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Delamination of Multilayered Non-linear 
Elastic Shafts in Torsion  
 
Delamination cracks in multilayered circular shafts loaded in torsion are 
analyzed in terms of the strain energy release rate. It is assumed that the 
material in each layer has non-linear mechanical behaviour that is treated 
by the Ramberg-Osgood constitutive law. Also, each layer exhibits smooth 
material inhomogeneity in radial direction. It is assumed that the three 
material properties involved in the Ramberg-Osgood constitutive law vary 
continuously in radial direction of layers. A methodology for determination 
of the strain energy release rate is developed that is applicable for shafts 
made of arbitrary number of adhesively bonded concentric layers which 
have individual thickness and material properties. The delamination 
cracks are located arbitrary between layers. The methodology is used to 
investigate a delamination in a multilayered clamped shaft. The dela-
mination is also studied by analyzing the energy balance for verification. 
Parametric analyses of the clamped multilayered shaft are carried-out.  
 
Keywords: Multilayered circular shaft, Delamination fracture, Material 
inhomogeneity, Torsion, Material non-linearity  

 
 

1. INTRODUCTION  
 

The delamination fracture behaviour of layered materials 
and structures has been the subject of investigation by 
many researchers from both theoretical and applied stand-
points in the last few decades. This is due to the fact that 
the delamination, i.e. separation of layers, is one of the 
most important causes for disintegration of layered struc-
tural members. The delamination phenomenon is studied 
usually in terms of the strain energy release rate by 
assuming linear-elastic behaviour of the material [1].  

Recently, several papers on delamination fracture in 
multilayered beam configurations which exhibit non-
linear mechanical behaviour of the material have been 
published [2-4]. These publications are focused on 
delamination in multilayered beams of a rectangular 
cross-section. The beams are loaded in bending. Various 
solutions to the strain energy release rate are derived for 
the cases when the layers of beams are made of 
inhomogeneous or functionally graded materials. It is 
assumed that layers exhibit continuous (smooth) 
inhomogeneity (usually, the modulus of elasticity varies 
continuously in the cross-section of layers). It should be 
noted that the strong interest towards the 
inhomogeneous materials is due mainly to the fact that 
the functionally graded materials as a new kind of 
inhomogeneous composites which consist of two or 
more constituents with gradual variation of their 
microstructure over volume are ubiquitous in aeronau-
tics, nuclear reactors, microelectronics, biomedicine and 
optics [5-9]. Although the ordinary laminated compo-
sites are widely used in engineering [10-16], the sharp 
interfaces between their constituents lead often to 

failure from interfacial stress concentrations. Actually, 
one of the important advantages of functionally graded 
materials in comparison with the laminated composites 
is the elimination of interfacial stress concentrations.  
      It should be mentioned that fracture analyses of con-
tinuously inhomogeneous (functionally graded) mate-
rials and structures are carried-out by using methods of 
linear-elastic fracture mechanics which are applicable 
for linear-elastic behaviour only [17]. Obviously, it 
would be useful to develop fracture analyses with taking 
into account the non-linear elastic behaviour of the 
material. In the present paper, the delamination fracture 
behaviour of multilayered non-linear elastic circular 
shafts loaded in torsion is investigated assuming that 
layers exhibit continuous inhomogeneity in radial direc-
tion. The main objective is to develop a methodology 
for determination of the strain energy release rate when 
the non-linear elastic behaviour of the material is des-
cribed by the Rambeg-Osgood constitutive equation 
assuming that the three material properties involved in 
the constitutive equation vary gradually in radial direc-
tion in contrast to previous studies which deal with the 
case when only one material property (usually, the shear 
modulus) vary in radial direction [18].           

 
2. METHODOLOGY FOR ANALYSIS OF THE STRA-

IN ENERGY RELEASE RATE  
 

Delamination cracks in multilayered non-linear elastic 
circular shafts loaded in torsion are under consideration in 
the present paper. Shafts are made of concentric longi-
tudinal adhesively bonded layers. The number of layers is 
denoted by n . Each layer exhibits smooth material inho-
mogeneity in radial direction. The non-linear mechanical 
behaviour of the material in each layer is treated by the 
Ramberg-Osgood constitutive law. Delamination cracks 
are located arbitrary between layers. A portion of a 
multilayered shaft with delamination crack front is 
depicted in Figure 1. The delamination crack front is a 
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circle of radius, r1. The internal crack arm is a circular 
shaft with radius, r1.  

 
Figure 1. Portion of a circular multilayered shaft with the dela-
mination crack front (the delamination crack is a cylindrical 
surface with radius, r1) 

The external crack arm is a ring-shaped shaft with 
internal radius, r1, and external radius, r2. The torsion 
moment in the shaft cross-section ahead of the delami-
nation crack front is denoted by T. The delamination 
fracture behaviour is analyzed in terms of the strain 
energy release rate by using the following formula [19]:     
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where n1 and n2 are the numbers of layers, respectively, 
in the internal and external crack arms, ri and ri+1 are, 
respectively, the radiuses of the internal and external 
surfaces of the i-th layer, *

0 1iau , *
0 2iau  and *

0iu  are the 
complementary strain energy densities in i-th layer of 
the internal and external crack arms in the cross-section 
behind the crack front and in i-th layer in the shaft 
cross-section ahead of the crack front, respectively.  
       The relation between the shear strain, γ, and the 
shear stress, τi, in the i-th layer of the internal crack arm 
is expressed by the Ramberg-Osgood constitutive law 
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where Qi, Hi and mi are material properties which vary 
continuously in radial direction in each layer 

( )i iQ Q r=                                                           (3) 

( )i iH H r=                                                         (4) 

( )i im m r=                                                           (5) 

The complementary strain energy density in i-th 
layer of the internal crack arm is calculated by the 
following formula [20]: 
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One of the characteristic features of the Ramberg-
Osgood constitutive law (2) is that the stress, τi, can not 
be determined explicitly. Therefore, τi is expanded in 
series of Taylor by keeping the first three members 
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where   
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By introducing of coefficients, qαi, qβi and qδi, 
formula (7) is re-written as  

   ( ) ( )2( )i i i bi i bir q q r r q r rα β δτ ≈ + − + −         (10) 

In order to use the Ramberg-Osgood constitutive law 
(2) for determination of qαi, qβi and qδi, the shear strain 
has to presented as a function of the radius, r. By 
applying the Bernoulli’s hypothesis for plane sections, 
the distribution of the shear strains in the internal crack 
arm is written as 

1
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where  

10 r r≤ ≤                                                           (12) 

In (11), γb is the shear strain at the periphery of the 
internal crack arm. It should be mentioned that the 
applicability of the Bernoulli’s hypothesis for plane 
sections follows from the fact that circular shafts of high 
length to diameter ratio are under consideration in the 
present paper.  
     By combining of (2), (10) and (11), one arrives at  
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In order to obtain equations for determination of qαi, 
qβi and qδi, first, r = rbi is substituted in (13). The result is 
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Further, by substituting of r = rbi in the first and 
second derivatives of (13) with respect to r, one arrives at 
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where Qi, Hi and mi, and their derivatives, Q`
i, Q``

i, H`
i,  

H``
i, m`

i and m``
i, are calculated at r = rbi. In equations 

(14), (15) and (16),  

11, 2, 3,...i n=                                         (17) 
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Equations (14), (15) and (16) are worked out for 
each layer in the internal crack arm. Thus, 3n1 equations 
whit 3n1+1 unknowns, γb, qαi, qβi and qδi, where   = 
1,2,3,...,n1 are worked out. Another equation is worked 
out by considering the equilibrium of the elementary 
forces in the internal crack arm cross-section 
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where T1 is the torsion moment in the internal crack arm 
cross-section behind the delamination crack front. By 
substituting of (10) in (19), one derives  
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Equations (14), (15), (16) and (20) should be solved 
with respect to γb, qαi, qβi and qδi,, where i = 1,2,3, ... n1, 
, by using the MatLab computer program for particular 
shaft geometry, external loading and material properties. 
Then, the complementary strain energy density in each 
layer of the internal crack arm is calculated by 
substituting of (10) in (6).  
     The complementary strain energy density in the i-th 
layer of the external crack arm is written as 
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where the shear stress, τdi, is expanded in series of 
Taylor 

( ) ( )2( )di i i bi i bir p p r r p r rα β δτ ≈ + − + −        (22) 

The coefficients, pαi, pβi and pδi, where i = 1,2,3, ..n2, 
are determined by using equations (14), (15), (16) and 
(20). For this purpose, T1, n1, γb, qαi, qβi and qδi are 
replaced with T2, n2, γd, pαi, pβi and pδi, respectively. 
Here, T2 is the torsion moment in the external crack arm 
behind the delamination crack front, γd is the shear 
strain at the periphery of the external crack arm.  
      The shear stress, τfi, in the i-th layer of the shaft 
cross-section ahead of the delamination crack front is 
also expanded in series of Taylor 

( ) ( )2( )fi i i bi i bir s s r r s r rα β δτ ≈ + − + −         (23) 

Equations (14), (15), (16) and (20) are used to 
determine the unknown coefficients, sαi, sβi and sδi, 
where i = 1,2,3,...n. For this purpose, T1, n1, γb, qαi, qβi 
and qδi are replaced, respectively, with T, n, γf , sαi, sβi 
and sδi, where T is the torsion moment in the shaft cross-
section ahead of the delamination crack front, γf is the 
shear strain at the periphery of the shaft. The comp-
lementary strain energy density in the i-th layer of the 
shaft cross-section ahead of the delamination crack front 
is expressed as 
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where τfi is found by (23). 
     The strain energy release rate for the delamination 
crack in the multilayered circular shaft shown in Fig. 1 is 
obtained by substituting of (6), (21) and (24) in (1). The 
integration should be carried-out by using the MatLab 
computer program for particular shaft structure.  

 
3. APPLICATION OF THE METHODOLOGY 

 
The methodology for analyzing the strain energy release 
rate developed in section 2 of the present paper is 
applied here to investigate delamination fracture beha-
viour of a clamped multilayered circular shaft loaded in 
torsion. The shaft is shown schematically in Figure 2. A 
delamination cylindrical crack of length, a , is located 
arbitrary between the concentric layers. 

The radius of the internal crack arm cross-section is 
r1. The length of the shaft is l. The shaft is clamped in 
its right-hand end. The loading on the shaft consists of 
one torsion moment, T, applied at the free end of the 
external crack arm as shown in Figure 2. Thus, the 
internal crack arm is free of stresses.  
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Figure 2. Geometry and loading of a clamped multilayered 
circular shaft  

The continuous variation of the material properties, 
Qi, Hi and mi, in radial direction of the i-th layer of the 
shaft is described by the following tangent laws:    
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In formulae (25) – (27), Q0i, H0i and m0i are the values, 
respectively, of Qi, Hi and mi at the internal surface of 
layer gqi, ghi and gmi are material properties which 
govern the material inhomogeneity in radial direction.  
      Since the internal crack arm is free of stresses,  

 *
0 1 0a iu =                 (29) 

where 

11, 2, 3, ...i n=                                                   (30) 

The complementary strain energy density in the i-th 
layer of the external crack arm is obtained by formula 
(21). For this purpose, T1, n1, γb, qαi, qβi and qδi are 
replaced, respectively, with T2, n2, γd, pαi, pβi and pδi, in 
equations (14), (15), (16) and (20). After substituting of 
(25), (26) and (27) in (14), (15), (16), the equations are 
solved with respect to γd, pαi, pβi and pδi, by using the 

MatLab computer program. Then, *
0 2iau  is expressed by 

substituting of (22) in (12).  
Formula (24) is applied in order to calculate the 

complementary strain energy density in the i-th layer in 
the shaft cross-section ahead of the delamination crack 
front. The quantities, γf , sαi, sβi and sδi, are determined 
from equations (14), (15), (16) and (20) by replacing of 
T1, n1, γb, qαi, qβi and qδi with T, n, T , n , γf , sαi, sβi and 
sδi, respectively. 

Finally, the strain energy release rate for the cylin-
drical delamination crack in the clamped shaft shown 
Figure 2 is obtained by substituting of (21), (24) and 

(29) in (1). The integration in (1) is performed by the 
MatLab computer program.  
       The delamination fracture behaviour of the multi-
layered clamped shaft (Figure 2) is studied also by 
analyzing the energy balance in order to verify the solu-
tion to the strain energy release rate. For this purpose, a 
small increase of the delamination crack length, δa, is 
assumed leading to the following equation for balance 
of the energy: 
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UT a Gl a
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δφ δ δ∂
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∂                                (31) 

where φ is the angle of twist of the free end of the 
external crack arm, U is the strain energy cumulated in 
the shaft, ldl is the length of the delamination crack 
front. From (31), one derives the following expression 
for the strain energy release rate: 
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Therefore, formula (32) is re-written as 
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The following integral of Maxwell-Mohr is applied 
in order to derive the angle of twist of the free end of 
the external crack arm: 

1 1
1 20

a l
f d

t t
a

M dx M dx
r r
γ γ

φ = +∫ ∫                  (35) 

where x is the longitudinal centroidal axis of the shaft 
(Fig. 2). In (35), M1t is the unit torsion moment applied 
at the free end of external crack arm. From (35), one 
derives 
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The internal crack arm is free of stresses. Therefore, 
the strain energy cumulated in the shaft is determined by 
integrating of the strain energy densities in the layers of 
the external crack arm and the un-cracked shaft portion  
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where the strain energy density in the i-th layer of the 
external crack arm, 0 2a iu  is calculated by the following 
formula [11]: 
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The strain energy density in the i-th layer of the un-
cracked shaft portion, u0i, is written as: 
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The final expression for the strain energy release 
rate is derived by substituting of (36) and (37) in (34) 
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The integration in (40) should be carried-out by 
using the MatLab computer program. The strain energy 
release rates obtained by (40) are exact matches of the 
strain energy release rates calculated by (1). This fact 
proofs the correctness of the delamination fracture ana-
lysis of multilayered circular shafts developed in the 
present paper. It should be noted that the strain energy 
release rate in the clamped shaft is analyzed also by 
keeping more than three members in the series of Taylor 
(7). The strain energy release rates obtained are very 
close to these determined by using the first three mem-
bers (the difference is less than 2 %).  

 

 
Figure 3. Fragments of two three-layered circular shaft confi-
gurations with a delamination crack located (a) between layers 2 
and 3, and (b) between layers 1 and 2  

Parametric investigations are performed in order to 
appraise the influences of material inhomogeneity, dela-
mination crack location in radial direction of the shaft 
cross-section and the non-linear mechanical behaviour 
of the inhomogeneous material on the delamination 
fracture in the multilayered non-linear elastic clamped 

circular shaft. For this purpose, calculations of the strain 
energy release rate are performed by applying the 
solution (1). The obtained strain energy release rates are 
presented in non-dimensional form by using the formula 
GN = G/(Q01r2). The material inhomogeneity in radial 
direction is characterized by gqi, ghi and gmi. In order to 
appraise the influence of the delamination crack loca-
tion on the fracture behaviour, two three-layered shaft 
configurations are studied. In the first configuration, 
shown in Figure 3a, a cylindrical delamination crack is 
located between layers 2 and 3. A shaft configuration 
with a cylindrical delamination crack between layers 1 
and 2 is also studied (Figure 3b).  

Both configurations are loaded by a torsion moment, 
T, applied at the free end of external crack arm. The 
thickness of the layers in both configurations is t. It is 
assumed that t = 0.004 m and T = 20 Nm.  

First, the effect of gq1 on the delamination fracture 
behaviour is appraised. The shaft configuration with 
delamination crack located between layers 2 and 3 is 
investigated (refer to Figure 3a). The strain energy 
release rate in non-dimensional form is presented as a 
function of gq1 in Figure 4 assuming that Q02/Q01 = 0.7, 
Q03/Q01 = 0.5, H01/Q01 = 0.6, H02/H01 = 0.5, H03/H01 = 
0.8, m01 = m02 = m03 = 0.4, gh1 = gh2 = gh3 = 0.6, gm1 = 
gm2 = gm3 = 0.5. The curves in Figure 4 indicate that the 
strain energy release rate decreases with increasing of 
gq1 (this behaviour is explained by increase of the shaft 
stiffness when gq1 increases). The strain energy release 
rate derived assuming linear-elastic mechanical beha-
viour of the inhomogeneous material is plotted in non-
dimensional form against gq1 in Figure 4 for comparison 
with the non-linear solution.  

 
Figure 4. The strain energy release rate in non-dimensional form 
presented as a function of gq1 at (curve 1) non-linear mechanical 
behaviour of the inhomogeneous material, and (curve 2) linear-
elastic behaviour. The three-layered shaft configuration with a 
delamination crack located between layers 2 and 3 (refer to Fig. 
3a) is analyzed 

The curves in Figure 4 show that the material non-
linearity leads to increase of the strain energy release rate. 
It should be noted that the linear-elastic solution to the 
strain energy release rate is derived by substituting of H 
→ ∞ in the non-linear solution (1) because at H → ∞ the 
Ramberg-Osgood constitutive law (2) transforms in the 
Hooke’s law assuming that Qi is the shear modulus of the 
inhomogeneous material in the i-th layer of the shaft.  
     The influence of gh1 on the delamination fracture 
behaviour is appraised too. For this purpose, the strain 
energy release rate in non-dimensional form is 
presented as a function of gh1 in Figure 5 at gq1 = 0.5 
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and gm1 = 0.5 for both three-layered shaft configurations 
depicted in Figure 3. It can be observed in Figure 5 that 
the strain energy release rate decreases with increasing 
of gh1. This finding is attributed to the increase of the 
stiffness with increasing of gh1.   

 Concerning the effect of the delamination crack 
location on the delamination fracture behaviour, the curves 
in Figure 5 indicate that the strain energy release rate is 
higher when the delamination is between layers 2 and 3.  

 
Figure 5. The strain energy release rate in non-dimensional form 
presented as a function of gh1 for the three-layered shaft 
configuration with a delamination located (curve 1) between 
layers 2 and 3, and (curve 2) between layers 1 and 2 (refer to Fig. 
3) 

This finding is attributed to the fact that the stiffness 
of the external crack arm is lower when the delami-
nation is between layers 2 and 3.   

 
Figure 6. The strain energy release rate in non-dimensional form 
presented as a function of gm1 at (curve 1) H02/H01 = 0.5 and (curve 
2) H02/H01 = 3.0    

 In order to appraise the effect of gm1 on the dela-
mination fracture behaviour, the strain energy release 
rate in non-dimensional form is presented as a function 
of gm1 in Figure 6 at gq1 = 0.5 and gh1= 0.6 for two 
H02/H01 ratios. The shaft configuration with a 
delamination crack located between layers 2 and 3 is 
analyzed. One can observe in Figure 6 that increase of  
gm1 leads to decrease of the strain energy release rate 
(this is due to the increase of the stiffness). The strain 
energy release rate decreases also with increasing of 
H02/H01 ratio (Figure 6). This phenomenon is explained 
by the increase of the stiffness with increasing of 
H02/H01 ratio.   

 
4. CONCLUSION  

 
Delamination fracture behaviour of multilayered inho-
mogeneous non-linear elastic circular shafts loaded in 

torsion is analyzed in terms of the strain energy release 
rate. The non-linear elastic behaviour of the material is 
treated by the Ramberg-Osgood constitutive law 
assuming that the three material properties involved in 
the constitutive law vary continuously in radial direction 
in each layer. A methodology for determination of the 
strain energy release rate is developed that can be app-
lied for shafts made of layers which have individual 
thicknesses and material properties. The methodology is 
used to perform a parametric analysis in order to app-
raise the influence of material inhomogeneity on the 
delamination fracture behaviour of the clamped shaft. 
The analysis reveals that the strain energy release rate 
decreases with increasing of gq1, gh1 and gm1 (the 
material properties, gq1, gh1 and gm1, govern the material 
inhomogeneity in radial direction of layer 1). The 
influence of delamination crack location in radial 
direction of the shaft cross-section on the fracture is 
appraised too. It is found that the strain energy release 
rate decreases when the stiffness of the external crack 
arm increases. The effect of material non-linearity on 
the delamination fracture behaviour is also studied. The 
analysis shows that the strain energy release rate is 
higher in multilayered shafts exhibiting non-linear 
mechanical behaviour of the inhomogeneous material. 
      The methodology developed in the present paper 
can be applied in design of multilayered functionally 
graded shafts with considering of their delamination 
fracture behaviour. The methodology can be used to 
check for delamination crack growth. For this purpose, 
first, the strain energy release rate has to be calculated 
for a given magnitude of external loading by applying 
the methodology. The calculated strain energy release 
rate has to be compared with the delamination fracture 
toughness in order to check for crack growth. The met-
hodology can be applied also to calculate the strain 
energy release rate by using experimental data from 
delamination fracture tests on multilayered inhomo-
geneous non-linear elastic shafts loaded in torsion.                  
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NOMENCLATURE  

A crack length  
G strain energy release rate 
H material property 
l length of the delamination crack front 
m material property 
N number of layers 
p coefficient in series of Taylor 
Q material property 
q coefficient in series of Taylor 
r radius of cross-section 
s coefficient in series of Taylor 
T torsion moment 
t thickness of layer 
U strain energy 
U strain energy density 

Greek symbols 
ϕ   angle of twist 
γ  shear strain  
τ  shear stress 
ψ  material property 

Subscripts 

αi subscript of coefficients in series of Taylor 
βi subscript of coefficients in series of Taylor 
δi subscript of coefficients in series of Taylor 

 
 

ДЕЛАМИНАЦИЈА ВИШЕСЛОЈНЕ ЕЛАС-
ТИЧНЕ ОСОВИНЕ ОПТЕРЕЋЕНЕ ТОРЗИЈОМ 

 
В. Ризов 

 
Прслине деламинације код вишеслојних кружних 
осовина оптерећених торзијом се испитују са аспекта 
брзине ослобађања деформационе енергије. Полази се 
од претпоставке да се материјал сваког слоја понаша 
механички нелинеарно што се анализира применом 
Рамберг-Озгудовог закона. Сваки слој показује 
нехомогеност материјала у радијалном правцу. 
Претпоставља се да три својства материјала, која 
укључује Рамберг-Озгудов закон, непрекидно варирају 
у радијалном правцу слојева. Методологија одређи-
вања брзине ослобађања деформационе енергије је раз-
вијена тако да се може применити на осовине израђене 
од произвољног броја конценцитричних слојева спо-
јених адхезијом, при чему сваки слој има одређену 
дебљину и својства материјала. Места прслина дела-
минације између слојева су одређена произвољно. 
Методологија се користи за истраживање делами-
нације код вишеслојне фиксиране осовине. Делами-
нација је анализирана и са аспекта енергетске равно-
теже у циљу верификације. Извршена је параметарска 
анализа фиксиране вишеслојне осовине.  

 


