. Positive directions of axes and load components 
in Russian wind tunnel practice 

In contrast to the identity transformations (3) for the 
direct-read balances,  load transformations for the main 
“moment” and “force” balance types are given below, in 
accordance with the West-European conventions and 
with some comparisons to the North-American ones. 

A typical six-component “moment balance” (Fig. 4) 
is most often a mono-bloc cantilevered-beam design 
that has five physical components measuring moments 
and one physical component measuring axial force. 
Instrumented sections sensing bending and torsional 
moments of the balance-beam are usually symmetrically 
arranged around the BMC. 

 
Figure 4. Physical and total-load components of a typical 
moment balance 

Assuming a mathematically consistent right-handed 
axes system and the European convention for positive 
directions of total loads, the equations for load 
transformation from physical-components loads to total 
loads have the well-known form, e.g. adapted from [1] 
[9]: 
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 (4) 

A typical six-component “force balance” is similar 
to the six-component balances that were produced by 
the Able (formerly Task) Corporation and is often 
referred to as an “Able/Task balance”. A force balance 
of this type has five physical components measuring 
forces and one component measuring rolling moment. 
Force-sensing elements are symmetrically arranged 
about the BMC. The positive directions of physical-
components loads on an Able/Task balance are in 
accordance with the North-American practice. The 
names and sequence of physical components are 
declared by the manufacturer in accordance with North-
American practice, i.e. 1, 2, 1, 2, ,NF NF SF SF RM AF . 
In European notation and axis conventions (Fig. 5), 
these would be 1 2 1 2Z Z Y Y X XF ,F ,F ,F ,M ,F , respectively. 

 
Figure 5. Physical and total-load components of a typical 
Able/Task-type force balance 

The equations for transformations from component 
loads to total loads are: 
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Beside the Able/Task balance design which is a 
multi-piece, assembled device, other design solutions of 
force balances exist as well, including mono-bloc ones. 
Some of the numerous designs, e.g. [10][11], do not 
readily fit into definitions [1] of standard balance types. 

In (3) to (5) it was implicitly assumed that the 
physical components of a balance are defined in 
accordance with actual design of the sensing elements, 
bit it need not be so. A wind tunnel balance of any 

design can be calibrated as a direct-read one, logically 
assigning each of the measuring bridges to one of the 
components of total loads, so as to immediately yield 
the total loads and, therefore, dispense with the above 
transformations (4)(5) at the price of large off-diagonal 
elements in the calibration matrix, and this is, indeed, 
the practice in some wind tunnel facilities. Among the 
main reasons for calibrating and using all balances as 
the direct-read ones can be that the data-reduction 
software or balance calibration software or hardware at 
the user’s site does not support a balance of a particular 
design. 

There are, however, several very good arguments 
against such practice, and it has been rightfully 
recommended [1][12] that all balances be calibrated in 
the load format according to their design type. Among 
the arguments against calibrating a balance in a load 
format other than its “design” or “native” format are: 
 The bi-directionality, often present in multi-piece 
assembled balances, is hard or impossible to properly 
account for [1][12]; 
 The iterative computation of loads from component 
signals may not converge [13]; 
 Actual stresses in the sensing elements may not be 
obvious from computed component loads, so that 
monitoring of overloads becomes complicated. 

The preferred practice would be, therefore, to have 
the calibration matrix of a wind tunnel balance in its 
“native” or “design” format, so that the “mathematical” 
components correspond to the physical measuring 
components of the balance. After computing physical-
components loads from component signals and the 
calibration matrix using (1) and (2), the proper 
transformations, specific for a particular balance design 
and size, should be applied to obtain total loads. 

The existing multitude of  balance designs, as well 
as the variations in the conventions regarding the 
orientation and signs of the axes systems and balance 
components, can present an inconvenience (to say the 
least) to an experimenter- a wind tunnel test engineer or 
a balance calibrating engineer, and also to a 
programmer coding wind tunnel software. This can 
happen especially when they face the situations where a 
new balance type is to be applied that is not supported 
by the software code at the site, or some balance 
calibration data has to be imported that originated from 
another facility that uses different conventions.  

There exists, however, an elegant technique that can 
greatly reduce these inconveniences. It is the treatment 
of the transformations of physical-components loads to 
total loads in a matrix form, as a “component load 
transformation matrix”. 
 
3. LOAD TRANSFORMATIONS IN MATRIX FORM 
 
The equations (3) to (5), being linear transformations, 
lend themselves well to matrix representations, but care 
must be taken about the correct ordering of both the 
physical components and the components of total loads. 
In this regard, the best practice might be to adhere to 
local conventions for the ordering of the components of 
total loads (because that would normally be the order 
expected by the wind tunnel data-reduction software at 
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the site) but to keep the names, ordering and positive 
directions of physical components in accordance with 
the balance manufacturer’s documentation, as will be 
shown in the following examples. 

For a direct-read six-component wind tunnel 
balance, and assuming the West-European conventions, 
the transformation (3) from physical-components loads 
to total loads can be represented by an identity matrix: 
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 (6) 

For a typical six-component moment balance, 
adopting the 1 2 1 2X X Y Y Z ZF ,M ,M ,M ,M ,M  sequence of 

physical components (as used at the authors’ wind 
tunnel site) and the European conventions for the 
positive directions of total loads, the transformations (4) 
can be written in matrix notation as: 
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(7) 

Again assuming the European conventions for total 
loads but keeping the manufacturer’s conventions for 
the order and signs of physical-components loads, the 
transformations (5) for a typical Able/Task-type six-
component force balance can be written as: 
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 (8) 

In the above examples, the transformations were 
represented by 6 × 6 matrices, but this is not a general 
case: the number of columns in a transformation matrix 
should correspond to the number of physical load 
components. For example, if a three-component direct-
read balance is used, with physical components 
measuring axial force, normal force and pitching 
moment, the transformations equivalent to (6) would be: 
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 (9) 

4. GENERALIZATION OF THE LOAD 
TRANSFORMATION MATRIX CONCEPT 
 

The concept of using a load transformation matrix to 
compute total loads on a wind tunnel balance from 
physical-components loads is not new but seems to have 
remained obscure. Although most computations related 
to multi-component wind tunnel balances are 
universally performed and discussed using matrix 
notation and operations, the rather obvious treatment of 
component-loads transformations in matrix form is, to 
authors’ knowledge, not used anywhere (apart from the 
authors’ wind tunnel site [8][14][15]) explicitly in the 
published work, and the widely-used references like 
[1][2][12] etc. make no mention of it.  

A rudimentary load transformation-matrix concept 
was implemented a number of years ago in the wind 
tunnel software at the Aeronautical institute Žarkovo 
(VTI), then in Yugoslavia, now a part of the Military 
Technical Institute in Beograd, Serbia. The actual origin 
of the basic idea is unclear and the authors lay no claims 
to its invention by VTI, although no references to its 
prior uses elsewhere could be found. Transformation 
matrices were first used just as a convenient way to 
perform the calculations using library subroutines, the 
matrix elements and most computations at that time still 
being hard-coded as particular cases in separate code 
branches for the few specific balance types then in use 
at the site. As new balance designs were introduced, a 
need appeared to unify the data-reduction software for 
diverse balance types and different model support 
mechanisms in all wind tunnels of VTI. To this end, one 
of the authors of this paper has upgraded [8] the wind 
tunnel data-reduction software in VTI and developed a 
general-purpose global-regression balance-calibration 
software tool [16]. Balance component load 
transformation matrices were systematically applied in 
these two software products in a much-generalized 
manner. The author has developed the concept of a 
generic wind tunnel balance, asserting that all designs of 
internal wind tunnel balances are, in principle, equal, 
should be defined in the same way and be processed by 
the software using one algorithm, without branches for 
specific balance types. Beside certain generalizations in 
the form of the calibration matrix, the generic balance 
concept implies that a wind tunnel balance can measure 
an arbitrary number of physical components of load that 
can be transformed to  a desired number of components 
of total loads by a user-input transformation matrix. 
Generally, designating the transformation matrix as [ ]S , 

the resultant loads { } { }TP X ,Y ,Z ,L,M ,N...  acting on 

any multi-component internal balance can be calculated 
from balance-design-specific physical-components 
loads { }F , as: 

 { } [ ] { }P S F   (10) 

The number of rows in [ ]S  is to be equal to the number 

of components of total loads (i.e. m , usually equal to 
six), while the number of columns is to be equal to the 
number of physical balance components (i.e. k ). The 
locations of nonzero elements in [ ]S  are specific for 
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particular balance designs, as shown in (6) to (9), while 
the values of those terms depend both on balance design 
and its dimensions. These values should be derived 
from the theoretical (design) dimensions of the balance. 
Therefore, a component load transformation matrix is a 
descriptor of a particular balance design and size.  

 The designer is acually free to define the 
transformation matrix [ ]S  so that it describes almost 

arbitrary positions and orientations of measuring 
components on the balance (this includes the above-
mentioned capability to define a balance of any type as 
a direct-read one). It is recommended, however, for 
reasons already explained, that [ ]S  be defined so that 

mathematical components correspond as closely as 
possible to physical sensors on the balance. 

Beside computing total loads from physical-
components loads, it is often also necessary to perform 
the inverse computation and transform the total loads 
{ }P  to loads { }F  acting on physical balance 

components. Such a situation can arise, for example, 
when a balance is calibrated using the global regression 
method, e.g. [16], and is loaded by a known force vector 
acting on several physical components simultaneously. 
If the physical components of a balance form a 
statically-determined system, an obvious, though not 
numerically optimum, approach would be to start from 
(10) and use the inverse of the load transformation 
matrix: 

 1{ } [ ] { }F S P   (11) 

A numerically more accurate solution for the 
component loads could be obtained by applying one of 
the standard  methods for solving the system of linear 
equations (10), in order to get { }F , without actually 

computing 1[ ]S  . On the other hand, it may be of 

interest to have not only the computed loads but also the 
inverse transformation matrix 1[ ]S  available for 

inspection, so an algorithm that computes the inverse 
matrix may be preferred, after all. 

Equation (11) makes sense only if the number of 
physical – measuring components, (elements in { }F ) is 

equal to the number of components in the vector of total 
loads { }P . Otherwise,  [ ]S  is not a square matrix, and 

the inverse 1[ ]S   can not be made, so (11) is not 

applicable. Instead, the “pseudoinverse” [ ]S +  [17] of 

the transformation matrix can be used. If k m  (there 
are no more physical components than components of 
total load), the “left pseudoinverse” can be computed as: 

 
1

[ ] [ ] [ ] [ ]T TS S S S


    
+  (12) 

Thereafter, the loads { }F  on physical components 

of a balance can be calculated from total loads as: 

 { } [ ] { }F S P +  (13) 

It may be noted that the above relations are actually 
a least-squares solution of an over-constrained system, 
equivalent to solving a set of normal equations.  

If k m  (there are more physical balance 
components than components of total loads), 

[ ] [ ]TS S    is a singular matrix. In such cases, the 

“right pseudoinverse” can be used: 

 
1

[ ] [ ] [ ] [ ]T TS S S S


    
+  (14) 

and applied to (13). This is equivalent to minimizing the 
norm of the solution of an under-constrained system.  

It is known that the system of linear equations in a 
least-squares problem is ill-conditioned and the solution 
(13) is susceptible to round-off errors [18]. Besides, if a 
balance has redundant physical components and is not a 
statically determined system, (12) and (14) will 
encounter singularities and may not give a usable 
inverse matrix. The numerically superior singular value 
decomposition method (SVD) [18] can be used to much 
advantage here, and SVD should, generally, be the 
preferred method for computation of the inverse load 
transformation matrix. In the SVD procedure, [ ]S  is 

decomposed in a specific way into a product of three 
matrices: 

 [ ] [ ] [ ] [ ]TS U W V    (15) 

where [ ]U  and [ ]V  are column-orthogonal matrices and 

[ ]W  is a diagonal matrix containing singular values of 

[ ]S . The pseudoinverse of the load transformation 

matrix is obtained as: 

 [ ] [ ] [1/ ] [ ]TS V W U  +  (16) 

where [1/ ]W  is a diagonal matrix containing the 

reciprocals of all non-zero diagonal elements of [ ]W . 

The reciprocals of all zero terms, which would be 
infinitely large, are replaced by zeros. In practice, not 
only the reciprocals of zero-value terms but also of all 
the terms with values smaller than a certain treshold, are 
replaced with zeros. This should not be done blindly, 
and a good criterion for the rejection treshold should be 
applied. In this way, the unwanted singularities and 
near-singularities are eliminated and a “best possible 
approximation” of the inverse transformation matrix is 
obtained.  

On the other hand, for all balance types so far 
encountered by the authors, the (pseudo)inverses of the 
load transformation matrices could be obtained with a 
good accuracy from (12) or (14) (depending on the 
values of k  and m ), provided that a simple iterative 
procedure, outlined in [18], was always applied 
afterwards to improve the numerical accuracy of the 
computed physical-components loads: after computing 
the initial component loads 0{ }F  from (12) or (14) and 

(13), a new approximation { }iF of component loads was 

obtained in each iteration i  as: 

  1 1{ } { } [ ] [ ] { } { }i i iF F S S F P      +  (17) 

where  1[ ] { } { }iS F P   are the back-calculated 

numerical errors for that iteration. Just one or two 
iterations were usually sufficient to make the numerical 
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round-off errors insignificant. The described iterative 
procedure was found to slightly improve even the 
solutions obtained by SVD. 

The (pseudo)inverse of a load transformation matrix 
can usually be easily manually composed using the 
conditions of static equilibrium. E.g. for a typical six-
component force balance, with transformation matrix 
defined as in (8), the inverse relation would be: 
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 (18) 

 
5. BENEFITS FROM USING A LOAD 

TRANSFORMATION MATRIX 
 
By a systematic application of the generic balance 
concept, as in the software tools [8] and [16] developed 
by the author, and by the definition of balance designs 
through load transformation matrices, certain benefits, 
not available otherwise, can be exploited: 
 An identical wind tunnel data-reduction algorithm 
(or a balance-calibration algorithm) and computer code 
can be used for any design of internal multi-component 
or single-component balances, and also for some 
external balances that do not change position relative to 
the model, e.g. semi-span ones, making the “type” of 
the balance, as defined in [1], practically irrelevant.  
 Data from unorthodox balance designs can be 
processed without modifications in the data-reduction 
software and without having to resort to calibrating the 
balance in other than its native load format; the number 
of physical components on such a balance need not be 
limited to six. For example, a box balance similar to the 
one described in [11] may have four normal-force 
physical components and four side-force physical 
components, all measured on columns at the corners of 
the balance body, and one axial-force component 
measured on a centrally placed sensing element (Fig. 6). 

 
Figure 6. Possible disposition of physical and total-load 
components on a nine-component box-balance 

If such a balance is calibrated as a nine-component one 
(the manufacturer calibrates it as a six-component 

direct-read balance using a non-iterative mathematical 
model [1]), it can yield actual loads on all physical 
components. The loads transformation matrix will then 
have 6 rows by 9 columns and the transformations will 
be, adopting an arbitrary (the manufacturer’s one being 
unknown) x, y, y... z,z...  sequence of physical 

components: 
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                                

     
    

        
 
  

   (19) 

 Additional components of total loads can be easily 
accounted for, that need not be forces and moments, but 
can be various influential variables such as temperature 
[19], pressure of the flow-through air [20], rotation rate 
of a rotary balance, etc. measured by suitable sensors on 
the balance or nearby. These can be included as physical 
components in the calibration matrix, and may as well 
(but need not) be represented as components of total 
loads, thus providing an easy way to obtain the values 
of those variables without any specific computational 
provisions. For example, the experimental high-stiffness 
moment balance [19] that was successfully used in VTI 
in tests of high-drag models e.g. [21], has a temperature-
sensing bridge near the axial-force semiconductor-
strain-gauges bridge on the balance body and 
temperature is included both as a physical component in 
the calibration matrix and as a component of total load 
so that the vector of physical components and the vector 
of total loads each have 7 elements: 

1

2

1

2

1 0 0 0 0 0 0

0 0 0 0 0.5 / 0.5 / 0

0 0 0.5 / 0.5 / 0 0 0

0 1 0 0 0 0 0

0 0 0.5 0.5 0 0 0

0 0 0 0 0.5 0.5 0

0 0 0 0 0 0 1

X

X

Y

Y

Z

Z

X

FX

MY b b

MZ a a

ML

MM

MN

TT

    
         
    
         

    
    
    
         

(20) 

 Transfer of balance calibration data or the balances 
themselves between wind tunnel communities using 
different axis and sign conventions is facilitated. The 
(unwieldy) calibration matrix and the sequence of 
physical components can be kept in the source format 
(preferably in the design-specific load format), and only 
the (simple) transformation matrix rearranged to suit the 
conventions at the site where the balance is to be used. 
If the order of components of total loads for a balance 
does not match the local conventions, the positions of 
appropriate rows in the transformation matrix should be 
interchanged. If the positive direction of a component of 
total load does not match the local conventions, the 
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signs of all elements in the appropriate row of the 
transformation matrix should be changed. As a load 
transformation matrix will, in most cases, have no more 
than six rows or columns, this rearrangement can be 
easily performed manually. As an example, the load 
transformations for a typical force balance, given in (8) 
in matrix form according to West-European 
conventions, can be rearranged in accordance with 
North-American practice and nomenclature, to: 

 

1 1 0 0 0 0 1

0 0 0 0 2

0 0 1 1 0 0 1

0 0 0 0 2

0 0 0 0 1 0

0 0 0 0 0 1

NF NF

PM a a NF

SF SF

YM b b SF

RM RM

AF AF

     
          
                 

    
    
         

 (18) 

  A balance can be deployed keeping the 
manufacturer-defined sequence and positive directions 
of components, without a need to change the polarities 
of any signals or the sequence of components in order to 
suit the user’s conventions, so that original 
documentation, manufacturer’s colour-coding of 
cabling, illustrations, etc. can remain relevant. 
 With a calibration matrix kept in the native format, 
and with a transformation matrix defined so that 
mathematical components correspond to physical 
measuring components, the earlier-mentioned problems 
related to bidirectionality, nonconverging computation 
of loads, complicated monitoring of overloads, etc. are 
less likely to occur. 
 The load transformation matrix, having few rows 
and columns and most of the elements equal to zero, can 
be easily composed and modified manually (contrary to 
the, usually much larger, calibration matrix) to suit a 
particular local convention regarding the orientation of 
load components. 
 The load transformation matrix can be used to easily 
change the position of the BMC of a wind tunnel 
balance, which may occasionally be needed. 
 The load transformation matrix can be very 
illustrative and is easily understood when viewing or 
discussing an unfamiliar balance design. 

 
6. POSSIBLE COUNTER-ARGUMENTS 

 
Several objections may be raised against the use of 
matrix notation and computations in performing the 
conversions between physical balance component loads 
and total loads: 
 The formulation of the inverse transformation matrix 
in order to compute physical-components loads from 
total loads, if performed by software, is a non-trivial 
task requiring good library subroutines, and may be 
considered complicated. If SVD is used to perform the 
calculations, a good choice of the singularity-rejection 
criteria is required. A dedicated, well tested, software 
subroutine/function would probably be needed to 
perform this calculation in any actual implementation.  
This objection stands. 
 In the proposed usage of the load transformation 
matrix it is implicitly assumed that a balance calibration 

matrix contains terms only for the actually existing 
physical components, without any “placeholders”. This 
is contrary to the recommendations in [1] which 
advocate the universal use of a 6 × 96 calibration 
matrix, with “empty” rows and columns in the places 
for non-existing physical components. However, a 
universal 6 × 96 matrix and a calibration in the 
“physical design” load format are not simultaneously 
applicable anyway if a balance has more than six 
components, so a “compacted” calibration matrix, as 
implied in this paper, is more general, irrespective of the 
use of load transformation matrices. 
 The concept of the load transformation matrix, as 
presented above, is not applicable to balances in which 
the test object (i.e. the wind tunnel model) changes 
position relative to the metric end of the balance. 
 A load-transformation matrix can not compensate all 
differences in local conventions when balance 
calibration data are transferred between wind tunnel 
facilities. If a balance calibration matrix contains 
nonlinear terms, there can be variations in the ordering 
of those terms, i.e. in the sequence of members of { *}F  

in (1), between the origin and the destination sites.  
They can not be compensated by adjusting the 
transformation matrix and must be accounted for 
elsewhere, either in the computational algorithm, or, 
preferably, in the matrix-export utilities at the balance 
calibration site. 

 
7. CONCLUSIONS 

 
Representation of the transformation of physical-
components loads of a wind tunnel balance into total 
loads using matrix notation is a technique that does not 
seem to have come into widespread use. It has been 
shown that it may be convenient to put it in practice, for 
a number of reasons. The main advantages are: i) the 
possibility to use identical, generalized, computation 
algorithms for all types of internal and semi-span wind 
tunnel balances, irrespective to the number of physical 
balance components and not being restricted to the 
“force”, “moment” or “direct read” balance types; ii) the 
possibility to always work with the balance calibration 
matrix in the optimum, balance-design load format, iii) 
the capability to easily handle, without any specific 
provisions in the software, balances with additional 
calibration variables which are not actual loads in terms 
of forces/moments, and iv) a facilitated transfer of 
balances calibration data or the balances themselves 
between wind tunnel laboratories and/or balance 
calibration laboratories with different axes and sign 
conventions.  

While several objections to the use of a load 
transformation matrix can be raised as well, it is 
considered that the advantages outweigh the objections. 
It is, therefore, suggested that a load transformation 
matrix be generally adopted to describe the geometry of 
a wind tunnel balance in wind tunnel data-reduction, in 
balance calibration and in exchanges and presentations 
of balance design data, and that it should always 
accompany a balance, together with a calibration 
matrix. The calibration matrix itself should always be in 
the “native” or “design” format having the sequence of 
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physical components and positive directions of the 
components as specified by the balance manufacturer, 
the conversion to the user’s conventions being done in 
the transformation matrix only. Both the calibration 
matrix and the load transformation matrix should be 
general matrices with numbers of rows and/or columns 
corresponding to a particular physical design and 
calibration model. 
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NOMENCLATURE 

Diverse variables 
a  half-distance between normal-force or 

pitching-moment bridges on a wind tunnel 
balance 
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b   half-distance between side-force or yawing-
moment bridges on a wind tunnel balance 

i  iteration count 
k  number of physical components of a wind

tunnel balance 
m  number of components of total loads (usually 

equal to six) 

Components of total loads 
L  rolling moment component of total load 
M  pitching moment component of total load 
N  yawing moment component of total load 
T  temperature of the balance (component of total

load) 
X  axial force component of total load 
Y  side force component of total load (normal 

force in Russian practice) 

Components of total loads (American notation) 
AF  axial force (also physical component in North-

American notation) 
NF  normal force 
PM  pitching moment 
RM  rolling moment (also physical component in 

North-American notation) 
SF  side force 
YM  yawing moment 

Physical balance components 

XF  axial force 

YF  side force 

1YF  fore side force 

2YF  aft side force 

3YF  third side force 

4YF  fourth side force 

ZF  normal force 

1ZF  fore normal force 

2ZF  aft normal force 

3ZF  third normal force 

4ZF  fourth normal force 

XM  rolling moment 

YM  pitching moment (also yawing moment
component of total load in Russian practice) 

1YM  fore pitching moment on a moment balance 

2YM  aft pitching moment on a moment balance 

ZM  yawing moment (also pitching moment
component of total load in Russian practice) 

1ZM  fore yawing moment on a moment balance 

2ZM  aft yawing moment on a moment balance 

XT  measured temperature of the balance 

Physical balance components (American notation) 
1NF  fore normal force on a force balance 
2NF  aft normal force on a force balance 

1SF  fore side force on a force balance 
2SF  aft side force on a force balance 

Column vectors and matrices 
[ ]C  calibration matrix of a wind tunnel balance 
[ 1]C  linear part of the calibration matrix of a wind 

tunnel balance  
[ 2]C  nonlinear part of the calibration matrix  

{ }e  column vector of ( k × 1) normalized output 
signals from physical components 

{ }F  column vector ( k × 1) of loads on physical 
measuring components of a balance 

{ *}F  column vector of load products etc. modeling 
the behaviour of a balance 

{ }P  column vector ( m  × 1) of components of total 
loads (axial force, normal force, etc.) 

[ ]S  load transformation matrix ( m  rows by 
k columns) 

[ ]S + pseudoinverse of the load transformation 
matrix  

[ ]U  matrix of left-singular-vectors produced by 
SVD ( m  rows by k columns) 

[ ]V  matrix of right-singular-vectors produced by 
SVD ( k rows by k columns) 

[ ]W  diagonal matrix of singular values produced by 
SVD ( k  rows by k columns) 

[1/ ]W  diagonal matrix of reciprocal or zeroed 
singular values ( k rows by k columns) 

 
 

 
О УПОТРЕБИ МАТРИЦА ТРАНСФОРМАЦИЈЕ 

ОПТЕРЕЋЕЊА ПРИ РАДУ СА 
УНУТРАШЊИМ АЕРОВАГАМА 

 
Ђорђе Вуковић, Дијана Дамљановић 

 
Унутрашње аероваге се често разврставају, по свом 
дизајну, на „аероваге са мерењем сила“, „моментне 
аероваге“ и „аероваге са директним очивавањем“. 
Само аероваге са директним очитавањем могу одмах 
да дају укупна оптерећења; код других типова су 
неопходне трансформације, зависне од типа 
аероваге, стварно мерених оптерећења на укупна 
оптерећења. Показује се да представљање ових 
трансформација у матричном облику, у виду 
„матрице трансформације оптерећења“, осим што 
представља погодан начин да се изведе прорачун, 
омогућава значајне генерализације у обради 
података, практично елиминишући потребу за 
„типом“ аероваге. Употреба матрице 
трансформације такође олакшава размену 
баждарних података за аероваге, као и самих 
аеровага, међу аеротунелским заједницама са 
различитим конвенцијама које се односе на осе и 
смерове оптерећења. Предлаже се да се, због 
погодности које омогућава, матрица трансформације 
оптерећења употребљава ради описивања дизајна 
аеровага и да увек прати сваку аеровагу, заједно са 
баждарном матрицом.  

 


