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Mechanisms 
 
The paper reports the optimization synthesis of a hydraulically actuated 
drive mechanism. A mathematical model of the mechanism using vector 
closure equations is developed. Based on the functional purpose of the 
mechanism, a set of geometric and force/moment requirements are defined 
which must be met by a proper selection of a standardized hydraulic 
cylinder and its points of attachment. A multiobjective design optimization 
task is defined with three objective functions whose minimum is searched – 
the mass of the hydraulic cylinder, the squared total deviation of the 
developed by the hydraulic cylinder moments from the predefined values of 
the external moments and the force in the hydraulic cylinder. The defined 
multiobjective optimization task is considered as a mixed variable 
nonlinear constrained optimization problem containing 5 continuous and 2 
discrete variables and the multistage Monte Carlo method is used for its 
solution. Using different weighting schemes several Pareto-optimal 
compromise solutions are obtained. 
 
Keywords: optimization, drive mechanism, continuous and discrete 
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1. INTRODUCTION 
 

In modern society, along with the introduction of new 
technologies, there is an increasing trend to improve the 
characteristics of the existing products and devices. 
Especially of paramount importance is the optimization 
of the drive mechanisms used in the energy-intensive 
industrial equipment such as hydraulically driven 
manipulators - hydraulic excavators, truck-mounted cra-
nes, mining and material handling machines etc. The 
optimization synthesis [1-3] is a key technique for 
designing mechanisms satisfying predefined geometric, 
force, mass, power etc. requirements. Using a suitable 
optimization method the dimensions of the mechanism 
links are determined to satisfy certain requirements, 
expressed by one or more objective functions, interval, 
and functional constraints. The optimization synthesis is 
applied successfully many times for obtaining compe-
titive machines and mechanisms. The authors of [4] pre-
sented an optimal dimensional synthesis of the hyd-
raulic excavator working mechanism performed using 
multiobjective optimization and achieved an improve-
ment of the digging performance. The paper [5] presents 
a method for the selection of optimal transmission 
mechanism parameters of a hydraulic forest crane by the 
solution of an optimization task and thus the machine 
performance is enhanced. A systematic method for 
optimal component selection of electrohydraulic servo 
systems including hydraulic cylinders is presented in 
[6]. The paper [7] presents mathematical modelling and 
optimum synthesis of oscillating slide actuators used in 

mechatronics devices. A complete methodology for 
optimal synthesis of drive mechanisms of hydraulic 
excavators taking into account the digging processes is 
developed in [8]. The authors of [9] developed a mathe-
matical model of an excavator considering the kine-
matics of the links drive mechanisms.  

A problem that has not been given enough attention 
in the existing research is the selection of a hydraulic 
cylinder, whose parameters largely determines the 
performance characteristics of the drive mechanism. 
Usually, this design task is related to the selection from 
a given finite discrete set, and most often it is a selection 
of a standardized in diameter and stroke hydraulic cylin-
ders from a manufacturer's catalogue [10]. The optimi-
zation problems in which some of the design variables 
accept only discrete values are very common in engi-
neering. Over the last few decades, a large number of 
studies have been devoted to this problem [11,12]. The 
methods for solving optimization problems containing 
simultaneously continuous and discrete/integer variables 
are classified in [13] and depend mainly on the type of 
the objective function and design variables. Since in 
most cases it is difficult to achieve the optimal solution 
within one iteration, it is necessary to specify the solu-
tion in several consecutive steps, accompanied by 
decision-making and changing the parameters of the 
task. For this reason, the process of finding the optimal 
solution is iterative and has a certain degree of inter-
activity, i.e. the designer can influence the process of 
obtaining the final solution [14]. In all cases, finding the 
best feasible design is not guaranteed.  

With a great application for solving mechanism 
dimensional synthesis the problems are the evolutionary 
algorithms [15], which have been implemented in dedi-
cated software products [16]. Less commonly used, but 
with great potential in solving optimization problems 
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with mixed variables is the Monte Carlo method based 
on the multiple evaluations of the objective function 
value for randomly generated sets of values of the 
design variables [17]. The effectiveness of the Monte 
Carlo method is considerably increased when it is 
applied in several consecutive stages with successive 
narrowing of the search region based on the previous 
stage results [18,19]. The Parameter Space Investigation 
method has the same conceptual simplicity, but it is not 
based on the generation of uniformly distributed random 
numbers but the use of quasi-random LPτ sequences 
[20,21]. Both methods are very suitable for optimization 
of functions, in which numerical problems arise related 
to the presence of discrete variables, inability to 
differentiate functions etc. or when, in addition to the 
optimal solution, suboptimal solutions are also accepted 
for practical use. 

The paper aims to develop a method for an optimal 
selection of a standardized hydraulic cylinder for a hyd-
raulically actuated drive mechanism considering the mul-
ticriteria character of the problem. For the achievement of 
this goal, a kinematic model of the mechanism is 
developed and an optimization dimensional synthesis is 
performed using the multistage Monte Carlo method. 
 
2. KINEMATIC ANALYSIS OF THE HYDRAULI-

CALLY ACTUATED MECHANISM 
 
The kinematics and force equations are derived for the 
case of a hydraulically actuated boom [22] with kinema-
tic length L lifting a payload with weight Gp, see Fig. 1.  
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Figure 1. Graphical layout of the boom specific positions  

Another two loads applied to the boom are: 1) The 
weight of the boom GB applied to its gravity center 
whose position is determined by the vector with length 
L4 and angle α; 2) The weight of the hydraulic cylinder 
Ghc, applied to its gravity center.  In the current paper, 
for simplicity, it is considered that for every position 
gravity center of the hydraulic cylinder is situated in the 
middle of its current length. Another important assump-
tion is that the movements of the mechanism are relati-
vely slow and the inertia forces can be neglected. 

Figure 1 shows five specific positions of the boom, 
determined by the corresponding angles θi (i=1,…,5) 
measured counterclockwise from the horizontal axis. 
The angles θ1 and θ5 correspond to the maximum and 
minimum angles of inclination of the boom respec-
tively, and the angle θ3 corresponds to the horizontal 
position of the boom. The angles θ2 and θ4 are defined 
as averages between the horizontal and the maximum 
and the horizontal and minimum angles of the boom 
inclination, respectively. 

Figure 2 depicts the schematic layout of the mecha-
nism comprised of a hydraulic cylinder 1 and a boom 2.  
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Figure 2. Schematic layout and vector closure diagram of 
the inverted slider-crank mechanism 

By θ is denoted the current angle of rotation of the 
boom measured between the line representing the kine-
matical length of the boom and the horizontal axis. The 
mechanism is classified as an inverted slider-crank 
mechanism with input the changeable length of the hyd-
raulic cylinder and output – the angle of rotation of the 
boom θ. 

The kinematic analysis of the mechanism is conduc-
ted using the vector closure diagram shown in Figure 2: 

+ = +2 1 3L L L S                             (1) 

whose projections onto the fixed {xOy}coordinate sys-
tem are: 

( )
( )

1 3

2 1

cos cos

sin sin

L L S

L L S

δ θ ψ

δ θ ψ

+ = +

+ + =
                 (2) 

After certain transformations and simplification, the 
equations (2) are presented as a single equation: 

 1 2 3cos sin 0K K KΔ + Δ + =                  (3) 

where the following notations are used: 1 1 32K L L= − , 

2 1 22K L L= , 2 2 2 2
3 1 2 3K L L L S= + + − , δ θΔ = + . 

The solution of this equation gives the following 
relation for the hydraulic cylinder length S and the angle 
of the boom rotation θ: 



FME Transactions VOL. 49, No 2, 2021 ▪ 503
 

( ) ( )2 2 2
1 2 3 1 2 32 sin cosS L L L L L Lθ = + + + Δ − Δ    (4) 

Also, the angle of inclination ψ of the hydraulic 
cylinder is calculated as: 

 1 3 1 2
2

cos sin
atan ,

L L L L
S S

ψ
Δ − Δ +⎛ ⎞= ⎜ ⎟

⎝ ⎠
    (5) 

The hydraulic cylinder force Fhc is transformed into 
an equivalent torque Mhc, applied in the joint A. Using 
the principle of virtual work, the mapping Thc(Fhc) is 
obtained: 

( ) ( )hс hcT F kθ θ=                            (6) 

where k(θ) is the influence coefficient calculated as: 

( ) ( )1 sink Lθ δ θ ψ= − + −                   (7) 
 
3. DEFINITION OF FUNCTIONAL REQUIREMENTS 

FOR THE HYDRAULICALLY ACTUATED 
MECHANISM 

 
Based on the functional purpose of the considered hyd-
raulically actuated mechanism, the coordinates of the 
points of attachment C and B and the standardized hyd-
raulic cylinder parameters should be determined in such 
a way so that the predefined geometric and force 
/moment requirements are met. 

 
3.1 Geometric requirements 
 
The following two types of geometric conditions must 
be satisfied: 
1) The stroke of the hydraulic cylinder should be 
determined in such a way so that the predefined values 
of the maximum θ1 and minimum θ5 angles of the link 2 
rotation are achieved (see Fig.1). The angle θ1 is achi-
eved for the maximum extended hydraulic cylinder with 
length max

hcL : 

( ) ma
1

x 2hc TL L hS θ = = +                     (8) 

where h denotes the stroke of the hydraulic cylinder and 
by LT is denoted the specific distance, computed as a 
difference between the length min

hcL  of the fully retracted 
cylinder and the stroke. Similarly, the angle θ5 is 
achieved at the maximum retraction of the hydraulic 
cylinder: 

( ) min
5 hc TL L hS θ = = +                      (9) 

In (8) and (9), S(θ1) and S(θ5) denote the maximum and 
the minimum lengths of the hydraulic cylinder, 
computed by (4). 
2) The transmission angle γ is defined as (see Figure 2): 

( )
2
πγ θ δ θ ψ= + + −                      (10) 

must not exceed a predefined value [γ]. This require-
ment must be satisfied for the larger by the absolute 
value angle ( )1 5,max maxθ θ θ= :  

( ) [ ]maxγ θ γ≤                             (11) 

3.2 Force/moment requirements 
 
The defined geometric constraints are accompanied by 
the following force/moment constraints: 
1) Moment constraints ensure the achievement of 
predefined moment values for the predefined angles of 
rotation. The moment Thc(θ), developed by the hydraulic 
cylinder must overcome the total moment Mext(θ) of the 
external forces about point A (see Fig.1):  

( ) ( )hc extT Mθ θ≥                         (12) 

For the considered hydraulically actuated boom the 
total external moment Mext(θ)  is calculated as a sum of 
the moments developed by the weights of the payload, 
boom and hydraulic cylinder (see Fig.1): 
• Moment of the payload 

( ) cosp pM G Lθ θ=                      (13) 

• Moment of the boom 

( ) ( )4 cosB BM G Lθ α θ= +               (14) 

where GB is the weight of the boom, L4 and α are the 
length and the angle of rotation of the vector defining 
the position of the center of gravity of the boom, 
respectively; 
• Moment of the hydraulic cylinder 

( ) 1 cos
2
hc

hc
m g

M z Lθ = Δ                   (15) 

where mhc is the mass of the hydraulic cylinder; z is the 
number of the connected in parallel hydraulic cylinders 
(typical values are z=1 or z=2); g is the gravity accele-
ration. 

The force Fhc developed by the hydraulic cylinder is 
calculated as: 

2.
4hc
DF zp π η=                              (16) 

where p is the pressure in the hydraulic cylinder cham-
ber; D is the hydraulic cylinder piston diameter; η is the 
hydraulic cylinder efficiency which takes into account 
the friction forces between the piston and body of the 
hydraulic cylinder, the pressure in the rod chamber, the 
friction moments in the hydraulic cylinder joints etc. 
2) Force constraint imposed by the hydraulic cylinder 
buckling. The admissible force in the hydraulic cylinder 
is constrained by the buckling condition: 

[ ]hc buckF z F≤                               (17) 

where [Fbuck] is the admissible force in the hydraulic 
cylinder due to the buckling constraint [10]: 

[ ] ( )
( )

2

2max

2

,

335 0.62
,

4

g

hc
buck

g

EI if
LF

d
if

π λ λ
ν

π λ
λ λ

ν

⎧
>⎪

⎪= ⎨
⎪ −

≤⎪
⎩

        (18) 
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where max
hcL  (in mm) is the free buckling length of the 

hydraulic cylinder; λ is the slenderness ratio: 

max4 hcL
d

λ =                                (19) 

λg is the critical value of the slenderness ratio: 

0.8g
e

E
R

λ π=                               (20) 

Also, the following values of the constants are used: 
E=2.1×105 MPa is the modulus of elasticity for steel; 
I=0.0491d4 is the moment of inertia of circular cross-
sectional area, (in mm4); ν=3.5 is the safety factor; d is 
the diameter of the piston rod (in mm); Re=400 MPa is 
the yield strength of the piston rod material. 
 
4. DEFINITION OF A DESIGN OPTIMIZATION 

PROBLEM 
 
There is a great variety of technical aspects concerning 
the design of the considered mechanism. The solution of 
the task of hydraulic cylinder selection and its points of 
attachment is ambiguous due to the possibility to select 
more than one standardized hydraulic cylinders, satis-
fying with different degree of approximation the prede-
fined requirements. Typically, the requirements for the 
diameter and stroke of the hydraulic cylinder to be 
simultaneously minimal are contradictory because mo-
ving the axis of the hydraulic cylinder away from the 
axis of rotation of the boom reduces its diameter but 
increases its stroke and vice versa. A multiobjective 
optimization task should be defined here, the solution of 
which will minimize both the stroke and the diameter of 
the hydraulic cylinder at the same time and will satisfy 
the defined geometric and force/moment requirements. 
The common characteristic combining the mentioned 
parameters is the working volume of the hydraulic 
cylinder whose minimal value is searched: 

2.
4hc
DV zh π=                               (21) 

4.1 Determination of design variables 
 
As design variables of the considered mechanism 
determining its output geometric and force/moment 
characteristics the following variables are considered: 

[ ]1 2 3
TL L L p D hδ=x          (22) 

where L1, L2, L3 and δ are geometric variables (see 
Figure 2) determining the coordinates of the attachment 
points of the hydraulic cylinder; p is the pressure in the 

hydraulic cylinder piston chamber; D and h are the 
piston diameter and the stroke of the hydraulic cylinder, 
correspondingly.  

The variables L1, L2, L3, δ and p are considered as 
continuous in a predefined interval of values. The 
values of D and h are of discrete type and are deter-
mined by the standardized manufacturer's size range. 
Table 1 shows the numerical values of the following 
parameters of the range of standardized double-acting 
hydraulic cylinders: diameter D of the piston; diameter 
d of the piston rod; specific length Lt; basic mass mb of 
the cylinder body for stroke h=0; mass mh which must 
be added to the basic mass mb for every 1 m stroke. 

Using the data from Table 1 the overall mass of a 
hydraulic cylinder with stroke h is calculated as: 

hc b hm m m h= +                              (23) 

where the stroke h is measured in meters. 
 
4.2 Definition of a multi-objective optimization 

problem 
 
Here, the optimization problem is considered as multi-
objective [23] consisting of three objective functions.  

The first objective function is defined from the 
consideration that the hydraulically actuated mechanism 
is a part of a mobile machine and minimum mass of the 
selected hydraulic cylinder is required: 

( )1 minhcf zm= →x                          (24) 

The mass of the hydraulic cylinder is proportional to 
its working volume (21) so the minimum of the mass 
will correspond to the minimum of the working volume. 
An additional important consideration is that the 
minimization of the mass improves the mechanical 
system dynamics and increases the tip-over stability of 
the machine [24]. 

Since it is necessary to achieve a certain degree of 
proximity of the moment Thc(θ) developed by the 
hydraulic cylinder to the predefined external moments 
Mext(θi) for five angles according to (12) and Figure 1, 
as a second objective function is accepted the squared 
total deviation of the developed by the hydraulic 
cylinder moments from the predefined values of the 
external moments: 

( ) ( ) ( )( )
5 2

2
1

minhc i ext i
i

f T Mθ θ
=

= − →∑x         (25) 

As a third objective function defined by the mecha-
nism links and supporting structure strength require-
ments was adopted the minimum of the force in the 
hydraulic cylinder: 

Table 1. The size range of standardized double-acting hydraulic cylinders [10] 

№ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
D, mm 40 50 63 80 100 125 140 160 180 200 220 250 280 320 
d, mm 28 36 45 56 70 90 100 110 125 140 160 180 200 220 
Lt, mm 482 505 570 620 695 790 860 930 1025 1090 1260 1300 1465 1630 
mb, kg 7 10 16 26 44 80 112 169 239 309 452 582 753 1125 
mh, kg 10 15 26 36 57 92 119 139 168 215 309 369 488 604 

 
 
 



FME Transactions VOL. 49, No 2, 2021 ▪ 505
 

 

( )3 minhcf F= →x                        (26) 

Taking into account the defined geometric require-
ments (8)÷(11), force/moment requirements (12)÷(20) 
and the defined objective functions (24)÷(26) the 
following optimization task is defined: 

Minimize the set of objective functions 

( ) ( ) ( ) ( )1 2 3, ,f f f f= ⎡ ⎤⎣ ⎦x x x x                  (27) 

subject to the following set of: 
• Functional constraints 

( )

( )
( ) [ ]

( ) ( )
[ ]

max
1

min
2 5

3 max

1

4,...,8

9

( ) 0

( ) 0

( ) 0

( ) 0, 1,...,5

( ) 0

hc

hc

ext i hc i

hc buck

g L

g

S

S L

g

g M T i

g F z F

ε

ε

γ θ γ

θ

θ

θ

θ

≡ − − ≤

≡ − − ≤

≡ − ≤

≡ − ≤ =

≡ − ≤

x

x

x

x

x

     (28) 

• Interval constraints: 

min max min max
1 1 1 2 2 2
min max min max
3 3 3 2 2
min max

,

,

L L L L L L

L L L

p p p

δ δ δ

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

≤ ≤

             (29) 

• Discrete variables h and D. 
For the definition of the constraint g1(x) corres-

ponding to the maximum angle of rotation θ1 is accepted 
that when hydraulic cylinders with standardized discrete 
strokes are used it is not always possible to satisfy (8) 
exactly. Therefore an allowable deviation ε between the 
theoretical length S(θ1) and the length max 2hc tL L h= +  
of the standardized hydraulic cylinder is defined. As a 
consequence of the presence of an allowable deviation, 
the required value of the angle θ1 will not be achieved, 
but for small ε the error will be acceptable. The same 
considerations are used in defining the constraint g2(x) 
for the minimum angle of rotation θ5. Besides, the 
following values of the constants are used: 0

1 70θ = , 
0

2 35θ = , 0
3 0θ = , 0

4 335θ = , 0
5 310θ = , [ ] 085γ = , 

0.001mε = , 50kNG = , 10mL = , 0.95η = , 
10kNBG = , L4=4.2 m, α=100. 

 
5. NUMERICAL EXPERIMENTS AND DISCUSSION 
 
Many researchers applied a variety of optimization 
methods to improve the performance of systems with a 
different degree of complexity and belonging to diffe-
rent domains [25-28] using appropriate analytical and 
numerical tools [29]. The defined multiobjective optimi-
zation task (27) is considered as a mixed variable 
nonlinear constrained optimization problem containing 
5 continuous and 2 discrete variables. For its solution is 
used the well-known Monte Carlo method based on 
uniform random sampling with a large number of trial 
points [18]. The steps of the method are as follows: 

a) Specification of the number of trial points n; 

b) For i=1 to n  a trial point with coordinates ( )ix  is 
generated:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3, , , , , ,i i ii i i i iL L L p D hδ=x           (30) 

The values C(i) of the continuous variables for the 
trial point i are computed as: 

( ) ( ) ( )i i
L U LC C C C u= + −                   (31) 

where CL and CU denote the lower and upper bounds of 
the corresponding variable; u(i) denotes values of 
uniformly distributed random numbers between 0 and 1 
different for each design variable to ensure their mutual 
independence. 

The values of the discrete variables at step i are 
randomly selected from vectors containing their discrete 
values. The position f(i) of the randomly selected disc-
rete value in the vector with length q is calculated as: 

( ) ( ) ( )1 1i if round q u⎡ ⎤= + −⎢ ⎥⎣ ⎦
                   (32) 

where round denotes the rounding to the nearest integer; 
c) If for the current trial point the constraints are 

satisfied then the values of the three objective functions 
are calculated and together with the coordinates of the 
corresponding trial points x(i) are stored: 

( )( ) ( )( ) ( )( ) ( )( )1 2 3, ,i i i if f f f⎡ ⎤= ⎢ ⎥⎣ ⎦
x x x x           (33) 

The set of the stored values f(x(i)) satisfying the 
constraints represents a discrete approximation of the 
feasible space. 

d) The optimal solution of the defined multiobjective 
optimization task consists not of a single point but of a 
set of points representing compromise solutions among 
the defined three objectives. This set is called Pareto 
front [23] and includes nondominated (efficient) 
solutions for which none of the three objectives can be 
improved without causing deterioration of the value of 
at least one of the other objectives. That’s why after 
determination of the discrete feasible space a Pareto 
filter is applied to determine the points belonging to the 
Pareto front. Then by certain criteria, an optimal point 
from the obtained Pareto front is selected. 

Typically, to discover the region in which the global 
optimum is located, one repeats the steps from a) to d) 
several times with decreased bounds of the design 
variables. The change of the bounds at each subsequent 
stage is based on the conducted analysis of the obtained 
Pareto front from the previous stage. 

The choice of a single compromise point from the 
obtained Pareto front is based on the minimum value of 
the calculated squared distance d2 between the 
normalized Utopia point and every point belonging to 
the Pareto front (Salukvadze optimal solution [30]): 

( )
3 22

1

n
l l

l
d w f

=
= ∑                          (34) 

where wl is the weighting coefficient serving as a 
quantitative expression of the importance of the l-th 
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objective function. The weighting coefficients are posi-
tive, satisfying 

3

1
1l

l
w

=
=∑ , 0 1lw≤ ≤                      (35) 

Also, in (34) n
lf  denotes the value of the l-th 

normalized objective function: 

min

max min
n l l

l
l l

f f
f

f f
−

=
−

                          (36) 

where min
lf  and max

lf  are the minimum and maximum 
values of the l-th objective function. 

The multistage Monte Carlo method combined with 
the Pareto front determination is applied for the solution 
of the defined optimization task (27). The used data, 
obtained results and the analysis for every stage are as 
follows:  

Stage I. The number of the trial points used at this 
stage is 10×109. The bounds of the continuous design 
variables are determined from the design limitations of 
the real-world structure and are shown in Table 2 where 
by CL and CU are denoted the lower and upper bounds 
of the variables respectively. 

Table 2. Design variables bounds for Stage I 

 L1, m L2, m L3, m δ, deg p, MPa 
CL 3 0.4 0.4 14 8 
CU 4.1 1.5 1.5 21 25 

Table 3. Pareto optimal solutions - Stage I 

№ f1, kg f2×109, (Nm)2 f3×105 N L1, m L2, m L3, m D, m h, m δ, rad p, MPa 
1 1082.8 8.02 5.69 3.680 0.949 0.452 0.18 1.8 0.278 11.19 
2 1015.6 11.54 6.49 3.378 0.826 0.443 0.18 1.6 0.343 12.74 
3 1049.2 16.69 6.26 3.551 0.839 0.523 0.18 1.7 0.359 12.31 
4 1116.4 19.45 5.60 3.799 1.003 0.499 0.18 1.9 0.341 11.00 
5 1183.6 17.64 4.99 4.075 1.140 0.504 0.18 2.1 0.316 9.80 
6 1150 27.89 5.55 3.979 1.066 0.478 0.18 2.0 0.246 10.90 
7 1150 34.53 5.42 3.909 1.109 0.448 0.18 2.0 0.316 10.65 
8 982 47.64 7.70 3.270 0.767 0.406 0.18 1.5 0.256 15.14 
9 948.4 48.54 8.26 3.105 0.707 0.402 0.18 1.4 0.323 16.22 
10 1435 5.31 5.33 3.881 0.990 0.509 0.20 1.9 0.328 8.49 

Table 4. Design variables bounds for Stage II 

 L1, m L2, m L3, m δ, deg p, MPa 
CL 3.1 0.7 0.4 14 8 
CU 4.1 1.2 0.53 21 16 

Table 5. Pareto optimal solutions - Stage II 

№ f1, kg f2×109, (Nm)2 f3×105 N L1, m L2, m L3, m D, m h, m δ, rad p, MPa 
1 1015.6 3.41 6.12 3.391 0.802 0.474 0.18 1.6 0.360 12.04 
2 982 3.25 6.51 3.243 0.769 0.414 0.18 1.5 0.321 12.80 
3 1049.2 3.24 5.77 3.534 0.877 0.467 0.18 1.7 0.322 11.33 
4 1082.8 3.88 5.50 3.689 0.959 0.426 0.18 1.8 0.237 10.80 
5 1116.4 3.27 5.18 3.835 0.999 0.479 0.18 1.9 0.268 10.17 
6 948.4 9.23 7.31 3.103 0.707 0.403 0.18 1.4 0.328 14.36 
7 1150 3.801 4.96 3.982 1.041 0.528 0.18 2 0.290 9.74 
8 1183.6 9.96 4.89 4.096 1.131 0.503 0.18 2.1 0.289 9.61 

Table 6. Design variables bounds for Stage III 

 L1, m L2, m L3, m δ, deg p, MPa 
CL 3.1 0.75 0.4 14 9 
CU 4.1 1.13 0.53 21 14 

Table 7. Pareto optimal solutions - Stage III 

№ f1, kg f2×109, (Nm)2 f3×105 N L1, m L2, m L3, m D, m h, m δ, rad p, MPa 
1 1049.2 3.22 5.76 3.538 0.892 0.435 0.18 1.7 0.280 11.32 
2 1015.6 3.21 6.13 3.386 0.839 0.414 0.18 1.6 0.295 12.05 
3 1082.8 3.47 5.47 3.689 0.949 0.447 0.18 1.8 0.259 10.75 
4 1082.8 3.46 5.48 3.688 0.949 0.446 0.18 1.8 0.258 10.75 
5 982 3.03 6.50 3.239 0.776 0.406 0.18 1.5 0.316 12.77 
6 1116.4 3.47 5.18 3.831 0.983 0.517 0.18 1.9 0.312 10.19 
7 1116.4 3.46 5.19 3.834 0.975 0.527 0.18 1.9 0.320 10.20 
8 1150 3.51 4.93 3.985 1.048 0.514 0.18 2.0 0.272 9.69 
9 1183.6 7.78 4.84 4.099 1.125 0.513 0.18 2.1 0.294 9.51 
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Table 8. Compromise solutions for different weighting schemes 

№ w1 w2 w3 f1, kg f2×109, (Nm)2 f3×105, N L1, m L2, m L3, m D, m h, m δ, rad p, MPa 
1 0.(3) 0.(3) 0.(3) 1082.8 3.47 5.47 3.689 0.949 0.447 0.18 1.8 0.259 10.75 
2 0.7 0.15 0.15 1015.6 3.21 6.13 3.386 0.839 0.414 0.18 1.6 0.295 12.05 
3 0.15 0.7 0.15 1049.2 3.22 5.76 3.538 0.892 0.435 0.18 1.7 0.280 11.32 
4 0.15 0.15 0.7 1116.4 3.47 5.18 3.831 0.983 0.517 0.18 1.9 0.312 10.19 
5 1 0 0 982 3.03 6.50 3.239 0.776 0.406 0.18 1.5 0.316 12.77 
6 0 1 0 982 3.03 6.50 3.239 0.776 0.406 0.18 1.5 0.316 12.77 
7 0 0 1 1183.6 7.78 4.84 4.099 1.125 0.513 0.18 2.1 0.294 9.51 

 
The vectors containing the discrete values for the 

standardized diameters and strokes of the hydraulic 
cylinders are taken from Table 1: 

0.1,0.125,0.14,0.16,0.18,
0.20,0.22,0.25,0.28,0.32

D m⎧ ⎫
∈⎨ ⎬
⎩ ⎭

 

and 

1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,
2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7

h m⎧ ⎫
∈⎨ ⎬
⎩ ⎭

. 

By the conducted numerical experiment at this stage, 
488 feasible points are found. In Figure 3a) they are 
shown in the 3D objective functions space together with 
the points belonging to the Pareto front. The Pareto 
front determined for the first stage contains 10 points 
for which objective functions values and its corres-
ponding set of design variables are shown in Table 3. It 
must be noted that the ratio of the feasible points and 
the number of trial points is equal to 4.8×10-8, which 
points out that the problem is difficult to solve due to 
the imposed very restrictive constraints; 

Stage II. The analysis of the values of the objective 
functions and design variables for the obtained Pareto 
front at Stage I (see Table 3) makes it possible to 
narrow the intervals of change of the variables. The 
accepted bounds of the continuous design variables for 
Stage II are shown in Table 4. 

The sets of the values of the discrete variables are 
reduced to { }1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1h m∈  and 

{ }0.18,0.20D m∈ . 
At this stage, a numerical experiment with 5×109 

trial points is conducted. The number of the feasible 
points is 10582 whose number is much greater than the 
points obtained at Stage I. The ratio of the feasible 
points and the number of trial points is equal to 
2.12×10-6, which means that the procedure of 
determination of feasible points is more effective than 
during Stage I. The obtained feasible space and Pareto 
front points are shown in Figure 3b), and the numerical 
values for the Pareto front are shown in Table 5. As one 
can see, the value of the piston diameter D is equal to 
0.18 m for all points in the Pareto front and thus this 
value can be considered optimal; 

Stage III. Based on the results for Stage II, Table 6 
shows the accepted bounds of the continuous design 
variables. 

The sets of the values of the discrete variables are 
reduced to { }1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1h m∈  and 

{ }0.18D m∈ . 

From the conducted numerical experiment with 
5×109 trial points, 4557 feasible points are obtained. The 
feasible points and the Pareto front are shown in Figure 
3c) and the numerical values of the points belonging to 
the Pareto front are shown in Table 7. 

As one can see from Tables 3, 5 and 7, narrowing 
the limits of the variables during the different stages 
leads to an improvement in the values of the solutions 
belonging to the Pareto front. The objective functions 
have different sensitivity - the value of criterion f2 has 
the biggest improvement, the value of the objective 
function f3 is less improved, and the value of f1 has not 
changed. 

Table 8 shows the optimal solutions calculated 
according to (34) for seven different combinations of 
the weighting factors. As one can see the optimal 
solution strongly depends on the chosen values of the 
weighting coefficients. In the first combination of 
weights, it is assumed that all objective functions are of 
equal importance, i.e. w1=w2=w3=0.(3). In the 
combinations №2, №3 and №4, a higher priority is 
given to each of the three objective functions through 
assigning higher values of the corresponding weighting 
factor. The combinations №5, №6 and №7 present 
absolute minimums of the three objective functions.  

 
a) 

 
b) 
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c) 

Figure 3. The feasible points and Pareto front for: a) Stage 
I; b) Stage II; c) Stage III 

 
Figure 4. Moments Thc(θ) and Mext(θ) for solution №5 from 
Table 8 

f3
no

rm

 
Figure 5. The normalized Pareto front and the optimal point 
for solution №5 from Table 8 

Although at the present stage the obtained solutions 
can be considered acceptable, the values of the design 
variables for every single solution can serve as initial 
points for further refinement. To do this, the obtained 
values of the discrete variables are fixed and an 
additional searching in a small region, including the 
obtained values of the continuous variables is perfor-
med, i.e. an additional refinement of the attachment 
points of the selected hydraulic cylinder is performed. 
The values thus obtained for solution №5 from Table 8 
are as follows: f1=982 kg, f2=2.84×109 (Nm)2, 

f3=6.48×105 N, D=0.18 m, h=1.5 m, L1=3.241 m, 
L2=0.764 m, L3=0.425 m, δ=0.339 m, p=12.73 MPa. As 
one can see, there is a more noticeable improvement for 
the value of the objective function f2. 

Fig. 6 depicts a scaled geometrical layout of the 
mechanism for solutions №1 and №5 of Table 8. It 
demonstrates that, by giving different weights to 
different objective functions, the mechanism dimensions 
can be adjusted. It can be seen that sol. №5 has smaller 
dimensions than sol. №1, and the hydraulic cylinder is 
lighter, but on the other hand the force in the hydraulic 
cylinder is greater in solution №5. 

 

θ1 

θ5 

sol. № 5,6
sol. № 1

 
Figure 6. Scaled geometric layout of the attachment points 
for solutions № 1 and 5 from Table 8 

The solutions №5 and №6 of Table 8 deserves 
special attention since they simultaneously have a mini-
mum of the objective functions f1 and f2 equal to 982 kg 
and 3.03×109 (Nm)2 respectively, while the function f3 
has a maximum of 6.5×105 N. From a practical point of 
view, this solution does not differ much from the 
solution №1 from Table 8 with equal importance of all 
objective functions, and it is also acceptable for imple-
mentation in a real-world structure. Figure 4 shows the 
graphs of the moments Thc(θ) and Mext(θ)  for solution 
№5, while Figure 5 depicts the normalized Pareto front 
and the optimal point for the same case. As one can see, 
the constraints g5(x)÷g9(x) are completely satisfied and 
the difference between the two curves is acceptable. 

The verification of the developed optimization 
model is conducted using the ε-constraint method [22]. 
To preserve the multiobjective character of the optimi-
zation problem is used as an objective function f2→min 
and the objective functions f1 and f3 are used as 
additional constraints and are added to the set of 
constraints (28), i.e. f1-1000≤0 and f3-7×105≤0. Using a 
nonlinear programming solver based on genetic 
algorithms, the single objective optimization problem is 
solved and the following optimal values of the design 
variables are obtained: L1=3.244 m, L2=0.761 m, 
L3=0.427 m, δ=0.337 rad, p=13.27 MPa, D=0.18 m, 
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h=1.5 m. The obtained values for the objectives are 
f1=982 kg, f2=2.72×109 (Nm)2 and f3=6.42×105 N. As 
one can see, the differences in the objective functions 
compared to the refined solution №5 from Table 8 are 
negligible. 
 
6. CONCLUSION  
 
In the designer's practice, the process of selecting a 
hydraulic cylinder for hydraulically actuated mecha-
nisms is inherently iterative. The designer of such 
mechanisms repeatedly uses analytical and graphical 
techniques to select a suitable standardized hydraulic 
cylinder and checks whether the resulting solution 
meets predefined requirements. To some extent, the 
design process is also intuitive and based on the expe-
rience of the designer. Using trial and error method it is 
challenging to achieve an optimal selection that cannot 
be improved or an improvement can be achieved with a 
large expenditure of time and effort. 

The developed method for optimization synthesis of 
hydraulically driven mechanisms allows multiobjective 
optimal selection of a standardized hydraulic cylinder 
satisfying preset geometric and force requirements. By 
applying the multi-stage Monte Carlo method the Pareto 
front is obtained. It contains several compromise solu-
tions that are Pareto-optimal. The choice of a certain 
solution from the Pareto set is made based on 
Salukvadze's criterion by setting proper weighting 
factors for each of the objective functions. Although the 
Monte Carlo method is computationally inefficient, with 
reasonable effort optimal and suboptimal solutions can 
be obtained that can be implemented in real-world 
machines. A great advantage of this approach is its 
interactivity - in the process of optimization, the desig-
ner can adjust the intervals of change of the design 
variables and constraints, as well as not to comply with 
their type - continuous or discrete. 
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ВИШЕКРИТЕРИЈУМСКИ ОПТИМАЛНИ 
ИЗБОР ХИДРАУЛИЧКОГ ЦИЛИНДРА  

ЗА ПОГОНСКЕ МЕХАНИЗМЕ 
 

Р.П. Митрев, Т.С. Тодоров 
 

Рад приказује синтетизовани метод оптимизације 
примењен код хидраулички активираног погонског 
механизма. Развијен је математички модел 
механизма помоћу једначине затварања вектора. На 
основу функционалности механизма дефинисан је 
скуп захтева, геометријских и сила/момент, који се 
морају задовољити адекватним избором стандарди-
зованог хидрауличког цилиндра и тачака везивања. 
Задатак вишециљне оптимизације дизајна је дефи-
нисан помоћу три објективне функције код којих се 
тражи минимум – маса хидрауличког цилиндра, 
квадрат укупног одступања момента цилиндра из 
унапред одређених вредности спољашњих момената 
и сила цилиндра. Задатак оптимизације се разматра 
као проблем оптимизације мешовитих променљивих 
и нелинеарних ограничених вредности и садржи 5 
непрекидних и 2 дискретне променљиве, док се 
Монте Карло метод користи за решавање проблема. 
Коришћењем различитих шема пондерисања 
добијено је неколико Парето оптималних решења.  

 

 

 

 
 
 

 
 


