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Multi-Point Tool Condition Monitoring 
System - A Comparative Study 
 
In the metal removal process, the condition of the tool plays a vital role to 
achieve maximum productivity. Hence, monitoring the tool condition 
becomes inevitable. The multipoint cutting tool used in the face milling 
process is taken up for the study. Cutting inserts made up of carbide with 
different conditions such as fault-free tool (G), flank wear (FW), wear on 
rake face (C) and tool with broken tip (B) are considered. During 
machining of mild steel, vibration signals are acquired for different 
conditions of the tool using a tri-axial accelerometer, and statistical 
features are extracted. Then, the significant features are selected using the 
decision tree algorithm. Support Vector Machine(SVM) algorithm is 
applied to classify the conditions of the tool. The results are compared with 
the performance of the K-Star algorithm. The classification accuracy 
obtained is encouraging hence, the study is recommended for real-time 
application. 
 
Keywords: Condition Monitoring, Milling Tool, Statistical Feature, SVM, 
K-Star 

 

 
1. INTRODUCTION 

 
The condition of the tool plays a significant role in 
producing the required surface finish, which determines 
the quality of the product. The failure of the cutting tool 
happens over a period due to deterioration [1]. Further, 
the replacement of defective tools demands unplanned 
downtime and leads to production loss. Hence, 
monitoring the state of the tool is essential to schedule 
preventive maintenance [2]. Essentially, monitoring the 
tool condition prevents unexpected rejection of 
workpiece, minimizes downtime, achieves targeted 
workpiece dimensions, and, as a result, lowers 
production costs and manpower[3]. This monitoring can 
be of two methods, direct method, in which the state of 
the tool is measured directly through optical sensors, or 
wear width can be measured using tool maker’s 
microscope. This method gives more accurate results 
but is economically not viable [4]. The main drawback 
of the direct method is the noise that exists in the signal 
due to coolant and metal chips. On the other method, the 
tool conditions can be predicted indirectly by capturing 
the signals such as Current [5], Power [6], Force [7], 
Acoustic Emission (AE)[8], Sound [9], and Vibration 
[10]. These indirect methods are more feasible and the 
tool states are correlated well with the signals acquired 
[11].  

In general, Tool Condition Monitoring (TCM) in 
indirect methods involves two fundamental processes, 
they are extraction of features from the sensor signal 
pool and the next step is to process the signal to 
diagnose the tool conditions. Extraction of useful 
features such as statistical feature[12], histogram 
feature[4], wavelet feature [6,10] is in current research. 

The features extracted are processed using Machine 
Learning Algorithms such as Artificial Neural Network 
(ANN) [13], Naïve Bayes classifier [9], Decision Tree 
[12], SVM [14], Random Forest [15], Fuzzy classifier 
[16], K-star algorithm [4].  

This Machine Learning (ML) is gaining momentum 
in data analysis and pattern classification problems of 
various domains. Syed Shaul Hameed et al.(2021) 
compared the performance of the fuzzy classifier with 
ANN in planetary gearbox condition monitoring. The 
authors used histogram features and concluded that the 
results of both the classifiers showed encouraging results 
[17]. Fault diagnosis of Self-Aligning Troughing Roller 
(SATR) in belt conveyor systems was reported in [18]. 
The authors compared the performance of ANN and the 
decision tree algorithm using vibration signals. An image 
based surface texture classification of the machined 
surface using ANN and Random Forest algorithm was 
carried out by [19]. Susai Mary et al (2019) predicted the 
surface roughness in the drilling process. ANN approach 
was used for tuning the drilling parameters to yield the 
required surface finish [20]. Altobi et al.(2019) presented 
work on centrifugal pump fault diagnosis. Authors used 
ML algorithms such as backpropagation multilayer 
perceptron with genetic algorithm and SVM. Continuous 
wavelet transform (CWT) features under different 
conditions of the pump were considered and concluded 
that the multilayer perceptron approach achieved an 
accuracy of 99.5% [21]. Zhong et al.(2019) investigated 
the fault diagnosis of a gas turbine by transfer learning 
method based on Convolution Neural Network (CNN) 
and SVM. Authors redesign the CNN to make it capable 
to diagnose the fault with limited data. They concluded 
that the proposed methods require less expert knowledge 
and hence, reduce the preprocessing work [22]. Joshua 
and Sugumaran (2018) reported the condition monitoring 
of wind turbine blades. The authors have used the Auto-
regressive Moving Average (ARMA) feature set to 
classify the faults in the turbine blade [23]. Rahul Kumar 
Sharma et al. (2017) did work on condition monitoring of 
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roller bearing. The classification accuracies of the K-Star 
algorithm and K-Nearest Neighbor (KNN) algorithm 
were compared by acquiring sound signals [24].  

From the literature, one can understand the 
remarkable role of ML in the pattern classification of 
machine tools and machine elements. It is evident from 
the literature that the vibration signal has a strong 
correlation with the tool state [25,26]. In the material 
removal process, face milling is a primary process that 
produces flat surfaces using a multi-point cutting tool. 
SVM is one of the popular ML algorithms that find 
limited application in milling TCM. The modest way to 
analyze data is through statistical features. Therefore, in 
the present work, the performance of SVM is studied in 
classifying the different conditions of the milling tool. 
Further, the work is compared with K-Star, another 
prominent ML with limited implication in the field of 
fault diagnosis.  
 
2. METHODOLOGY 

 
In the present work, the statistical parameters of the 
acquired vibration signal were extracted during the face 
milling of mild steel with different conditions of the 
tool. The salient features are selected from the decision 
tree and given as input to the SVM algorithm. The work 
was extended with the K-Star algorithm and the 
performance of algorithms compared. The flow of the 
work is depicted in figure 1. 

 
Figure 1. Flow chart for the fault diagnosis of milling tool 

3. EXPERIMENTAL SETUP AND PROCEDURE 
 
The experiments are conducted in a vertical milling 
machine that has eight cutting inserts. The cutting 

inserts were mounted in the milling cutter. Using a tri-
axial piezoelectric accelerometer (Model No: 
8763B500BB Kistler make) the vibration signals during 
the milling process were obtained. The accelerometer 
was mounted on the spindle head as shown in figure 3. 
An analog-to-digital converter is used to convert the 
vibration signal into a digital form. Then in computer 
memory, the digital signals were stored. Figure3 shows 
the actual representation of the experimental setup. 
Initially, the milling cutter was fitted with defect-free 
inserts in the vertical milling machine. The machine was 
allowed to run for about three minutes to stabilize the 
vibrations and rough machining was carried on the 
workpiece.  

After the machine gets stabilized, the vibration 
signals corresponding to the new unused tool were 
acquired by the piezoelectric triaxial accelerometer. 
Then the experiments were conducted with new inserts 
and one insert with flank wear and the corresponding 
vibration signals were acquired. In the same manner, the 
insert with the other faults taken up in the study such as 
tool with wear on rake face and tool with broken tip was 
introduced and the respective vibration signals were 
recorded. From the experiments, a total of 1000signals 
were collected out of which 250 signals belonged to 
each condition. A sample vibration signal recorded is 
presented in figure 4. The acceleration amplitude varies 
with the condition of the tool. The cutting parameters 
were kept constant for all the above experiments and the 
mild steel was used for ease of machining. The cutting 
parameters are given in table 1. 

Table 1. Details of Machining Parameters 

Cutting Parameters Specifications 

Speed 250 RPM 

Feed rate 14 mm/minute 

Depth of cut 0.5 mm 

 
The photographic image of the tool shown in figure 

2 gives a better understanding of the various faults of 
the tool.  

 
a. Fault-free (G)                       b. Flank wear (FW) 

c. Wear on rake face  (C)        d. Broken Tip (B) 

Figure 2. Inserts with various faults and good condition 
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Figure 3. Experimental Setup 

4. FEATURE EXTRACTION 
 
In their raw form, data are rarely valuable. A sampling 
rate of 2048 samples per second was used to capture the 
corresponding vibrations for the different conditions of 
the tool for 10 seconds. Therefore, each signal has 
20480 data points. A total of 250 instances for each 
condition are recorded.  

Managing and interpreting such a massive amount of 
data becomes tedious, requires large storage, and is 
time-consuming. Therefore, it is vital to extract and pick 

the simplest and most valuable features that contain 
meaningful information. This is possible with the use of 
modern signal processing techniques and is the most 
important phase in tool condition monitoring because 
they form the input to the machine learning algorithms. 

Deriving insights manually from the raw signals 
requires domain knowledge and is a time-consuming 
process. Hence, to draw some meaningful conclusions 
the key statistical features are extracted as discussed in 
[12], [30]. 

Figure 4. Representative Time Domain signal for different conditions of the tool 
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5. FEATURE SELECTION 
 
The process of selecting useful features from the 
extracted features is known as feature selection. The 
selected features have a high potential to classify the 
good and fault conditions of the tool. This needs to be 
done to increase the classification accuracy and to 
reduce the data size. The decision tree algorithm is 
popularly used in time series data to select the 
prominent features. The statistical features are given as 
input to the decision tree algorithm and decision rules 
are obtained as output by computing the entropy and 
information gain from the input statistical features.  

In the decision tree, the information gain is 
calculated for all the features and the one having high 
information gain is placed at the top of the tree which is 
called the root node. The features with subsequent 
information gain are placed based on their order of 
importance. These nodes are called branch nodes. The 
branching continues until the decision is reached, the 
target class. The entropy and the information gain are 
calculated using equations (1) and (2). 

 
1
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    (1) 

where Pi is the probability of a particular class and c is 
the total number of classes. 
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where H(S) - Entropy before the split, Sv: No of 
instances of a particular class variable in one of the 
subsets of the split tree, S: Total no of class variables in 
that particular subset of the split tree, H(Sv): Entropy of 
the particular subset of the split tree. 
 
6. CLASSIFIERS 
 
6.1 SVM 
 
In classification problems, SVM is widely applied. It 
works based on supervised learning [27]. In SVM, a 
plane called a hyperplane is created to classify the data. 
An optimal separable hyperplane that separates the two 
classes is shown in figure 5. The bounding plane is 
called a margin, represented by a discontinuous line. 
SVM tries to maximize the margin to minimize the 
error. Support Vectors are the data that is near to the 
bounding planes which help in the determination of 
margin. The creation of a hyperplane is critical in SVM. 
In figure 5, two classes are considered (‘+’ and ‘-’). The 
hyperplane is obtained by solving the following 
equations (3) and (4).  
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Here the input vector is represented by xi and the 
indicator vector is represented by yi and L represents the 

total data points and w is the weight vector. The 
distance between the margin is measured by the slack 
variable ξ, b gives the bias, and the penalty 
hyperparameter is represented by positive constant c. 
The prediction of belongingness of a particular class by 
the data points is given by equation 5. 

   Tf x w x y     (5) 

The hyperparameter γ determines the curvature of 
the decision boundary. If the decision function f(x)is 
positive, data points are classified as ‘+’ otherwise ‘-’ 
[28].  

 
Figure 5. Working principle of SVM 
 
6.2 K-STAR 
 
K-star is a lazy family classifier that works well with 
both instance-based and rule-based learning. It solves 
the smoothness problem by adding up all the 
probabilities in each conceivable path. This technique 
makes a significant contribution to its effectiveness. It 
includes a mechanism for dealing with missing values 
as well as the merging of real and symbolic valued 
features[4].  

The entropic distance metric is used by this instance-
based classifier. Parameters x0 and s for real and 
symbolic features should be set to a value for every 
other dimension. If the symbolic feature s has a value of 
about 1, data points with symbols other than one will 
have a very low transformation probability, while data 
points with the same symbol will have a much greater 
transformation probability.  

As a result, the distance function will outperform 
its nearest neighbors. The probability distribution of 
symbols will be reflected by transformation 
probability when the value of symbolic features 
approaches zero. As a result, favorable symbols 
appear frequently [24]. 
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7. RESULTS AND DISCUSSIONS 
 
In this work, experiments were carried out with fault-
free and different fault conditions of the milling tool, 
and its corresponding vibration signals were acquired. 
The time-domain plot shown in figure 4, depicts the 
variation in vibration amplitude between the different 
conditions of the tool. 

Eleven statistical features were extracted from the 
acquired vibration signal. The representative statistical 
feature extracted from the vibration signals for four 
conditions of the tool is given in table 2. All the 
statistical features are not useful in classifying the 
conditions of the tool. A decision tree algorithm was 
used to select the most significant features. The 
information gain is computed by the decision tree using 
equation (2) for all the statistical parameters after 
computing the entropy from equation (1). A logic test is 
performed at each node to make decisions, thereby-
Then rules are generated to discriminate the different 
tool conditions. The most significant features are 
identified as standard deviation, mean, median, sample 
variance, and kurtosis by the decision tree algorithm 
which contains the maximum information to 
discriminate the tool conditions and are utilized further 
for classification.  

Figure 6 represents the part of THE DECISION 
TREE OBTAined from the features. The ellipse 
represents the statistical feature and the rectangular box 
represents the conditions of the tool. These boxes form 
the leaves in the decision tree. From the tree, it is 
observed standard deviation forms the root node which 
contains the maximum information GAINED to classify 
the condition of the tool. The majority of the flank wear 
(FW)tool condition is classified by following the 
decision rule from the tree: if standard deviation and 
median are greater than 0.004472 and 0.07201 

respectively, and sample variance is greater than -
0.040545 and kurtosis is less than 4.637346, then the 
data belongs toFW. Similarly, the If-Then decision rules 
are generated by the decision tree to classify the various 
tool conditions taken in this study. 

The discriminating capability of the tool condition 
by the features selected from the decision tree algorithm 
can be visualized through box plots. The box plots of 
standard deviation and kurtosis are represented in 
figures 7 and 8 respectively. In figure 7, the horizontal 
line present inside the blue colour box refers to the 
median of the standard deviation of the data 
corresponding to THE Good condition of the tool (G). 
The box covers 50% of the data referred TO AS THE 
INTER QUARTILE RANGE (IQR) [29], and the 
median line divides the data in equal proportions. The 
vertical lines are drawn on either side of the box which 
is referred to as whiskers. The length of the whiskers is 
drawn, 1.5 times of IQR or drawn up to the last data 
point. These whiskers cover most of the remaining data. 
However, the data which lies outside the whiskers are 
called outliers and are represented by dots. In figure 7, it 
is inferred that the standard deviation feature has 
different range distribution for various tool conditions 
which are represented as boxes.  

Similarly, in figure 8, it can be inferred that the 
kurtosis feature can classify FW, C, and B tool 
conditions effectively as there is no overlap between the 
boxes. Whereas, there is an overlap between the G and 
FW boxes, which indicates that kurtosis is least 
prominent in classifying these tool conditions within the 
selected features. 

The selected significant features were given as input 
to the SVM algorithm. The polynomial kernel function 
yielded higher classification accuracy.   

 

Figure 6.  Decision Tree  
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Table 2. Details of Statistical Features 

Statistical Features G FW C B 

Mean -0.039219794 -0.037041507 -0.0284527 -0.036961073 

Standard Error 0.000491885 0.000515288 0.00044815 0.000414131 

Median -0.039263818 -0.037006256 -0.028647174 -0.037189302 

Mode -0.033467374 -0.056226044 -0.041704426 -0.052931223 

Standard Deviation 0.070392882 0.073741983 0.064134076 0.059265674 

Sample Variance 0.004955158 0.00543788 0.00411318 0.00351242 

Kurtosis 4.3507962 3.996635156 1.210265481 2.247830533 

Skewness -0.017191796 -0.059697216 0.005714433 -0.038439466 

Range 1.04030916 0.989300453 0.69252252 0.67128923 

Minimum -0.549533936 -0.560211596 -0.399314514 -0.392358781 

Maximum 0.490775224 0.429088857 0.293208006 0.27893045 
 

 

 
Figure 7. Sample Deviation Box Plot 

  

Figure 8. Kurtosis Box Plot 

The performance of SVM is shown in the form of a 
confusion matrix given in figure 9. In this work, 250 
instances for each tool condition were considered. The 
correctly classified instances are shown in the diagonal 
of the confusion matrix. In the first row, 180 instances 
of the fault-free condition are correctly classified, 
whereas, 42 instances are misclassified as FW, 5 instan-
ces are misclassified as C and 23 instances are mis-
classified as B. For the tool condition FW, 229 instances 
are correctly classified, 7 instances are misclassified as 
G and 14 instances are misclassified as C.  

 
Figure 9. Confusion Matrix of SVM 

In the third row, all the 250 instances are correctly 
classified as C. For the other tool condition B, 248 
instances are correctly classified and 2 misclassified as 
G.The importance in determining the algorithm’s 
quality is indicated by True Positive Rate(TPR) and 
False Positive Rate (FPR). TPR with 1 is considered 
highly accurate. For the acquired signal, TPR and FPR 
for the good condition of the tool are found to be 0.72 
and 0.012. For the other conditions, TPR is more than 
0.9. The overall classification accuracy of the SVM 
algorithm is found to be 90.7%. The class-wise detailed 
accuracy can be seen in table 3. 

 In figure 10, the performance of the K-Star 
algorithm is shown in confusion matrix form. It is 
understood that 213 instances are correctly classified as 
fault-free condition (G) of the tool from the 250 
instances. The other elements in the first row represent 
the misclassifications namely, 33 instances of Gare 
misclassified as FW and 4 instances are misclassified as 
B respectively. Likewise, in FW 242 instances are 
classified correctly and 5 misclassified as G, and 3 
misclassified as C. However, in C, 249 instances are 
correctly classified and 1 got misclassified as FW. In the 
fourth row, all the instances are correctly classified in B. 
The correctly classified instances from each condition 
occupied the diagonal of the matrix.  
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Figure 10. Confusion Matrix of K-Star 

The detailed accuracy is presented in table 4. For 
good condition, the TPR and FPR are found to be 0.855 
and 0.009 respectively. From table 4, it is observed that 
there is an increase in TPR for all the conditions of the 
tool considered in the study when compared with the 
detailed accuracy of the SVM algorithm given in table 3.  

Table 3. Detailed accuracy - SVM 

Class TPR FPR Precision Recall F-Score 

G 0.720 0.012 0.952 0.720 0.820 

FW 0.916 0.056 0.845 0.916 0.879 

C 1.000 0.025 0.929 1.000 0.952 

B 0.992 0.031 0.915 0.992 0.937 

Table 4. Detailed accuracy – K-Star 

Class TPR FPR Precision Recall F-Score 

G 0.852 0.007 0.977 0.852 0.910 

FW 0.968 0.045 0.877 0.968 0.920 

C 0.996 0.004 0.988 0.996 0.992 

B 1.000 0.005 0.984 1.000 0.992 

  
 The classification accuracy of good condition in the  

K-Star algorithm is 85%. The other conditions are 
classified with more than 96% classification accuracy. 
The overall classification accuracy of the K-Star 
algorithm is found to be 95.4%. The mean absolute 
error in SVM is 0.2581 whereas in K-Star it is 0.0355 
and the root means squared error of SVM and K-Star 
are0.324 and 0.131 respectively. This shows that the K-
Star algorithm classifies the tool condition with less 
error. Since misclassification between the good and the 
faulty conditions is reduced in the K-Star algorithm and 
the measure of error is also less in K-Star, the reliability 
of the algorithm is relatively high when compared with 
SVM. 
 
8. CONCLUSION 

 
In this study, the condition monitoring of cutting tool 
has been carried out while machining mild steel 
workpiece with carbide inserts under different 
conditions of the tool such as fault-free tool(G), flank 
wear (FW), wear on rake face (C), tool with broken 
tip(B) by utilizing the vibration signal. Experiments 

were carried out under specific machining conditions. 
For each condition, 250 instances were obtained. 
Statistical features are extracted from the acquired 
vibration signal. From the decision tree, significant 
features are selected and given as input to SVM and K-
Star algorithms. The classification accuracy of SVM 
and K-Star are obtained as 90.7% and 95.4% 
respectively. The computation time of SVM is found to 
be 0.09seconds whereas K-Star clocked in 0.03 seconds. 
Hence, it is concluded that the K-Star algorithm with 
statistical features can be recommended for face milling 
tool condition monitoring. 
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СИСТЕМ ЗА ПРАЋЕЊЕ СТАЊА АЛАТА У 
ВИШЕ ТАЧАКА – УПОРЕДНА СТУДИЈА 

 
Д.П. Кумар, В. Муралидхаран, С.Ш. Хамид 

 
У процесу уклањања метала, стање алата игра 
виталну улогу за постизање максималне продук–
тивности. Дакле, праћење стања алата постаје неиз–
бежно. Алат за сечење са више тачака који се ко–
ристи у процесу чеоног глодања је узет за студију. 
Узимају се у обзир резни уметци направљени од 
карбида са различитим условима као што су алат без 
грешке (Г), хабање на боку (ФВ), хабање на предњој 
страни (Ц) и алат са сломљеним врхом (Б).  
Током обраде меког челика, добијају се сигнали 
вибрације за различите услове алата помоћу три-
аксијалног акцелерометра и издвајају се статистичке 
карак–теристике. Затим се значајне карактеристике 
бирају коришћењем алгоритма стабла одлучивања. 
Аlgorhytm Support Vector Machine (SVM) се 
примењује за класификацију услова алата.  
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Резултати се пореде са перформансама К-Стар 
алгоритма. Добијена тачност класификације је 

охрабрујућа, стога се студија препоручује за 
примену у реалном времену. 

 
  

 


