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Globally, wind power is a technologically matured and commercially 
accepted technology. However, intermittent and fluctuating wind speed 
makes it difficult to connect it directly to the grid. It becomes less attractive 
from the quality and continuous power supply point of view. Nevertheless, 
the wind speed is affected by meteorological parameters like temperature, 
pressure, and relative humidity and may be predicted better using all of 
these parameters or some of the theses as inputs. Since the weather 
conditions of a particular month repeat approximately after ten years and 
sometimes even year to year depending on geographical location. This 
study investigates the errors associated with predicting the wind speed of a 
particular calendar month using the historical data of the same calendar 
month in the previous years. Authors propose a strategy for long-term 
prediction of wind speed based on two nonlinear autoregressive neural 
network models, (i) nonlinear autoregressive neural network and (ii) 
nonlinear autoregressive neural networks with exogenous inputs. The 
models are developed by training the networks with hourly mean wind 
speed values for seven years, from 2011 to 2017, for three sites in the 
Eastern Province of Saudi Arabia. These models are used to predict the 
wind speed for 2018, and the results are compared with the measured data. 
Both models' effectiveness is evaluated by considering the impact of the 
exogenous parameters (temperature and atmospheric pressure). The study 
found that the prediction accuracy of wind speed in long-term forecasting 
depends not only on the location but also on the repeatability of training 
samples across the years. 

 
Keywords: Errors, forecasting, nonlinear autoregressive neural network 
wind speed, wind power. 

 
 
1. INTRODUCTION 
 
Wind power is proving to be a competitive alternative 
source of energy to the conventional fossil fuel-based 
generation and its suitability as a distributive power 
source for isolated micro-grids [1–4]. A continuous 
campaign is being emphasized for increased wind 
power capacity and the existing energy mix to mitigate 
the greenhouse gas (GHG) emissions responsible for 
environmental pollution. Evidently, many research 
articles focusing on multi-gigawatts wind power gene–
ration facilities across the globe are being published. It 
is reported that wind power has emerged as one of the 
most competitive renewable power generation techno–
logies in recent decades [5–9]. Although, the stability of 
wind power integration into the grid is still a challenge 
due to the intermittent nature of the wind speed. Many 
of such challenges have been addressed by researchers 
and reported in the literature. It is reported that weather 
variation of a Calendar month repeats itself in another 

year and affects the seasons [10–14]. It is said that 
climate change is a significant factor responsible for the 
variation of wind speed [15]. It is further stated that 
there may be less increase in wind speed in urban areas 
than in rural areas due to urbanization activities. Jiang et 
al. [16] reported that urbanization reduces the wind 
speed in cities because of the increased surface 
roughness. The study reported that wind speed is 
decreased by 0.01m/s every ten years [16]. Li et al. [17] 
studied wind speed trends using the homogenized wind 
speed dataset obtained from the Greater Beijing Region 
between 1956 and 2008. They showed that wind speed 
decreased in all regions, and the highest reduction was 
recorded near the city center. Nevertheless, wind speed 
is affected by meteorological parameters such as 
ambient temperature, pressure, and relative humidity 
and may be predicted more accurately using these 
parameters.   

Hitherto, there are two ways of tackling the 
problem of randomness and uncertainty of wind power. 
One way is to increase the size of the installed capacity 
above the intended amount originally proposed and 
ensure an adequate rotating reserve of conventional 
units to account for the impact of fluctuations of wind 
power integration to the grid [18]. The second method is 
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to forecast the wind speed and hence the wind power 
accurately ahead of time to help the grid operators plan 
power dispatch properly, assure continuity of power 
availability, and enhance contain the power economy 
[19]. 

Wind speed forecasting has been divided into short-, 
medium, and long-term periods. The short-term 
forecasting of wind speed is considered as advanced 
prediction between 1-48 hours. Short-term forecasting is 
important for economic planning of wind power 
generation. It helps the power utility operators to plan 
adequately for their operation mode, especially when 
demand is known. Some important formulations and 
applications of short-term wind speed forecasting are 
presented in [18–24]. Medium forecasting of wind 
speed spans from 48 to 72 hours. In long-term 
forecasting, the advance time of forecast is any time 
above 72 hours [25]. Since, the wind speed directly 
influences the power output, long-term forecasting 
becomes important for wind power plants development. 
It helps monitor the scheduling of wind power 
generation and energy management in wind farms.  

The fundamental principle of time series fore–
casting accuracy largely depends on detecting the sub-
patterns in the time series and the historical incidents 
[14]. Time series patterns possess characteristics such as 
random variations, cyclic patterns, level shifts, and 
seasonality. Furthermore, fluctuations existing in the 
time series data are also periodic. These fluctuations can 
be detected and eliminated by studying the existence of 
trends within the series. This can be achieved by the 
removal of seasonality using seasonality decomposition 
methods. Seasonal decomposition is usually carried out 
before the application of forecasting algorithms. The 
stages involved in seasonality decomposition for time 
series are reported in [14]. 

Tyler et al. [26] presented two variants of artificial 
networks: nonlinear autoregressive neural network and 
nonlinear autoregressive network with exogenous inputs 
using hourly data of one year. Using a hybrid data 
processing strategy, Zhongshan et al. [27] developed 
models for forecasting wind speed. The study enhanced 
the forecast model by combining complement ensemble 
empirical mode decomposition (CEEMD) and a wind-
driven optimization technique. The wind speed time 
series was first decomposed into many intrinsic mode 
functions using the CEEMD, and each intrinsic mode 
function was used to forecast using back propagation 
neural networks. The forecasted intrinsic mode 
functions were then combined as the final predicted 
values. The strategy was only applied for a short-term 
forecasting ahead of 10- and 30-minutes. The results 
showed that the model improved the forecasting 
accuracy of wind speed for the short-term prediction. 
However, extending such a study for long-term wind 
speed forecast would be interesting. 

In [28], the authors proposed Hammerstein model 
for forecasting wind speed for 1-24 hours horizon. The 
study used the heterogeneous autoregressive (HAR) 
model to capture wind speed time series dynamics. The 
result proved that the HAR model has a high propensity 
to outperform both multilayer perception (MLP)and 
autoregressive integrated moving average (ARIMA) 

models judged by the error metrics. The HAR model 
was suitable for the hourly forecast of wind speed 
without evidence to prove otherwise for long-term wind 
speed prediction.  

Barbounis et al. [25], considered up to 72 hours 
ahead prediction of wind speed as long-term prediction. 
The study employed three recurrent networks algo–
rithms to predict wind speed using wind speed and wind 
direction obtained from the atmospheric modeling 
system SKIRON for four different stations appro–
ximately 30,000 m away from the wind turbine clusters. 
The algorithms included infinite impulse response mul–
tilayer perception (IIR-MLP), diagonal recurrent neural 
network (DRNN), and local activation feedback recu–
rrent (LAF-MLN) models. The results showed that the 
suggested strategies under the IIR-MLP and DRNN 
performed better than static algorithms. Furthermore, 
the study proposed two new online learning strategies 
for updating the RNN using the recursive recurrent error 
algorithm. The learning algorithms ensured improve–
ment in the learning phase and improved the accuracy 
of the models.  

A comparative study of the activation function of 
nonlinear autoregressive neural networks (NARNN) and 
nonlinear autoregressive exogenous neural networks 
(NARXNN) for long-term wind speed prediction was 
reported in [1]. The study provided 30 days ahead 
forecast of wind speed using data collected from the 
different metrological stations in Malaysia. The study 
compared the performance of two activation functions 
(logsig and tansig) for NARNN and NARXNN models. 
It revealed that tansig performed better than logsig in 
terms of minimum prediction errors and transfer 
functions for the two neural network (NN)models. 
Similarly, Barbounis et al. [29] demonstrated the 
effectiveness of a locally recurrent multilayer network 
using the recursive prediction error (RPE). The model 
was better than the atmospheric and time series models. 
Moreover, a global recursive prediction error (GRPE) 
was developed and partitioned into four sub-problems to 
reduce the storage requirement and computational 
complexity.  

Neural network-based algorithms were used to 
develop data fusion algorithms to predict the wind speed 
trends in the future year. Azad et al. [30] compared the 
performance of different neural network approaches 
with classical methods for long-term hourly forecast of 
wind speed. Judged by MAE and MSE error metrics, it 
was concluded that the hybridization of different NN 
algorithms would potentially improve the learning and 
forecasting performance for long-term wind speed 
predictions.  

 
2. WIND ENERGY IN SAUDI ARABIA 
 
Seasonal variation in Saudi Arabia, like many countries, 
is expressed in four climatic seasons, which are Spring 
(Mid-March to Mid-June), Summer (Mid-June to Mid-
September), and Autumn (Mid-September to Mid-
December), and Winter (Mid-December to Mid-
March)[31]. From winter breeze in January to peak 
desert heat in August, the country experiences different 
weather changes across the cities and regions. High 
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wind speed is usually experienced in the winter and 
summer months. Surprisingly, some of the Eastern 
Province cities of Saudi Arabia experience high wind 
speeds during the Summer months (June, July, and 
August) due to the summer breeze and sandstorms [6,7]. 
Figure 1 shows the hourly wind speed variation during 
January and June of 2017 obtained from the 
metrological station in Khafji. The figure demonstrates 
the seasonal variation of wind speed at Khafji. These 
characteristics are mimicked by other metrological 
parameters that influence wind speed variation 
throughout the year. This paper investigates the impact 
of these variations on the long-term wind speed 
forecasting.  

 
Figure 1. Wind speed measured at 50m height; Khafji, 2017.  

2.1 Data Preparation 
 
Each meteorological parameter (such as wind speed, 
ambient temperature, and pressure) is modeled as time 
series for input to the models. These samples are made 
of n observations [x1, x2…., xn] which are used as input to 
predict the wind speed ahead of time. The wind speed 
forecasts will be made a year ahead. This means that the 
input time series is a function of the past values of 12 
calendar months. For each sample, the input training 
data is modeled as a function F(.), givenby equation (1): 

( )1, , 1 , 2 , 1, ,...t i t i t i tx F x x x −=  (1) 

where xi,t is defined as follows: 

( ) ( )
,

1
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i i

i t
x t x t

x
+ −

=       (2) 

where i is the number of input parameters considered 
and t is the total number of sample observations.  
 
3. METHODOLOGY 
 
3.1 Artificial Neural Network (ANN) 
 
ANN architecture consists of node properties, neurons, 
connecting strength, and updating rules [32]. Neurons 
can learn, which can be used to verifythe future 
values[33]. ANNsare used to address complex nonlinear 
problems in real-life[33]. An ANN model is comprised 
of components like weights (wij), connecting links, bias 
(bj), and activation function f(*)[19]. These input xi 

parameters are related to the output yj, as shown in 
Figure 2. Each input value, xi is multiplied by the 
weight, wij and added to the bias bj to provide the output 
sj, eq. (3). This output sj is applied to the activation 
function to find the final output yj. Examples of 
activation functions include linear, sigmoid, Gaussian, 
and Gaussian complements. This function can be 
selected based on particular problem. The function of 
the bias is to decrease the effect of the increasing value 
of sj. 

1 *i
j jk k jkS w x b== +∑  (3) 

where j and k are the numbers neurons and synapses, 
respectively. 

 
Figure 2. Structure of a neuron. 

This study proposes the nonlinear autoregressive 
neural network (NARNN) and nonlinear autoregressive 
neural network with exogenous inputs (NARXNN) 
models. A typical structure of a NARNN is shown in 
Figure 3. The structure consists of an input [y(t-d)], 
output ( )y t , and hidden layer nodes and the connecting 
lines. Here d represents past values of time series used 
to predict the wind speed ahead of time. The input node 
is also the feedback node. In developing the NARNN 
and NARNNX* models, the predicted time series ( )y t  
is the wind speed and the external time series included 
in the input, x(t) is the exogenous input. The exogenous 
inputs used in the present work are ambient temperature 
and pressure. 

 
Figure 3. A typical structure of a NARNN. 

3.2  Nonlinear autoregressive neural network 
(NARNN) 

 
The NARNN is a multilayer feed-forward NN which 

includes the input and output layers and one or more 
hidden layers. The output layer/s is/are usually in-
between the input and output layers. The number of 
neurons in the input layer is the same as training inputs, 
while the number of neurons in the output layer is equal 
to the target samples. The optimal number of neurons 
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can be obtained by a simple trial and error method[32]. 
For NARNN, the inputs xi, [x1, x2, x3] is comprised of 
only wind speed as the training parameter. There are 
four vectors in each of the three input training 
observations (i.e. n = 12). 

For NARXNN* procedure, each input xi has its 
number of vectors increased by 24 for NARXNN1 by 
12 for NARXNN2 as explained in sub-sections 4.1.1, 
4.1.2, and 4.1.3. The meteorological parameters consi–
dered here are temperatures at 10 m and 2 m and atmos–
pheric pressure near ground level. The reason for consi–
dering temperatures at two different levels is that the 
differences in temperature with height create pressure 
gradient force, which affects the wind speed [19]. 
 
4. PROBLEM FORMULATION 
 
The training data set consists of inputs and targets. The 
input parameters are the hourly mean wind speed (HWS), 
ambient temperatures at 10m and 2m and pressure for two 
months (January and June) of the previous four years, 
taking two years at a step (Figure 4). The training sample 
includes the data from 2011 to 2015 and the testing data for 
years from 2015 to 2017. The training and the testing steps 
are explained in the following subsections. 
 
4.1 Training Parameters 
 

Three cases are investigated in this study and are expla–
ined in the subsequent text. These cases are based on 
selecting training parameters as described in Figure 5.  
 

4.1.1 Case 1: In case of NARNN, the input vector is 
made of three sets of historical wind speed values from 
the previous four years measured at 50 m height. These 
input vectors are [x1, x2, x3]. Where x1, x2, x3include all 
the HWS values for January and June of 2011 and 2012, 
2012 and 2013, and 2013 and 2014, respectively. Each 
vector x1, x2, and x3 has four input vectors, two from 
each year for January and June so that the total vectors 
in the training input becomes 12. The target, yi, of the 
NARNN comprises measured HWS values for January 
and June 2015.   
 

4.1.2 Case 2: This is the first case of NARXNN* with 
model NARXNN1. The total inputs include all the values 
in the NARNN and two more vectors containing 
temperatures measured at 10 m and 2 m. In this case, the 
total vectors in each input set become 12, and the new 
training input set has a total of 36 feature vectors. The 
target, yi of the NARXNN1 consists of measured HWS 
for January and June 2015 and is same for all the cases. 

 
Figure 4. Architecture of the ANN showing the training 
input and the targets. 

4.1.3 Case 3: In this case, the model is NARXNN2, the 
input has all the vectors as in models NARNN, 
NARXNN1, and additional vectors comprised of atom–
spheric pressure for January and June. The total input 
vectors in the training inputs [x1, x2, x3] become 48. The 
target sample remains the same measured wind speed 
values for the year 2015. 

 
4.2  Testing Parameters 
 
The testing input sxt, consists of new sets of input vectors. 
The new input vectors are obtained from the data for the 
years 2014 to 2017 for January and June. This ensures 
that the data used for the testing is entirely new and will 
be used for the final wind speed prediction. The testing 
input vectors are similar to those of the training data sets 
described in Section 4.1 for all the cases. For example, 
[xt1, xt2, xt3] represent the testing input features 
comprised of the combination of wind speed such that the 
vectors in xt1 are obtained from 2014 & 2015, xt2 from 
the 2015 & 2016, and xt3 from 2016 & 2017 data sets. 
The architecture of the training and testing samples and 
predicted values for2011 to 2018 are depicted in Figure 6. 
Finally, the test's output results are the forecasted wind 
speeds for the year 2018, in each case. The output from 
all the cases is compared with the measured wind speed 
values for 2018. Furthermore, the results of each case are 
compared, and the effect of exogenous parameters on the 
predicted wind speed is studied. 
 
4.3  Forecast Errors 
 
The forecast error is the difference between the mea-
sured and the forecasted values. The error metrics are 
used to evaluate the performance of the proposed 
models. The performance evaluation metrics used in this 
study include the mean absolute error (MAE), mean 
squared error (MSE), and root-mean-squared error 
(RMSE) and are calculated using the equations (4-6). 

1
N

tt eMAE
N
==

∑    (4) 

2
1
N
tt eMSE

N
==

∑
   (5) 

2
1
N
tt eRMSE

N
=

⎧ ⎫
⎪ ⎪= ⎨ ⎬
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∑    (6) 

It is the absolute difference between the forecasted 
and the measured wind speed values for the year 2018, 
and N is the number of observations.  

 
Figure 5. Description of the training parameters and input 
vectors. 
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Figure 6. Architecture of the proposed long-term wind 
forecasting. 

4.4  Accuracy of Long-Term Wind Power Forecasting 
 
The accuracy of long-term wind forecasting should not 
be compared with short-term forecasting because the 
latter has smaller forecasting errors. It is reported that 
the error accuracy of long-term wind speed forecasting 
varies from 25% to 40%[34]. These errors are not only 
due to a long period of forecast but may also be due to 
characteristics of the wind speed pattern depending on 
the location or even due to the method and strategy 
adopted. Generally, if the forecast period is short, the 
wind speed forecast is more relaxed, and hence the 
errors are smaller. On the other hand, the forecast errors 
are larger in long-term forecasting [34].  
 
5.  RESULTS AND DISCUSSION 

The training performance and regression are not 
reported here for all the cases. Rather performance 
validation, regression, error autocorrelation, and time-
series responses are included for the first case only in  
Figure 8, Figure 7, Figure 9, and Figure 10; 
respectively. It is to be mentioned that the datasets used 
in each location do not correlate with each other 
because of the distinct geographical locations. Hence, 
the learning capability of the models developed for each 
case has no effect on the prediction results of other 
locations.The MSE for 77 epochs (Figure 7) shows that 
the errors stabilized after 8 epochs, and the testing 
values fall near the best possible values and match with 
the validation line. The scatter plots between the output 
and the target (measured) values showed a correlation of 
around 0.99 for training, validation, testing, and 
validation for output targets of ±0.019, ±0.016, ±0.059, 
and ±0.025, see Figure 8. Furthermore, correlation 
versus lag (Figure 9) demonstrated a normal distri–

bution. The time-series trends of target, training, 
validation and errors for each data points are shown in 
Figure 10and are found in close agreement with each 
other. 

 
5.1 Case I: Wind speed is the only input parameter in 
Case I. The model is developed using the dataset for 4 
years from 2011 to 2014 and tested with the data for 
2015 and 2017 to predict wind speeds for the year 2018. 
The error metrics obtained in this case are given in 
Table 1. The error estimates (Table 1) show minimum 
values for Khafji, followed by Juabail and Dhahran. 
Moreover, the errors recorded in Case I are higher than 
those for other cases as will be discussed in forthcoming 
sections. These higher values may be accounted for the 
long-term prediction of local weather conditions. To 
support this claim, it is worth mentioning that at Khafji 
site, the average wind speed is higher than that at the 
other two sites. 

 
Figure 7. Training regression, Case 1. 

 
Figure 8. Performance validation, Case 1. 
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Figure 9. Error correlation, Case 1. 

 
Figure 10. Time series response, Case 1. 

Table 1. Error metrics in Case 1. 

Metrics/Location Dhahran Jubail Khafji 
MAE 3.81 2.50 2.31 
MSE 55.96 11.63 8.46 

RMSE 7.48 3.41 2.91 
 

 
Figure 11. Forecasted and measured wind speeds for 2017, 
Jan & Feb. Dhahran, Case I. 

The measured and the forecasted wind speed values 
show a near-to-close agreement and, more importantly, 
follow the increasing and decreasing trend in Dhahran 
during Jan & Feb, as shown in Figure 11. In Feb, the 
predicted wind speed values are better than those in Jan 
at Dhahran. At Jubail in Jan 2017, the predicted values 

are in good agreement with measured values, as seen 
from the upper portion of Figure 12. Similar close or 
near matching trends between the measured and 
predicted wind speeds, except for some erratic values 
between 450 to 500 hours, are observed for Jubail in 
Feb 2017 (Figure 12). It is observed that the measured 
and the forecasted patterns in Figure 13for Khafji during 
Jan and Feb 2017 are much closer than those at Dhahran 
and Jubail sites. In January at Khafji, the hourly mean 
values are in close agreement throughout 700 values 
with few erratic outliers. This trend is, however not 
obvious in Jubail.  

 
Figure 12. Forecasted and actual wind speeds of 2017, Jan 
& Feb, Jubail Case I. 

 
Figure 13. Forecasted and actual wind speeds of 2017, Jan 
& Feb, Khafji Case I. 
 

5.2 Case II: In this case, temperatures at 2 and 10 m 
above ground level are added as training inputs in 
addition to the wind speed. The error metrics values 
summarized in Table 2show lower values for Dhahran 
and little higher-ups for Jubail and Khafji, which may 
be accounted for variations in temperature values at 
these sites. The forecasted patterns in Dhahran showed a 
close agreement with the measured values in Jan (Figure 
14-upper part) compared to that in Feb (Figure 14-lower 
part). In February, the model slightly overestimated the 
wind speed values except around 350 and 700 hours, 
where it underestimated the values (Figure 14-lower 
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portion). In July at Dhahran, initially from 0 to 100 
hours’, the model overestimated the wind speed and 
then underestimated it from 200 to 250 hours. Still, it is 
worth noting the increasing, and decreasing trends 
followed the measurements (Figure 15-upper part). In 
July, however, predicted values closely followed the 
measures trend up to around 180 hours, and then a few 
underestimates were observed about 200 hours (Figure 
15-lower part). Between 380 and 460 hours, excellent 
agreement is seen between the two.  

In January and February for Jubail data set, wind 
speed estimates in February (Figure 16-lower part) fol–
lowed the increasing and decreasing trends of the 
measured values very closely. However, in January 
(Figure 16-upper part) the results were not encouraging 
but generally followed the trend with over and unde–
restimations. Furthermore, at Jubail during June and July, 
matching decreasing and increasing trends of wind 
speeds between measured and estimated values are ob–
served with some over- and underestimations (Figure 17). 
Table 2. Error metrics in Case II. 

Metrics/Location Dhahran Jubail Khafji 
MAE 3.00 2.93 2.99 
MSE 14.58 13.60 14.26 

RMSE 3.82 3.69 3.78 
 

 
Figure 14. Forecasted and actual wind speeds of 2017, Jan 
& Feb, Dhahran Case II. 

 
Figure 15. Forecasted and actual wind speeds of 2017, Jun 
& July, Dhahran, Case II. 

 
Figure 16. Forecasted and actual wind speeds of 2017, Jan 
& Feb, Jubail, Case II. 

 
Figure 17. Forecasted and actual wind speeds of 2017, Jun 
& July, Jubail, Case II. 

For Khafji data sets of June and July (Figure 18), an 
excellent comparison is observed between predicted and 
measured values during 200 to 400 hours and 480 to 
600 hours (Figure 18-upper part). Some overestimations 
are observed between 0 to 150 hours and visible 
underestimations around 440 hours and between 600 
and 700 hours. In July (Figure 18-lower part), the model 
underestimated the values for most of the time shown in 
this figure. 

 
Figure 18. Forecasted and actual wind speeds of 2017 Jun 
& Jul, Khafji, Case II. 
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5.3 Case III: In this case, the input training parameters 
include wind speed, temperatures, and pressure values. 
The error metric, in this case, is summarized in Table 3. 
It shows better performance than the previous two 
cases. The average MAE, MSE, and RMSE for all sites 
are approximately the same and lower than those given 
in Table 1 and Table 2. 
Table 3. Error metrics in Case III. 

Metrics/Location Dhahran Jubail Khafji 
MAE 2.47 2.34 2.42 
MSE 9.70 8.58 9.06 

RMSE 3.12 2.93 3.01 
 

During January and February data sets at Dhahran, 
the estimated values are seen in very close agreement 
with the measured ones in January (Figure 19-upper 
part). An excellent trend-following pattern is observed 
in February with acceptable under and overestimations 
(Figure 19-lower part). In June, an excellent trend-
following and a close agreement are observed between 
the estimated and the measured values throughout the 
data length except between 0 and 100 hours. The model 
overestimated wind speeds (Figure 20-upper part). In 
July, the model underestimated wind speeds but follo–
wed the increasing and decreasing trend of measured 
wind speed values (Figure 20-lower part).The patterns 
in Jan/Feb and Jun/Jul are closely matched to the mea–
sured patterns. The closeness is much more pronounced 
in January and June than in February and July.  

 
Figure 19. Forecasted and actual wind speeds of 2017, Jan 
& Feb, Dhahran, Case III. 

Similarly, at Jubail site, Figure  and 22 show that the 
variability of characteristics of the wind speed pat–terns 
in January/February and June/July follow the inc–
reasing and decreasing trends closely with each other. 
However, the closeness between the predicted and mea–
sured wind speed values are better in February (Figure 
21-lower part) and June (Figure 22-upper part) relative 
to January (Figure 22-upper part) and July (Figure 22-
lower part).  At Khafji in January (Figure 23-upper 
part), the model over- and underestimated the values but 
mostly followed the trend. In February (Figure 23-lower 
part), the predicted values remained near the measured 
ones and followed the increasing and decreasing trend 
satisfactorily. Similarly, more or less the same agree–

ment between the predicted and measured wind speed 
values is observed in June and July at Khafji (Figure 
24). Relatively better agreement is observed in February 
(Figure 23-lower part) and June (Figure 24-upper part) 
compared to January and July at Khafji. 

 

Figure 17. Forecasted and actual wind speeds of 2017, 
June & July, Dhahran, Case III. 

In most examples, the forecasts agree with the mea–
sured values and follow the essential trends, whereas 
wind speed predictability strength is concerned. 

 
6.  CONCLUSIONS 
 
The study found that NARNN is a viable tool for long-
term wind speed prediction. It is observed that the 
accuracy of NARNN improved with increasing the 
number of training exogenous features. However, the 
method requires including the wind speed as part of the 
training input for improved accuracy. The accuracy of 
prediction by NARNN has limitations for long-term 
prognosis. The model captures the impact of seasons 
and the wind speed pattern repeatability. Still, more 
significant discrepancies are observed while comparing 
the predicted and measured values trends in this Case I.  

The addition of exogenous parameters like ambient 
temperatures at 10 and 2 m above ground level and the 
wind speed values improved the error metrics (model 
NARXNN1). For example, in Case II, the MAE, MSE, 
and RMSE values decreased to 3.0, 14.58%, and 3.82 
m/s compared to corresponding values of 3.81, 55.96%, 
and 7.48 m/s in Case I. 

In Case III (model NARXNN2) included exogenous 
parameters temperatures at 10 and 2 m and pressure 
near ground level along with the wind speed as inputs 
and wind speed as output, further improving the model's 
predictability compared to NARNN and NARXNN1. It 
can be understood from the lower values (2.47, 9.70%, 
and 3.12 m/s) of the error metrics MAE, MSE, and 
RMSE compared to the corresponding higher values of 
3.00, 14.58%, and 3.82 m/s for Dhahran.  

So, it can be concluded that based on the present 
scope of work, the addition of exogenous parameters 
does help in improving the model’s predictability.   

Geographical location plays a role in the predictive 
accuracy of wind speed, as observed from the 
simulation results. For example, in Case I, the MAE 
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decreases from 3.81 to 2.50 and to 2.31, corresponding 
to geographical locations Dhahran, Jubail, and Khafji; 
respectively.  

Finally, the study concludes that long-term wind 
speed prediction requires special preparation and selec–
tion of the training data due to the repeatability of certain 
exogenous parameters and the wind speed itself. In future 
studies, other algorithms like long-short term memory 
neural network, transformer, ensemble sequence models 
can also be implemented on the same strategy. 

 
Figure 18. Forecasted and actual wind speeds of 2017, Jan. 
& Feb. Jubail, Case III. 

 
Figure 19. Forecasted and actual wind speeds of 2017, 
June & July, Jubail, Case III. 

 
Figure 20. Forecasted and actual wind speeds of 2017, Jan. 
& Feb. Khafji, Case III. 

 
Figure 21. Forecasted and actual wind speeds of 2017, 
June & July, Khafji, Case III. 
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 NOMENCLATURE 

ANN  Artificial neural network 
ARIMA  Autoregressive integrated moving average 
GHG  Greenhouse gases 
HAR  Heterogeneous autoregressive 
MAE  Mean absolute error 
MAPE  Mean absolute percent error  
MLP  Multilayer perceptron 
NARNN  Nonlinear autoregressive neural networks 
NARXNN Nonlinear autoregressive exogenous  
NN   Neural network 
RMSE  Root mean square error 

 
 

ПРЕДВИЂАЊЕ БРЗИНЕ ВЕТРА ЗАСНОВАНО 
НА ДУГОТРАЈНОЈ МЕМОРИЈИ ПРИМЕНОМ 

НЕЛИНЕАРНЕ АУТОРЕГРЕСИВНЕ 
НЕУРОНСКЕ МРЕЖЕ 

 
С. Рехман, У.Т. Салман, М. Мохандес,  

Ф.А. Сулејман, С. Адетона, Л.М. Алхемс,  
М.А. Басир 

 
Глобално гледано, енергија ветра је технолошки 
зрела и комерцијално прихваћена технологија. 
Међутим, испрекидана и променљива брзина ветра 
отежава његово директно повезивање са мрежом. 
Постаје мање атрактиван са становишта квалитета и 
континуираног напајања. Ипак, на брзину ветра 
утичу метеоролошки параметри као што су темпе–
ратура, притисак и релативна влажност и може се 
боље предвидети коришћењем свих ових параметара 
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или неких од теза као улазних података. Пошто се 
временски услови одређеног месеца понављају 
отприлике после десет година, а понекад и из године 
у годину у зависности од географског положаја. Ова 
студија истражује грешке повезане са предвиђањем 
брзине ветра у одређеном календарском месецу 
користећи историјске податке истог календарског 
месеца у претходним годинама. Аутори предлажу 
стратегију за дугорочно предвиђање брзине ветра 
засновану на два модела нелинеарне ауторегресивне 
неуронске мреже, (1) нелинеарне ауторегресивне 
неуронске мреже и (2) нелинеарне ауторегресивне 
неуронске мреже са егзогеним улазима. Модели су 

развијени обучавањем мрежа са средњим 
вредностима брзине ветра по сату током седам 
година, од 2011. до 2017. године, за три локације у 
источној провинцији Саудијске Арабије. Ови 
модели се користе за предвиђање брзине ветра за 
2018. годину, а резултати се упоређују са измереним 
подацима. Ефикасност оба модела се оцењује 
узимањем у обзир утицаја егзогених параметара 
(температура и атмосферски притисак). Студија је 
открила да тачност предвиђања брзине ветра у 
дугорочним прогнозама зависи не само од локације 
већ и од поновљивости узорака за обуку током 
година. 

 


