
© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2022) 50, 587-606  587
 

Edward E. Osakue 
Department of Engineering 
Texas Southern University 

Houston, Texas,  
USA 

 

Lucky Anetor 

Department of Engineering 
Texas Southern University 

Houston, Texas,  
USA 

Estimating Beam Strength of Metallic Gear 
Materials 
 
Expressions for the pulsating or beam strengths of many popular metallic gear 
materials are derived based on the tensile strength and endurance ratio. The 
strength values predicted are for a reliability of 99% at load cycles corresponding 
to that of the endurance strength of the materials. The expressions are based on 
the consideration of the revised Lewis gear root stress formula by treating the 
design parameters as random variables associated with the lognormal probability 
density function and application of the Gerber fatigue failure rule. Pulsating 
strength predictions are compared with those of AGMA estimates for through-
hardened steels and other materials. The variances between model predictions 
and AGMA values for steel and ductile cast iron materials are reasonably low. 
Low variances between model and AGMA values for high-strength gray cast iron 
and cast bronze were also observed. However, high variances between model and 
AGMA values for low-strength gray cast iron and cast bronze were found. 
Overall, the model estimates are considered sufficiently accurate for preliminary 
design applications where initial sizes of gears are generated. The study showed 
that for many metallic gear materials, the average pulsating strength ratio is 0.36 
at 99% reliability. Therefore, the suggestion by Buckingham, that the fatigue 
strength of a gear tooth is approximately one-third (0.333) of the tensile strength 
of the material is justified. 
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1. INTRODUCTION 
 
When a component is subjected to load disturbance of a 
fluctuating nature, fatigue induced failure is a 
possibility. A tensile stress promotes fatigue failure sin–
ce a compressive stress tends to close up fatigue cracks. 
The beam strength of a gear tooth is the maximum stress 
resistance of the tooth to failure in bending when the 
loading is uni-directional. It may otherwise, be called 
pulsating strength due to the unidirectional and repeated 
loading nature of most gears when in operations. A gear 
tooth loaded in bending develops maximum tensile 
stress in the tooth root area. When the tensile stress at 
the gear root is about equal to the beam strength in va–
lue, fatigue crack initiation and growth can occur [1-3].  

Fatigue failure occurs in three stages of crack 
nucleation (initiation) at sites of stress concentration, 
crack growth or propagation which happens as the 
repetitive load continues, and finally a sudden fracture, 
which occurs when the load bearing section of the object 
is too small to sustain the applied load. Crack nucleation 
sites are typically at the surfaces or near the surfaces of 
objects where some form of defects exist. Surface 
defects such as scratches or pits, sharp corners due to 
poor design or manufacture, inclusions, grain boun–
daries, or dislocation concentrations, create nucleation 

sites. High stress concentrations create plastic strains 
leading to localized slips that can produce crack initi–
ation. Generally, crack nucleation coincides with the be–
ginning of rapid increase in plastic strain and may 
happen sometimes well after the loading has started. 
Crack growth describes the process of gradual increase 
in the size of a crack and can involve coalescence of 
multiple micro-cracks and macro-cracks, until fracture 
occurs. Usually, cracks grow along planes normal to the 
maximum tensile stress. Fatigue failure is of great con–
cern when metals and polymers are used in the design of 
objects subjected to repetitive loads [1, 2, 3, 4, 5].  

In flaw-free materials, a significant fraction of the 
total lifetime of a component is spent before the first 
detectable microcracks appear. At low stress 
amplitudes, the crack initiation phase can make up a 
major fraction of the component service life but at high 
amplitudes, the crack initiation phase is usually a small 
fraction of the lifetime [6]. Some studies show that 
crack initiation and propagation to fracture can be 
simulated numerically, especially with finite element 
method (FEM). Kastratovic et al. [7] developed an 
approximate numerical method for estimating a 
normalized stress intensity factor (SIF) of three co-
planar cracks in mode I fracture state in a solid. Grbovic 
et al. [8] simulated a single surface crack initiation and 
propagation to fracture of a dental implant. It gives a 
good understanding of crack formation and growth to 
failure of a component. The failure mode simulated is 
typical of components like shafts but may be applicable 
to gear tooth with modification.  
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Fatigue load cycles may be classified into two 
groups of finite-life and infinite-life. In finite-life load 
cycle, a component or product fails at a limited number 
of load cycles and the stress at failure is called the 
fatigue strength. Finite-life load cycle is typically in the 
range of 103 to 107 load cycles. Infinite-life cycle is 
generally when a component or product is subjected to 
106 load cycles and above and the stress at failure is 
called the endurance strength. Generally, the endurance 
strength of materials may show little or no decrease 
with increasing fatigue load cycles in infinite-life 
fatigue. Most ferrous alloys and titanium exhibit well-
defined endurance strength, sometimes well before 107 
load cycles. Many nonferrous alloys do not exhibit well-
defined endurance strength. For materials without 
apparent endurance strength, it is often taken to be the 
fatigue strength at 108 to 5× 108 load cycles [9, 10]. 

The bending strength of gear teeth was first calcu–
lated to a reasonable degree of accuracy by Wilfred 
Lewis in 1892 [4]. He considered a gear tooth as a 
cantilever beam on a rigid support with the load applied 
near the tip of the gear. The maximum tensile stress 
occurs at the root area on the loaded side of the gear 
tooth. Due to the pulsating loading of a gear tooth, this 
region becomes the preferential site for the initi–ation of 
fatigue crack. Gear failure in bending fatigue is one of the 
common modes of failure [11-13]. Thru-hardened gears 
most often fail in bending fatigue due to a crack initiated 
at the surface in the root area. Because the surface 
hardness of case-hardened gears is higher than the core 
value, the bending fatigue strength of the gear root 
surface can be higher than that of the core [14]. Case-
hardened gears generally fail in fatigue at the boundary of 
case-core hardness, except when there is sharp stress 
raiser at the surface [15]. Several factors may be 
attributed to bending fatigue failure and include poor gear 
design, improper assembly, misalignment of gears, 
overloads, inadvertent stress raisers or subsurface defects, 
and use of incorrect materials and heat treatments [16]. 

Aziz et al. [59] indicate that three methods may be 
used to estimate beam strength of gear materials. These 
are simple analysis method (SAM), numerical analysis 
method (NAM), and experimental analysis method 
(EAM). SAM is based on analytical models developed 
with simplifying assumptions like the Lewis beam model 
of gear root bending stress. Application of SAM is fast 
and needs minimal training and resources.  NAM is based 
on analytical models usually with calculus based formu–
lation that often have no close-form solution and finite 
element method (FEM) is a popular example. Application 
of NAM can be computationally intensive and slow and 
needs specialized knowledge and in most cases require 
considerable computer resources.  Both SAM and NAM 
models may be modified by empirical factors to improve 
on their performance. EAM uses experimental techniques 
to determine the beam strength of gear materials. 
Experimental stress analysis with the use of strain gauges 
has become widespread [60]. EAM is the most reliable 
but is very expensive, requires specialized equipment and 
fundamental knowledge. Also, it is demanding and takes 
a long for reliable data to be gathered. EAM involves 
testing samples to failure and may have to be done when 
new materials need be used for initial design.  

It appears that no analytical scientifically based 
predictive model of beam strength is available. The 
popular one is that of Buckingham which states that the 
beam strength is one-third of the tensile strength of a 
gear material [22]. This is probably informed by experi–
mental results and there seems to be no analytical 
verification for it. If an analytical model is developed so 
that the beam strength of materials can be estimated 
from some more easily determined properties like ten–
sile strength and or standard fully reversed bending 
fatigue, initial design of gears may be done with some 
justifiable confidence, and capacity performance testing 
can be carried out latter.  

The tensile strength of materials is determined 
experimentally from the tensile test and is relatively 
simple. Similarly, fully reversed bending fatigue test is 
much simpler than a gear tooth bending fatigue test, 
needs less skill, and can have a time duration advantage. 
Estimating gear tooth beam strength from a less costly 
and less time-consuming test will eliminate initial 
experimentations for gear beam strength determination, 
speed up product development, and reduce product cost. 
It must be noted though, that the shape of standard 
specimens in tensile and fully reversed bending fatigue 
testing experiments is not the same as that of gear tooth 
which is a part of larger component. Also, a fully 
reversed fatigue specimen is usually smoothly polished, 
while the root area of a gear tooth may have machining 
and grinding marks, tear marks, rough finish, or 
corrosion [17]. Therefore, the need for actual load 
capacity determination of a gearset after it is built by 
testing is obvious.  

The objective of this study is the formulation of a 
scientific and sound engineering approach for esti–
mating the beam strength of a gear tooth from the 
tensile strength and endurance ratio of the gear material 
for preliminary gear design at 99% reliability. As stated 
earlier, when the tensile stress at the gear root is about 
equal to the beam strength, fatigue crack initiation and 
growth can occur. If a gear tooth is sized such that the 
maximum tensile stress at the root area is less than the 
beam strength, bending fatigue failure at the root may 
be avoided or a reasonable gear service life may be 
achieved. Since current estimates of beam strength are 
mainly empirical, it will be helpful and useful to have a 
reliable and scientifically based estimation method for 
it. This study provides some answers in that direction. 

    
2. SPUR GEAR EQUIVALENCE OF HELICAL GEAR 
 
A spur gear has teeth parallel to the shaft axis while a 
helical gear has teeth inclined at an angle to the shaft axis. 
The angle of inclination of a helical gear to the shaft axis 
is called the nominal helix angle. Cylindrical gears 
consist of spur and helical gears and a spur gear is a 
special type of a helical gear with a nominal helix angle 
of 0o. Generally, the nominal helix angles of helical gears 
vary from 5° to 50°. The nominal helix angles for single-
helical gears fall between 5° and 25° and those for 
double-helical gears fall between 20° and 45°. The nomi–
nal helix angle is selected so as to obtain a minimum 
overlap ratio that ensures good load sharing [17-20]. 
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A spur gear has transverse and axial planes 
associated with it. The transverse plane is the plane of 
rotation and is perpendicular to the axial plane. The gear 
diameter is defined on the transverse plane and the gear 
facewidth is defined on the axial plane. Helical gears 
have a normal plane in addition to axial and transverse 
planes and the tooth profile is defined on the normal 
plane. The shape of a helical gear in the normal plane is 
almost exactly the same as that of a spur gear with a 
larger number of teeth [17]. In a spur gear, the normal 
and transverse planes are coincident. Like spur gears, 
the driving force in helical gears lies in the transverse 
plane but actual contact of gear teeth occurs in different 
plane. Therefore, the operation of a helical gearset 
depends on what happens on the contact plane.  

The equivalent spur gear for a helical gear has the 
same load capacity as the helical gear. The two 
parameters which relate a helical gear to its equivalent 
spur gear are the transverse pressure angle and the base 
helix angle [19]. When the normal pressure angle is 
standardized for helical gears, then: 

[ ]1 1tan
tan tan tan cos

cos
n

t b t
φ

φ ψ ψ φ
ψ

− −⎡ ⎤
= =⎢ ⎥

⎣ ⎦  (1) 

Equation (1) contains two expressions and should be 
interpreted as Eq. (1a) and Eq. (1b) from left to right. 
The same rule should be applied to other equations of 
similar nature. 

According to Maitra [18], the base helix angle (Eq. 
(1b)), gives a more accurate estimate of the radius of 
curvature of an equivalent spur gear. Consequently; it 
may be used to define a plane, called the virtual plane, 
for a helical gear where an equivalent or virtual spur 
gear may the analyzed. The virtual spur gear has a 
larger number of teeth than the actual helical gear. The 
analysis of an equivalent spur gear is simpler than the 
actual helical gear and its pitch diameter is obtained as 
the basic spur gear diameter divided by the square of the 
cosine of the base helix angle [19]. 
 
3. GEAR FATIGUE LOADING AND MAXIMUM 

ROOT BENDING STRESS   
 
Most gear teeth are loaded only in one direction (uni-
directional) during operation, but some gears such as idler 
gears, planetary pinions and gears used in reversing 
mechanisms are loaded in both directions (bi-directional) 
[14, 21]. Components that are loaded in both directions 
are said to be in fully reversed fatigue while those loaded 
in one direction are said to be in pulsating fatigue [22]. In 
one directional loading, the load rises from zero value to 
a maximum value and drops back to zero value. This 
loading pattern is repeated rhythmically in the operation 
of a gearset and is also called pulsating loading. A bi-
directional loading creates a loading pattern of maximum 
positive load and maximum negative (minimum) load. In 
fully reversed fatigue loading, the absolute values of 
maximum and minimum loads are equal. Both uni- and 
bi-directional loading is repeated once per revolution, 
leading to dynamic fluctuations in load values.  

Fig. 1 depicts the two types of gear tooth loading, 
with Fig. 1a representing pulsating loading and Fig. 1b, 

representing fully reversed loading. For infinite life 
design, peak stresses must be below the pulsating or 
endurance strength in bending for the gear materials, 
depending on the loading type. In finite life design, peak 
stresses must be below the fatigue strength, which 
depends on the expected load cycles in bending for the 
gear material for either pulsating or fully reversed 
fatigue.  

 
Fig. 1a: Pulsating bending load 

 
Fig. 1b: Fully reversed bending load 

In Fig. 1, the design load is indicated as the product 
of the service load factor and the nominal transmitted 
load that can be obtained from Eq. (2). 
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The design problem of a gear tooth loaded in 
bending fatigue requires the evaluation of the fluctu–
ating maximum tensile stress at the tooth root area and 
ensuring that it is less than the fatigue strength of the 
material at that point. A fillet is usually provided at the 
gear tooth root area that creates some stress concen–
tration, making it the critical point for fatigue crack 
initiation. 

Osakue & Anetor [23, 24] formulated a reversed 
Lewis beam strength capacity model for cylindrical 
gears which apply to gear meshes with multiple pairs of 
contacts. The expression for this design capacity model 
on the virtual plane defined by the base helix angle is: 

t
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The parameters T, b, d, N, kt, Yv
|, St in Eqs. (2) and 

(3) apply to either the pinion or gear in a mesh. Separate 
equations for the pinion or gear may be obtained by 
appending subscript 1 for the pinion or 2 for the gear, 
respectively to these parameters. In Eq. (3) the value of 
the stress concentration factor kσ is independent of the 
load point on the gear tooth during operation. For 
materials permeated with internal discontinuities like 
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cast irons, stress raisers usually have little effect, 
regardless of loading because surface or geometric dis–
continuities seldom cause more severe stress concent–
ration than that already associated with internal disc–
ontinuities. However, for most engineering materials 
like steels and polymers, stress concentration should be 
considered when there is fatigue or impact loading [21].   

The original Lewis bending stress form factor Yv is 
for gears without addendum modification. But the trend 
in the gear industry is the increasing use of addendum 
modified gears in power transmission for better 
performance [18, 25]. In addendum modified gears, 
equivalent value of Yv has to be evaluated and used. 

Note that Yv and vϖ  in Eq. (3) are based on the virtual 

number of teeth zv of gears [19] given in Eq. (4b), not 
the actual number of gear teeth. 

( ) 3cos
v

b

z
Y f z zν ν= =  (4) 

4. GERBER FATIGUE FAILURE AND PULSATING 
STRENGTH 

 
Failure under dynamic load is most often of the fatigue 
type and about 80-90% of failures from mechanical and 
structural elements are due to fatigue. According to 
Norton [26], three approaches are generally used in 
fatigue design. These are the stress-life (S-N) approach, 
the strain-life (ε-N) approach, and the linear elastic 
fracture mechanics (LEFM) approach. The S-N fatigue 
design approach is currently the most popular for high-
cycle fatigue design where the expected load cycles are 
more than about 103 [26], which is typical of most gear 
drives. In this approach, the damage from cyclic bending 
stress state is assessed on the basis of the mean and 
amplitude stresses for one load cycle. The exact variation 
of the stress during the cycle does not seem to be 
particularly relevant [27, 28]. When a tensile mean stress 
is present during a fatigue load cycle, the material can fail 
at amplitude stress level lower than the fatigue strength. 
Among popular models addressing this problem are the 
Gerber, Goodman, and Soderberg [9]. The Gerber yield 
criterion is a better approximation to fatigue failure in the 
presence of tensile mean stress [29] and represents 
average behavior of ductile materials accurately [26]. 
Because the Gerber fatigue failure model represents 
average behavior of ductile materials [26, 30], it may be 
associated with 50% reliability in design. This is attract–
tive because fatigue strengths are usually determined at 
50% reliability and therefore, represents a very good fit 
[9, 10].  In the case of cumulative fatigue damage, the 
Miner’s rule is the most commonly used failure theory.  

In fatigue loading, the maximum stress in a load 
cycle is: 

am SSS +=max   (5) 

Most gear teeth experience pulsating stress cycle for 
which: 

max5.0 SSS am ==   (6) 

The Gerber failure rule for a uniform strength 
probability of 50% failure rate is given in Eq. (7). 

2
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1a m

e ut

S S

S S
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  (7) 

Please, note that Eq. (7) above is a slightly modified 
version of the conventional Gerber fatigue failure rule. 

Conventionally, *
eS is replaced, with Se which is obtain–

ned at 50% reliability [40, p. 157] while *
utS  is replaced 

with Sut which is obtained at 99% reliability [30]. 
Therefore, there is an obvious mismatch of reliability 
values in the conventional application of the Gerber 
fatigue failure rule. For consistency in applying the 
Gerber fatigue failure rule, a correction factor is 
required to convert Sut value at 99% reliability to that at 
50% reliability. To that effect, it is assumed that the Eq. 
(8a) can be established.  

utout SkS =*      utee SS α=*  (8) 

The parameter k0 is the ratio of mean tensile strength 
to minimum tensile strength and has a value greater than 

unity. An expression for ok is provided in Appendix A9. 

Note that k0 is only required when minimum tensile 
strength value is known. If strength data are mean 
values, k0 assumes a value of unity. The bending 
endurance strength of a material is related to its tensile 
strength by the endurance ratio as in Eq. (8b). The 
endurance ratio αe, is less than unity in value. 

Substitute Eq. (6) into Eq. (7) to obtain Eq. (9).  
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Based on Eq. (5), the pulsating strength is obtained 
as expressed in Eq. (10). 
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When Eq, (8a) is substituted in Eq. (10), then: 
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If experimental values of Sut, k0, and *
eS  are avai–

lable, Eq. (11) directly gives estimate of *
oS . This will 

be the most accurate estimate that can be obtained of the 
basic pulsating strength without direct experimental 
measurement. However, in preliminary design situa–
tions, it may be that only the tensile strength and endu–
rance ratio for the material type are available. In this 
situation, Eq. (8b) can be substituted in Eq. (11) to 
obtain Eq. (12). 

22
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Eq. (12) may be used also to obtain an accurate 

estimate of *
oS , but the endurance ratio αe and mean 

strength factor k0 must be evaluated from experimental 

values. When experimental value of *
eS is unavailable, 

but approximate values of αe and k0 are available, as 
might be the case during preliminary design, then Eq. 

(12) can be used to estimate *
oS in an “approximate” 

sense. Therefore, Eq. (11) may be regarded as the 

“accurate” model for *
oS , while Eq. (12) is the “appro–

ximate” model.  
Eq. (12) can be transformed into Eq. (13) to define a 

pulsating strength ratio, which is similar to the 
endurance ratio. That is: 
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Eq. (13a) provides an expression for the basic 
pulsating strength of a material based on the Gerber 
fatigue rule. The value estimated is an average value at 
50% reliability.   

As an example, consider steel materials for which 

50.0=eα  and 152.1=ok  from Table A2 in Appendix 

A5. Substitution in Eq. (13b) leads to:   
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Hence from Eq. (13a): 

uto SS 8605.0* = (14) 
Eq. (14) is the specific expression for the pulsating 
strength of steel materials at 50% reliability. A similar 
expression can be obtained for any other material if αe  
and k0 can be estimated.  
 
5. NOMINAL STRENGTHS OF GEAR MATERIALS 
 

The basic endurance and pulsating strengths above need 
to account for the variability of design parameters, 
strength properties, and reliability other than 50% for 
practical usefulness. A generic nominal design factor is 
defined and evaluated probabilistically and then applied 
to the basic strengths to obtain the nominal endurance 
and pulsating strengths of gear materials at 99%. These 
are expressed, respectively in Eq. (15a) and (15b).   

utoo SS β=/     utee SS β=/  (15) 

where: 

o

o
o n

αβ =      
e

e
e n

αβ =   (16) 

Eqs. (15) and (16) can be applied in specific and 

generic senses. If values of oβ and eβ are obtained from 

data for specific materials like steel, cast iron or bronze, 
Eq. (15) will yield an expression specific to that 

material type. If values of oβ and eβ are obtained from 

the combined data of different materials like steel, cast 
iron and bronze, then Eq. (15) will yield a generic 
expression for those set of materials. The generic 
expressions are: 

utoo SS ϖ=/     utee SS ϖ=/  (17) 

In Eq. (17), a single value of oϖ or eϖ applies to 

different types of materials in a data set of their 
evaluation. Therefore, estimates from Eq. (17) are not as 
reliable as those from Eq. (15). 

 
5.1 Nominal Probabilistic Design Factor  
 
A lognormal probabilistic design factor model has been 
proposed [31] for many design situations. The model 
considers design parameters as random variables and 
characterizes them with a mean value and a coefficient 
of variation (cov). The cov of each design parameter is 
estimated using sensitivity analysis of the first order 
Taylor’s series expansion. The model is surprisingly 
simple because it is a function of only two parameters: 
the reliability parameter (z0) and the variability 
parameter (sm). The reliability parameter is the same as 
the unit normal variate and defines the level of risk 
acceptable in a design task through a reliability target. 
The variability parameter is the lognormal standard 
deviation of the assumed lognormal probability density 
function. It combines all the significant variability and 
uncertainty which are quantified by covs in a design 
capacity model into one parameter value. The reliability 
and variability parameters define the nominal reliability 
factor for a specific design.  

The lognormal model [31] has been applied in the 
re-design of different types of components and com–
parison with previous results showed very good to ex–
cellent agreement. These include the design of a tension 
bar and crane girder [32], design of a bolt and flange 
joint [33], design of a cyclically loaded cantilever beam 
[28], contact strength estimate [34, 41], and design of 
shafts for bending and torsion [35]. Because the 
nominal design factor is probabilistically evaluated, it 
transforms conventional deterministic design equations 
into reliability-based design when used in deterministic 
design equations. 

The lognormal standard deviation associated with a 
design capacity model due to the variability of the 
design parameters may be estimated as [31]:  

( ) ( )2 2ln 1 1m M Ss ϑ ϑ⎡ ⎤= + +⎢ ⎥⎣ ⎦
  (18) 

The nominal design factor n0 based on z0 and sm is 
estimated as [31]:  

[ ])5.0(exp momo szsn +=  (19) 

American Society for Testing Metals (ASTM) 
specifies minimum strength at a reliability of 99% with 
a corresponding unit normal variate of z0= 2.326.  

As an application of Eq. (18) and Eq. (19), consider 
steel gears with M = 0.293, from Appendix A1, and S 
= 0.115 from Appendix A5, Table A3. When these 
values are substituted in Eq. (18):  
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[ ])115.01)(293.01( 22 ++= Insm = 0.309 

From Eq. (19), for z0 = 2.326: 

[ ] 152.2)309.05.0326.2(309.0exp =×+=on  

From Eq. (16a) and Eq. (15a), we then have: 

===
152.2
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o
o n

αβ 0.40    uto SS 40.0/ =   (20) 

For steels, the tensile strength is related to the 
hardness as in Eq. (21a) [41] and Eq. (20b) becomes Eq. 
(21b) for through-hardened steel gears:  

sut HS 269.3=     so HS 3076.1/ =  
(21)

 

For case-hardened steel gears, the core hardness is 
used to replace the surface hardness of through-
hardened gears.  

  
5.2 Service Pulsating and Endurance Strengths 
 
The service pulsating or endurance strength of a 
component like a gear tooth is different from that of a 
specimen used in an experiment in a laboratory due to 
several reasons. For instance, the specimen is tested in 
the laboratory while the gear may be used in the field in 
closed or open gearbox. The shape and size of a gear 
tooth will usually be different from that of a standard 
specimen used in the laboratory. Therefore, it is 
necessary to have some adjustment in order to obtain 
realistic estimate of endurance or pulsating strength for 
gear components by modifying the nominal strength 
with an effective correction factor as indicated in Eq. 
(22).  

foo YSS /=   fee YSS /=  (22) 

The effective correction factor is obtained from Eq. 
(23a) when surface roughness is unaccounted for or 
from Eq. (23b), when surface roughness is accounted 
for. 

zsrnf YYYYY =   zrnf YYYY =  (23) 

The bending durability, reliability and size factors 
are defined in American Gear Manufacturers Asso–
ciation (AGMA) standards and methods of evaluations 
are provided. A temperature factor is included in some 
versions of AGMA standards. However, if gear teeth 
operate in an elevated temperature, the fatigue and 
tensile strength properties of the material at that 
temperature should be used [21]. This will give a more 
realistic estimate of strength; therefore, a temperature 
factor is omitted in Eq. (23).  

Tests on specimens with varying surface roughness 
values have shown that fatigue cracks always occur at 
the most pronounced surface flaw or roughness [36]. 
Gear root areas are commonly left as machined surfaces 
due to possible residual tensile stress that grinding can 
produce. Another possible reason for leaving gear root 
area machined is that grinding the area is rather difficult 
[56]. Shigley and Mischke have suggested an expo–
nential relationship for surface roughness factor based 

on the experimental data of Noll and Lipson [22] for 
steels. The surface finish factor for machined surface is 
given by Eq. (24a) from [30]. When Eq. (21a) is 
substituted in Eq. (24a), the result is Eq. (24b). 

0.145.4 265.0 ≤= −
uts SY  0.1251.3 265.0 ≤= −

ss HY  (24) 

For case-hardened steel gears, the surface finish 
factor Ys is unity when tooth failure is expected in the 
core, not at the surface. For steel materials that may fail 
from surface cracks, when account is taken of surface 
roughness, Eq. (24b) is applied to Eq. (21b) to give the 
nominal strength of through-hardened steel gears in Eq. 
(25a) and that of case-hardened steel gears in Eq. (25b). 

735.0/ 251.4 so HS =       co HS 3076.1/ =   (25) 

AGMA specifies grade 1, grade 2, and grade 3 
quality levels for steel gear materials. Grade 2 and grade 
3 materials have higher beam strengths than grade 1. 
Available gear strength data from AGMA are generated 
from tests on actual gears [26] and empirical expression 
for the beam strength of through-hardened steel gear 
materials in the hardness range of 190 to 425 HVN [14] 
is provided. For grade 1 through-hardened steel gears; 
the nominal pulsating strength is:  

3.835052.0/ += co HS    (26) 

Because the strength estimate of Eq. (26) is based on 
actual experimental data, it is inherently corrected for 
surface finish effects and perhaps to some extent, stress 
concentration effects. 
 
6. ESTIMATES OF GEAR BEAM STRENGTH 
 
The equations presented in the previous sections were 
coded in Microsoft Excel for computational efficiency. 
The goal was to estimate the beam strengths of some 
metallic gear materials using the new formulas and 
make comparisons with those from AGMA. AGMA 
standards are perhaps the most popular gear standards in 
use and have a good reputation amongst gear designers 
and manufacturers. In Appendix A5, data on bending 
pulsating and endurance ratios and covs are summarized 
from different sources for several common gear 
materials and values of the variability parameter (sm) 
were determined. Then values of β0 and βe were 
evaluated at z0 = 2.326 for 99% reliability by subs–
titution of data values into Eqs. (13), (15), 16, and (17). 
The nominal design factors for approximate pulsating 
strength (Eq. (12)) and the accurate pulsating strength 
(Eq. (11)) models, respectively, were determined. 
Similarly, the nominal design factor for approximate 
endurance strength was evaluated. Table 1 is a summary 
of the values of β0 and βe obtained. They are extracts 
from Table A3 and Table A4, respectively from the 
Appendix.  

In order to validate beam strength predictions from 
the formulated models, comparisons with published 
strength data are made. Beam strength data have been 
determined by AGMA [26] for different types of gear 
materials and data for steel materials appear more 
common as steel is the most popular gear material. Steel 
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materials may be thru-hardened or case-hardened to 
improve performance. Thru-hardening processes can 
produce hardness in the range of 150 – 500 HVN with 
higher values obtained for alloy steels than for plain 
carbon steels. The core and surface hardness are 
approximately the same for thru-hardened steels. Case-
hardening is used when surface hardness of about 450 
HVN and above is desired [37] and it gives core 
hardness substantially lower than the surface hardness. 
The commercially acceptable tolerance range for 
surface hardness is about 30 to 50 HVN, with 40 HVN 
being common [24].  

Table 1: Fatigue Ratios of Some Materials  

Material 
99% Reliability 

β0  βe  
GCI* 0.366 0.207 
DCI* 0.341 0.191 
CGI* 0.371 0.211 
ADI* 0.315 0.175 

Cast steel 0.368 0.210 
Copper alloys 0.310 0.174 
Nickel alloys 0.348 0.197 

Steel and alloys 0.400 0.236 
Titanium alloys 0.425 0.254 

Aluminum 0.336 0.187 
Magnesium 0.300 0.164 

Average 0.359 ( oϖ ) 0.206 ( eϖ ) 

*GCI-Gray cast iron; DCI-Ductile cast iron; CGI-
Compacted graphite iron; AGI-Austempered ductile iron 

 
Comparisons of nominal pulsating strength 

predictions from models of Eq. (15) and Eq. (25) with 
AGMA values for different metallic gear materials are 
provided in Table 2 to Table 5. Table 2 shows 
comparisons of nominal pulsating strengths from 
AGMA and the models for through-hardened steel 
materials, based on Eq. (25) and Eq. (26). Table 3 
shows comparisons of strength values for ductile cast 
iron with model values based on Eq. (15a) and Eq. 
(17a). Similarly, Table 4 shows comparisons of strength 
values for gray cast iron, and Table 5 shows 
comparisons of strength values for cast bronze 
materials. Available beam strength data in public 
domain for other materials are not as plentiful as for 
steel materials. Specifically, available beam strength 
data for non-ferrous gear materials are scarce. 

Table 2: Nominal Bending Strength Estimate  

Comparison for Grade 1 Steel Materials  

Surface 
Hardness 
(HVN) 

Nominal Bending Strength  
(MPa) 

Variance (%) 

AGMA 
Model-
Spec. 

Model-
Gen. 

Spec. Gen. 

150 164 169 152 2.92 -7.39 
200 189 209 188 10.19 -0.74 
250 215 246 221 14.54 3.18 
300 240 281 253 17.18 5.56 
350 265 315 284 18.73 6.96 
400 290 347 313 19.58 7.72 
450 316 379 341 19.96 8.06 

Model-Spec./Gen.= Specific model/Generic model 
 

Table 3: Nominal Bending Strength Estimate  Comparison 
for Ductile Cast Iron Materials 

Minimum 
Tensile 
Strength 

(ksi) 

Nominal Bending Strength 
(MPa) 

Variance (%) 

AGMA 
Model-
Spec. 

Model-
Gen. 

Spec. Gen. 

80 190 188 199 -1.00 4.51 
100 230 235 248 2.23 7.92 
120 260 282 298 8.52 14.56 

Table 4: Nominal Bending Strength Estimate Comparison 
for Gray Cast Iron Materials 

Minimum 
Tensile 
Strength 

(ksi) 

Nominal Bending Strength 
(MPa) 

Variance (%) 

AGMA 
Model-
Spec. 

Model-
Gen. 

Spec. Gen. 

20 35 51 50 45.71 41.84 
30 59 76 74 28.32 26.21 
40 90 101 99 12.16 10.32 

Table 5: Nominal Bending Strength Estimate  Comparison 
for Bronze Material 

Minimum 
Tensile 
Strength 

(ksi) 

Nominal Bending Strength 
(MPa) 

Variance (%) 

AGMA 
Model-
Spec. 

Model-
Gen. 

Spec. Gen. 

40 39 86 99 120.5 153.8 
90 163 192 223 17.8 37.0 
 

7. DISCUSSIONS 
 
Table 2 to Table 5, show model estimates based on the 
data in Table 1 and AGMA strength data. In these 
tables, two predicted model values are provided. The 
first set of values is the specific model (Model Spec.) 
values and the second set is the generic model (Model 
Gen.) values. Eqs. (25) and (26) were used for model 
strength estimates for steel materials. For non-steel 
materials, the Model-Spec. estimates in the tables are 
from Eq. (15a) with values of β0 taken from Table 1 for 
the different materials. For the Model-Gen. estimates, 

the value of oϖ = 0.36 in Eq. (17a) and was taken from 

the last row of column 2 in Table 1. The variance in 
each table is the percentage difference between AGMA 
and model predicted values. The AGMA values in these 
tables are used as reference values for comparison 
because of the global acceptability of AGMA standards 
in gear technology. In Tables 2 to 5, the variances in 
column 5 are based on the comparison of the specific 
model values with AGMA values. Similarly, in the 
tables, the variances in column 6 are the based on the 
comparison of the generic model values with AGMA 
values. 

Table 2 compares pulsating strength values from 
both the specific and generic models with AGMA 
values for steel materials. The variances in columns 5 of 
Table 2 are in the range of 2.92 to 19.96% and the 
positive variance values indicate that the model values 
are slightly higher than AGMA values. The variances in 
column 6 for the generic model values are from - 7.39 to 
8.06%. The generic model appears to indicate a better 
match with AGMA values than the specific model 
because the generic fatigue ratio of 0.36 is lower than 
the specific value of 0.4. Correction was made for 
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surface roughness for steel materials since AGMA data 
are based on tests of actual gears with surface 
roughness. The values of the variances in Table 2 would 
have been much higher without correction for surface 
roughness for the steel materials. Steel materials are 
usually sensitive to stress concentration effects [21], and 
surface roughness can be very influential in determining 
fatigue strength. The specific model estimates are 
deemed more accurate in this table because AGMA 
models are said to be conservative [55].   

Table 3 compares pulsating strength values from 
both the specific and generic models with AGMA val–
ues for ductile cast iron. The variances in Table 3 are 
quite low; being in the range of -1.0% to 8.52% for the 
specific model values and 4.51 to 14.56% for the gene–
ric model. The higher variance values for the generic 
model are due to the strength ratio of 0.341 for the 
specific model being smaller than 0.360 for the generic 
model. The sample size is rather low, though compa–
rison results are favorable. It should be noted that no 
surface finish adjustment was made for ductile cast iron. 
Internal flaws in cast irons make the materials largely 
insensitive to stress concentration effects, hence surface 
finish would not dramatically influence fatigue strength. 

Table 4 compares pulsating strength values from 
both the specific and generic models with AGMA 
values for gray cast iron. The generic model shows a 
marginal improvement over the specific model values 
because the generic fatigue ratio is 0.36 while the 
specific fatigue ratio is 0.366. According to Mott [11], 
pulsating strength of cast iron is about 0.35 times the 
tensile strength. The comparison between the pulsating 
ratio estimate of 0.366 and 0.35 is excellent as the 
difference is only 4.6%. The variances in Table 4 appear 
generally high but lower for higher tensile strengths 
than low tensile strength. Again, the sample size is 
small, and generalization based on it can only be a crude 
approximation. 

Table 5 compares pulsating strength values from 
both the specific and generic models with AGMA 
values for cast bronze. The variances in Table 5 for 
higher strength cast bronze are considerably lower than 
the lower strength type. However, it appears that the 
specific model estimate is fairly good for the material of 
high strength grade of the bronze materials. Like cast 
iron, surface finish adjustment was not made for copper 
alloys. Copper and its alloys are quite ductile and 
ductile materials generally have low sensitivity to stress 
concentration effects. Hence, surface roughness is 
expected to have marginal or no effect on the fatigue 
strength predictions.   
 
7.1  Low-Strength Gray Cast Iron and Bronze 
 
As noted above, the pulsating fatigue strength estimates 
from the derived formulas for low-strength gray cast 
iron and cast bronze are significantly higher than 
AGMA recommended values. Since the estimates for 
other types of materials and for the higher strengths of 
these materials seem reasonable, it may well be that the 
AGMA recommended values are rather conservative in 
these cases. To explore this idea, consider Table 7 
where the pulsating strengths are estimated directly 
from the tensile and endurance strengths of the materials 
obtained from [38] using Eq. (11) and shown in column 
4 of Table 7. The design factors in columns 5 and 6 are 
average values for the complete dataset evaluated in 
Appendix A5. Strength values in column 7 are obtained 
by dividing values in column 3 by design factor in 
column 5. Similarly, strength values in column 8 are 
obtained by dividing values in column 4 by design 
factor in column 6. The values of pulsating strengths in 
column 4 and column 8 of Table 7 are considered the 
most accurate at the indicated reliability levels because 
they are based on experimental data of the tensile and 
endurance strengths of the materials. 

Table 7: Pulsating Strength Based on Experimental Tensile and Endurance Strengths 

Material Strengths at 50% Reliability (MPa) Design Factors at 99% 
Reliability 

Strengths at 99% Reliability (MPa) 

Tensile  Endurance Pulsating  Endurance  Pulsating  Endurance  Pulsating  
Gray cast iron 152 69 124 2.19 2.40 32 52 

Bronze-sand cast 305 170 288 2.19 2.40 78 120 

Table 8: Comparison of Pulsating Strength Estimates 

 Pulsating Strengths at 99% Reliability (MPa) Deviations (%) 
Material Accurate Model   Approx. Model AGMA Approx. Model AGMA 

Gray cast iron 52 51 35 -1.92 -32.70 
Bronze-sand cast 120 94 39 -21.67 -67.50 

Table 9a: Pulsating Strengths from Other Sources with endurance strength factor of 70%
 

Material Pulsating Strength (MPa) Endurance Strength (MPa) 

Other Sources AGMA Other Sources 

Gray cast iron 55  56 [58] 55 [55] 35 38.4 [44] 38.5 38.4 

Bronze-sand cast 108 99  122 [22] 39 75 [21] 69 [39] 85 

Table 9b: Pulsating Strengths from Other Sources with endurance strength factor of 63%
 

Material Pulsating Strength (MPa) Endurance Strength (MPa) 

Other Sources AGMA Other Sources 

Gray cast iron 61 56 [58] 55 [55] 35 38.4 [44] 35 35 

Bronze-sand cast 119 110 122 [22] 39 75 [21] 69 [39] 77 
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Table 8 shows a comparison of the approximate 
model and AGMA values with the accurate model 
estimates which are based on experimental data of Table 
7. Both the approximate model and AGMA values are 
lower than the accurate model estimates. However, the 
AGMA values show higher deviations from the accurate 
model estimates from values in columns 5 and 6 of 
Table 8, respectively. As mentioned earlier, the AGMA 
values in these low-strength cases seem rather 
conservative. This opinion appears to be reinforced 
when data from other sources on these materials are 
considered as may be deduced from the discussion 
below. 

The endurance strength of cast iron (170 HVN) is 
reported as 84 MPa [40, p. 1042]. Endurance strength 
data are obtained as average data which can be 
associated with 50% reliability. The 84 MPa value 
becomes 38.4 MPa at 99% reliability when the 
endurance strength design factor of 2.19 in Table 7 is 
applied. AGMA recommends that endurance strength is 
about 70% of pulsating strength [14, p. 800]. The 
corresponding pulsating strength at 99% reliability 
would be 55 MPa for the cast iron material. Khurmi & 
Gupta [58, p. 1039] quote pulsating strength of ordinary 
cast iron as 56 MPa, while Gope [40, p. 889] quotes a 
value 55 MPa. The above estimates and quoted values 
are quite consistent but considerably higher than AGMA 
value of 35 MPa.  

The endurance strength of phosphor bronze worm 
gear (SAE 65) is usually taken as 165 MPa [21]. At 99% 
reliability, the 165 MPa value becomes 75 MPa when 
the endurance strength design factor of 2.19 in Table 7 
is applied. The corresponding pulsating beam strength at 
99% reliability would be 108 MPa.  A different source 
says the endurance strength of bronze is 69 MPa [39], 
which gives 99 MPa as pulsating strength. According to 
Bhandari [22], the pulsating strength of bronze may be 
estimated as 40% of tensile strength which gives 122 
MPa for the material in Table 7. This gives 85 MPa as 
endurance strength for the bronze material at 99% 
reliability.  

Table 9a gives a summary of the pulsating and 
endurance strength data from other sources. Values of 
endurance strengths in Table 9a are taken as 70% of the 
pulsating strength values where the former is known and 
the later unknown. The known values are referenced in 
the table. Similarly, pulsating strength values are taken 
as the endurance strength values divided by 70%. In 
Appendix A6, it is shown that basic endurance strength 
is about 63% of basic pulsating strength on the average. 
This ratio translates to a better match between pulsating 
strength values in Table 9b and the estimate in Table 7 
from the numbers in the last two rows of columns 2 and 
3 of Table 8 and last two rows of Table 9b.  

When AGMA beam strength values in Table 9a are 
compared with estimates from other sources, 
considerable differences are observed. For instance, the 
AGMA beam strength value for cast iron is at least 
36.4% lower and that for cast bronze is at least 60.6% 
lower than those of other sources. In Table 9b, the 
AGMA beam strength value is at least 36.4% lower for 
cast iron and 64.5% lower for cast bronze than those 
from other sources. Consequently, the AGMA beam 

strength values appear to be quite conservative for low-
strength values of cast iron and cast bronze materials. 
Therefore, the variances in the model values for these 
materials in Table 4 and Table 5 for low strength 
materials, respectively; may be considered as outliners.  

The “accurate” model (Eq. 11) estimate of beam 
strength for the cast iron in Table 7 is 52 MPa and the 
average value in Table 9b is 57 MPa from other sources. 
The deviation of the accurate model estimate from the 
average value is -9.3%, the negative value being 
indicative a conservative prediction. Similarly, the 
“accurate” model estimate of the beam strength for the 
cast bronze in Table 7 is 120 MPa and the average value 
from other sources in Table 9b is 117 MPa. The model 
prediction deviates from the average value by 2.6%, 
which is apparently an excellent estimate. Therefore, the 
beam strength data of Table 9b appear to validate the 
“accurate” model of Eq. (11), though, indirectly. The 
same argument may be made for Table 9a. This is very 
reassuring and the accurate model appears reliable. 

The analysis in the study for the “approximate” 
model assumes that the working data are the endurance 
ratio and the tensile strength of the gear material. In the 
“accurate” model, it is assumed that experimental values 
of tensile strength and endurance strength of the 
material are available. Because the tensile strength is 
evaluated at 99% reliability, the resulting nominal 
pulsating ratio and endurance ratio are defined at 99% 
reliability also. The 99% reliability is the default for 
both AGMA [63] and International Standardization 
Organization (ISO) [64] gear design standards. 
Adjustment for other reliability levels can be made by 
the use of reliability factor. Based on the lognormal 
probability density function assumed in the study, 
values of the reliability factor have been evaluated. 
Table A5 gives values of the reliability factor for some 
reliability levels. 

Endurance strength is usually associated with a 
number of load cycles. The load cycles for the 
endurance strength for magnesium, copper and nickel 
alloys are 108 and 107 for titanium. That for aluminum is 
5× 108 load cycles [13] and it is 3× 106 load cycles for 
steels. The predicted strength values by the models 
correspond to the load cycles of the material endurance 
strength, except when modified by the durability and 
other factors based on expected service conditions. 

 
7.2 Practical Relevance of Study 
 
The endurance strength of a gear tooth is influenced by 
material type, loading (reversed or pulsating), surface 
finish, size of tooth, and stress concentration at gear root 
[22]. In practice, it is difficult to know the specific 
contributions of these factors for each and every gear 
design [22]. However, gear sizing and adequacy 
assessment cannot be done without knowledge of 
endurance or beam strength. By combining statistics, 
probability, and fatigue failure theories; the authors have 
developed models that can predict the beam strength of 
metallic materials using easily determined strength 
properties.  

Currently, estimates of beam strength for initial 
sizing of gears in design applications are based on 
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empirical relations. The most popular is that of 
Buckingham that states that the beam strength is about 
one-third (0.333) of the tensile strength of the gear 
material [22]. This appears to have held up well till date 
but no analytical proof seems to be available. But 
empirical expressions are developed after expensive 
experimentation and data analysis. From Table 1, the 
average pulsating strength ratio for the metallic 
materials shown is 0.36 at 99% reliability. The work 
presented in this paper clearly demonstrates analytically, 
the reasonableness of Buckingham’s statement and 
shows that 99% reliability may be associated with the 
estimate. This verification seems to be a worthy 
theoretical contribution to gear science and technology. 

According to National Broach & Machine, the 
fatigue strength of gear teeth follows a statistical 
pattern, necessitating the use of a safety or design factor 
[61].

 
Impact loads in gear systems are commonly two or 

more times the rated load. As a general rule, when peak 
loads exceed twice the rated load, it is necessary to 
consider yield failure in both material selection and 
design [61]. The nominal design factor for the 
approximate model of Eq. (13) or Eq. (15) in the paper 
is evaluated to be 2.23 and 2.19 for endurance strength 
of Eq. (16). It is estimated to be 2.4 for the more 
accurate model of Eq. (11). The design factor estimates 
from the study seem to be within practically known load 
ranges in gear systems. Thus, it appears that adequate 
consideration was given to load and material variability 
by the authors in the developed models to assure 
realistic beam strength estimates for metallic gear 
materials. This is quite comforting and attests to the 
practical relevance of the study.

 

Due to rapid development in material science, more 
and more materials are being put forward by researchers 
[62]. The behavior of new materials is often not known 
very well and available design properties are not often 
complete. This is especially true of gear beam strength 
which takes considerable time to obtain results. The 
models presented are most valuable when new materials 
with limited design data such as tensile strength and 
endurance strength are available. Tensile strength is 
obtained from a tensile test which is relatively 
inexpensive, fast and reliable. Now, reasonable estimate 
of endurance strength can be made from the material 
tensile strength just by identifying the material family 
even for newly developed materials through the 
endurance ratio. Therefore Eq. (12) or Eq. (13) of the 
paper becomes very relevant in such situations. Rather 
than build gears with the new materials and test them to 
failure, tensile and perhaps endurance strength tests may 
be done, and the beam strength estimate from these 
equations used to perform initial gear sizing. The 
verification and validation phases of design can then be 
conducted latter to confirm or improve on design results 
and preliminary reliability.  

Though the beam strength models formulated are 
based on design parameter variability and uncertainty of 
cylindrical gear root stress model of Eq. (3), they are 
also applicable to other gear types of the involute form. 
Helical gears have a normal plane which is defined by 
the nominal helix angle. Other involute gears such as 
bevel, face, and worm gears, are likewise defined in the 

normal plane [65]. Therefore, when these other gear 
types are converted to their equivalent spur gears, they 
are similar to the equivalent spur gear of a helical gear. 
Now, the loading and stressing of these other gear types 
are similar to those of cylindrical gears. Also, the load 
variability and material strength variability are of the 
same nature and roughly of the same magnitudes. 
Furthermore, the parameter Yv in Eq. (3) is purely a 
geometric parameter. The parameter k0 is independent of 
gear shape and point of load application on the gear 
tooth in a mesh which distinguishes it from the gear root 
bending stress models of AGMA [63] and ISO [64]. It is 
a property of the gear material and fillet size at the gear 
root. Consequently, the results of the study for pulsating 
and endurance strengths are still valid for these other 
gear types. Hence, estimates of beam strength by the 
formulated models for the materials considered may be 
used for all gear types. 

There appears to be some confusion about pulsating 
and endurance strengths of gear tooth in the literature 
since the two appear to be referred to as simply “fatigue 
strength”. Specifically, endurance strength is the stress 
capability for two-way or fully reversed bending fatigue, 
while pulsating strength is the stress capability for one-
way bending fatigue (please refer to Fig. 1). Fully 
reversed bending fatigue involves a stress reversal from 
positive to negative but pulsating bending fatigue does 
not. It varies from zero value to a maximum and then 
the pattern is repeated in every load cycle. Hopefully, 
this study should bring some clarity to the differences 
between bending endurance strength and pulsating 
strength and aid better communications in this area of 
gear technology. 

Accurate estimates of gear stresses are difficult to 
obtain due to uncertainty about values of stress 
concentration factor, residual stresses, external and 
internal dynamic overloads, etc. Therefore, the best way 
to find out how much load a gearset will carry is to build 
and test it. However, very good guesses can now be 
made due to research in gear design technology and the 
use of advanced modeling tools such as (FEM) [17]. 
But, FEM needs initial geometry, which is why a 
reasonably accurate analytical model for preliminary 
sizing of gear components becomes very important. A 
good estimate of the beam strength of a gear material is 
of immerse relevance in the initial sizing of gears when 
experimental data are unavailable. When the beam 
strength estimate can be obtained from a fast, reliable 
and easily performed experiment like tensile test, it 
speeds up the design process and minimizes product 
developmental costs. The models developed in this 
study are most useful in this regard.  
 
7.3 Design Adequacy Assessment 
 
Since the estimation of the gear root bending stress is 
not exact, gear loads in service and fatigue strength have 
a statistical nature; it is practically impossible to 
completely eliminate the probability of fatigue failure in 
gear design [57]. The probabilistic approach used in the 
study is very significant in this regard. It allows gear 
design reliability to be interpreted in “safety” terms 
based on desired failure rate. Due to the uncertainty 
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mentioned, it is reasonable to allow for unknown factors 
in design practice that could cause premature failure 
[14]. Therefore, an apparent design factor may be 
introduced in assessing gear design adequacy. 
Consequently, in a design application, it may be 
required for pulsating strength resistance that:   
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And for endurance strength resistance that: 
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Because most of the variability and uncertainty in 
relevant design parameters and factors are already 
accounted for in no, a modest value of #n should suffice 

[11]. #n may be prescribed by standards or codes or 

agreed on with a client which must be adhered to. For 
instance, from Table 2 to Table 5; except for the low 
strength gray cast iron and cast bronze, which are 
considered as exceptions, the maximum variance 
between the model estimates and AGMA values is 
mostly below 20 % for the specific model. Conse–
quently, #n =1.25 is perhaps reasonable for initial siz–

ing. According to Petrov et al. [42], the apparent design 
factor for contact stress may be increased by 15% for 
critical gear drives. Therefore, the minimum apparent 
design factor for bending endurance may be increased 
by about 30% for critical gear drives against bending 
stress failure. 

The nominal design factor is 2.156 at 99% reliability 
from Table A3 for steel materials. From [41], the 
average design factor for steel material with respect to 
contact stress is 1.502. The square of 1.502 is 2.256, 
which deviates from 2.156 by -4.64%, indicating a very 
close match. This should not be a surprise since bending 
stress is directly proportional to load and the contact 
stress is proportional to the square root of load.  

Gear tooth fractures due to bending generally start in 
the root fillet area. Occasionally, a new tooth may break 
as a result of severe overload or serious defect in the tooth 
structure. Gear failure by tooth breakage is usually a 
fracture induced slow progressive failure and often 
happens in a brittle manner. Pitting and scoffing may 
weaken the tooth before it breaks. High load resistance 
against breakage at the gear tooth root may be achieved 
by using large module, large root fillet, quench-tem–
pered or case-hardened materials, and a positive profile 
shift for gears with small number of teeth [43]. Comp–
ressive stresses can enhance fatigue resistance, so manu–
facturing processes such as shot peening, proof loading, 
carburizing, nitriding, and induction hardening are used in 
gear processing. These processes induce residual 
compressive stresses on the surfaces of the parts so 
treated, thus mitigating the deleterious effects of tensile 
stresses on the parts [44] that can cause fatigue failure. 
 
8.  CONCLUSIONS 
 
A probabilistic design factor approach is combined with 
the Gerber fatigue rule and the revised Lewis gear root 

bending stress model in developing expressions for the 
pulsating strength of gear materials. The probabilistic 
approach treats design parameters as random variables 
associated with the lognormal probability density func–
tion or can be approximated by it. The design para–
meters are characterized by a mean value and coefficient 
of variation (cov). The variability of design parameters 
in the revised Lewis stress model is analyzed and with a 
desired reliability level, a probabilistic nominal design 
factor is quantified. The nominal design factor is applied 
to the Gerber fatigue failure rule to establish gear 
material nominal beam strength models. The expected 
life of the gear tooth in load cycles corresponds to that 
of the endurance strength of the gear material. Model 
predictions are at 50% and 99% levels but values at 99% 
reliability are preferred for a reasonable service 

Two models are presented in Eq. (11), the “accurate” 
model and Eq. (12), the “approximate” model. They are 
modified by design factors in Eq. (15) and Eq. (16). The 
“approximate” beam strength model is based on the 
tensile strength and endurance ratio of the gear material. 
The “accurate” beam strength model is based on 
experimental values for both tensile and endurance 
strengths. Beam strength predictions from Eqs. (15) and 
(25) are compared in Table 2 with those of AGMA 
estimates (Eq. (26)) for steel materials. The variances in 
columns 5 of Table 2 range from 2.92 to 19.96% for the 
specific model values. The positive variance values 
indicate that the model estimates are slightly higher than 
AGMA values. The variances in the generic model are 
more favorable for steel materials. Comparisons of 
model predictions and AGMA estimates for ductile cast 
iron are favorable in Table 3, where the variances are 
from -1.0 to 8.52 % for the specific model and from 
4.51 to 14.56% for the generic model. Good 
comparisons are obtained for high-strength gray cast 
iron and cast bronze materials. However, results for 
low-strength gray cast iron and cast bronze do no 
indicate favorable comparison with AGMA values. 
However, it is demonstrated in the study that the AGMA 
strength recommendations for low-strength gray cast 
iron and cast bronze materials are perhaps conservative. 
Overall, the deviations of model estimates from AGMA 
values are not unreasonable.  

The study showed that for many metallic materials, 
the average pulsating strength ratio is 0.36 at 99% 
reliability. Therefore, the suggestion by Buckingham 
[22], that the endurance strength of gear tooth is 
approximately one-third of the tensile strength of the 
material is justified and may be associated with 99% 
reliability. Also, the study suggests that the endurance 
strength is about 63% of the pulsating strength of gear 
materials at 99% reliability. Furthermore, the models 
suggest a nominal design factor of 2.19 and 2.40 for the 
“approximate” and “accurate’ beam strength estimates, 
respectively at 99% reliability. Adjustments for other 
probability values are provided in Table A5.  

The model estimates seem sufficiently accurate for 
preliminary gear design applications. The specific mo–
del is recommended for the materials listed in Table 1 
while the generic model may be used only for metals not 
listed in the table. The favorable comparisons of model 
predicted beam strength values with AGMA data sug–
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gest that reasonable beam strength predictive models 
based on sound scientific and engineering analysis have 
been developed.  
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NOMENCLATURE 

ADI – austempered ductile iron 
CGI – compacted graphite iron 
DCI– ductile cast iron 
GCI– gray cast iron 
HVN – hardness: Vicker’s number 
COV – coefficient of variation 
cov – coefficient of variation 

−2 ,1 subscript for bodies in contact 

−b nominal facewidth of gear (mm) 

−tF tangential force (N) 

−T transmitted torque (Nm) 
−d pitch diameter of gear (mm) 

−sH  surface hardness (HVN) 

−cH  core hardness (HVN) 

−ok  mean strength factor 

−oek  mean strength factor for basic endurance strength 

−opk  mean strength factor for basic pulsating strength 

−tk  stress combination factor 

−aK application factor 

−iK internal dynamic load factor 

−sK service load factor 

−N rotational speed(rpm) 

−nm normal module 

−en nominal endurance design factor at 99% reliability 

−on nominal pulsating design factor at 99% reliability 

−#n  minimum apparent design factor 

−tn  apparent fatigue design factor 

−P transmitted power (W) 

−aS  alternating stress  

−mS  mean or steady stress  

−maxS  maximum stress in fatigue load cycle 

−*
eS basic endurance strength at 50% reliability 

−*
oS basic pulsating strength at 50% reliability 

−/
eS nominal endurance strength at 99% reliability 

−/
oS nominal bending pulsating strength at 99% 

reliability  

−eS service endurance strength at 99% reliability 

−oS service pulsating strength at 99% reliability 

−fS  fatigue beam strength 

−utS  ultimate tensile strength  

−Y generic variable 

−vY  modified Lewis stress factor for virtual gear teeth 

−tY  transformed Lewis stress factor 

−fY  effective bending fatigue strength factor 

−nY bending durability factor 

−rY bending reliability factor 

−sY surface finish factor 

−zY size factor for bending fatigue 

−z  actual number of gear teeth 

−vz virtual number of gear teeth 

−Z generic variable 
−σk normal stress concentration factor 

−τk shear or tangential stress concentration factor 

−oλ basic endurance strength factor 

−tφ transverse pressure angle 

−nφ normal pressure angle 

−ψ nominal helix angle 

−bψ base helix angle 

−tσ gear root tensile stress 

−eλ effective gear facewidth factor 

−vϖ  virtual plane contact ratio 

−oβ  specific nominal pulsating strength factor 

          at 99% reliability 

−eβ  specific nominal endurance strength factor 

          at 99% reliability 
−eϖ  generic nominal pulsating strength factor 

          at 99% reliability 
−oϖ generic nominal endurance strength factor 

          at 99% reliability 
−eα  endurance strength ratio at 50% reliability 

−oα  pulsating strength ratio at 50% reliability 

−eλ effective facewidth factor 

−Mμ  adjusted design capacity model mean 
 

−sμ  combined correlation coefficient mean
 

−tμ  basic design capacity model mean
 

−ksϑ cov of sK  

−bϑ cov of b 

−mcϑ miscellaneous cov 

−kaϑ cov of aK  
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−kiϑ cov of iK  

−msϑ cov for general miscellaneous variability 

−maϑ cov for design capacity model accuracy 

−utϑ cov for ultimate tensile strength 

−υϑ cov for Poisson’s ratio  

−mfϑ cov for failure model correlation coefficient 

−mhϑ cov for human factor variability 

−tμϑ cov of basic design capacity model 

−cμϑ cov of correlation coefficients 

−Ytϑ cov of vY and tk  combined 

−yfϑ cov of effective bending fatigue strength factor 

−ynϑ cov for load cycles 

−yrϑ cov for reliability factor 

−ysϑ cov for surface finish factor 

−yzϑ cov for size factor 

−koϑ cov for mean strength factor 

−soϑ cov for basic approximate pulsating strength 

−Cϑ cov for service approximate pulsating strength 

−Oϑ cov for basic accurate pulsating strength 

−OCϑ cov for service accurate pulsating strength 

−seϑ cov for basic approximate endurance strength  

−Sϑ cov for service approximate endurance strength  

−Mϑ effective cov for design capacity model 

−Yϑ cov of Y 

−Yvϑ cov of vY  

−zϑ cov of Z 
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APPENDIX A: SIMPLIFIED RELIABILITY BASED 
DESIGN ANALYSIS 

A1: Design Capacity Model Variability 

The basic design or stress capacity model of Eq. (3) 
needs to be adjusted for analytical accuracy, failure 
mode correlation with mechanical capability, and 
human related variability. This could be done by use of 
coefficients as suggested by [41] in Eq. (A1a). 

M c tμ μ μ= ×       222
mctcM ϑϑϑϑ μμ ++=  (A1) 

 
Eq. (A1b) is an expression for the coefficient of 

variation (cov) of the adjusted design capacity model 
expressed by Eq. (A1a). The cov of each design 
parameter is estimated using sensitivity analysis of the 
first order Taylor’s series expansion [31 - 40]. Usually, 
there are approximations in data modeling and 
estimation uncertainty is unavoidable in most situations. 
Consequently, a miscellaneous cov may be associated 
with the model of Eq. (A1a) as indicated in Eq. (A1b).  

The analysis and estimations in the sections below 
provided values of μs = 0.132 from Appendix A2, μt = 
02565from Appendix A3, and mc = 0.05 is assumed. 
Hence, substituting values in Eq. (A1b): 

293.005.02565.0132.0 222 =++=Mϑ  

 
A2: Correlation Parameters Variability 

The correlation parameters on the basic stress capacity 
model are indicated in Eq. (A2a) and the associated cov 
expression is given by Eq. (A2b).  

mhmfmac kkk=μ      222
mhmfmac ϑϑϑϑμ ++=  (A2) 

For the design of gears, model accuracy cov, ma = 
0.05 and human related variability in gear design rep–
resents a cov mh of about 0.07 [24]. Assume cov mf = 
0.10 for fatigue failures based on Gerber rule. 
Substituting values in Eq. (A2b): 

132.007.01.005.0 222 =++=cμϑ  

 
A3: Basic Stress Capacity Model Variability 

Eq. (A3a) is a reproduction of Eq. (3) with a slight 
modification. 

tnve

s
t bdYm

TkK

ϖλ
μ σ

3102 ×
=    (A3a) 

The stress capacity model variability of Eq. (A3a) is 
expressed in Eq. (A3b). 

2222
 

222
dbmntYtkkst ϑϑϑϑϑϑϑϑ ϖσμ ++++++=   (A3b) 

The parameter Ks accounts for increases and 
variations in the nominal or rated load due to 
acceleration and deceleration of connected external and 
internal masses in a device, tolerances in components in 
an assembly and the rigidity of supporting structures. It 
may be expressed as:

  
2 2

s a i ks ka kiK K K ϑ ϑ ϑ= = +   (A4) 

The values of ka is in the range of 0.05 to 0.20 [48] 
and the values of ki is in the range of 0.10 to 0.15 [49]. 
Generally, higher external load variation in a device 
during operation will induce higher internal load 
variation. Thus, the possibility of both the external and 
internal load variations being at maximum values 
simultaneously is real but likely remote. Therefore ka = 
0.20 and ki = 

0.10 will be assumed in this analysis.  

224.010.020.0 22 =+=ksϑ
 

The expressions for Yt in Eq. (A3a) and its cov are 
given in Eq. (A5a) and Eq. (A5b), respectively. 

v

t
t Y

k
Y =   22

ktYvYt ϑϑϑ +=  (A5) 

Simplified variability analysis of kt is presented in 
Appendix 9 from which Yt= 0.05, approximately.  

Variations in component geometry are controlled 
by manufacturing practices and they are generally small, 
especially in mating components which is of the order 
of 0.001 [30] for cross-sectional dimensions in machine 
design. Gear diameters are mating components and are 
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accurately manufactured, so d = 0.001 is assumed. 
Gear module is accurately controlled too during 
manufac–turing and mn = 0.001 is assumed. 
Manufacturing control of gear facewidth is not as 
critical as its diameter and b = 0.01 is assumed. The 
other cov values are ks = 0.224, Yt = 0.05 from above, 

t = 0.03 is assumed, and kσ 
 
= 0.11 [30]. Substituting 

values in Eq. (A3b): 

2565.0

03.0001.0201.005.011.0224.0 222222

=

+×++++=tμϑ

 

A4   Fatigue Strength Variability and Analysis 

A4.1   Strength Variability Considerations 

There is ample evidence of the variability of mechanical 
properties of materials. The mechanical strength of 
ductile materials do not vary much so a few tests can help 
determine the properties with good confidence. Strength 
data for brittle materials generally show more variability 
[29] and they always have a wide scatter in strength, 
especially those without ductility [50]. Therefore, many 
tests are required to accurately determine the strength 
properties and the property distributions of brittle 
materials. Variations in mechanical strengths may be 
attributed to internal cracks and flaws, air holes in steels, 
cavities in welds, foreign inclusions in the materials and 
quality of production. Blanks for part making can be of 
castings and wrought (forged, extruded, rolled, drawn, 
stamped) materials, or of welded fabrications. Cast metals 
have large numbers of voids in their lattices that can 
compromise strength in tension [50]. Wrought products 
are generally more refined in structure than cast products. 
Welded fabrications, like cast iron products comp–
romising inclusions and heat affected zone effects.  

There is always some uncertainty as to the corres–
pondence of the properties of test specimens with those 
of actual parts. Mechanical strengths vary along bar 
length and among products from different suppliers. If 
specimen(s) are cut from the same blank or workpiece 
from which a part is made, the portion used as speci–
men(s) is different from the portion of the part.  The fact 
that the specimens may not be from the same portion of 
the blanks or workpieces from which the parts are made 
from suggests that complete identicality cannot be 
assured. Variations in manufacturing process in the 
same facility between batches and in different facilities 
lead to variations in strengths of samples and products.  

A practical way to characterize variability of nume–
rical quantities is to specify the mean value and the cov. 
The cov is the ratio of standard deviation to the mean of a 
sample. The cov of tensile strength for wrought steel is 
about 0.06 [30, 48]. Dobrovolsky et al. [15] assumed that 
undetected defects may reduce strength by 5 – 10% in 
forged parts, while they may reduce strength by 15 – 20% 
in cast parts. Thus, forged products may have a cov of 
about 3% (0.03) to 4% (0.04). Cast products may exhibit 
up to about 10% reduction of strength relative to forged 
or wrought products. That is a cov of about 3% to 4% 
increase in variability. For cast copper alloy and cast-iron 
materials, it is assumed here that ut = 0.10; that is, about 
4% increase in cov above wrought steels. For cast steel 

materials, it taken as
 ut = 0.08, the same value is taken 

for wrought nickel and wrought titanium materials. 
Poisson’s ratio may be considered deterministic, but a cov 
of 0.02 [2] is suggested in critical designs. According to 
Ullman [51], if the material properties are well known, a 
cov of 0.05 may be used, if the material properties are not 
well known, a cov of 0.10 – 0.15 may be used. Table A1 
summarizes the foregoing discussions. 

Table A1: Covs for Some Strength Parameters and 
Materials 

Strength Parameters COV 
Poisson’s ratio 0.02 
Wrought steel material-tensile strength  0.06 
Wrought nickel material-tensile strength  0.08 
Wrought titanium material-tensile strength  0.08 
Cast material-tensile strength 0.10 
Miscellaneous 0.05 

 
A4.2   Fatigue Strength Variability Analysis 

Based on Eq. (13), the cov for the basic approximate 
pulsating strength is expressed in Eq. (A6). 

4
4

2
222 e
ekoutso

α
α

ϑϑϑϑϑ +++≈   (A6) 

From Eq. (23c), the cov for fatigue strength 
correction factors is expressed in Eq. (A7).   

2222
yzysyrynyf ϑϑϑϑϑ +++=   (A7) 

The variability in load cycles is of the other of 15% 
[20, p. 201] and a conservative cov of yn = 0.04 may be 
assumed. The cov of machined surface finish is ys = 
0.058 [30]. The reliability factor cov is taken as yr = 
0.03, and the size cov is taken as yz = 0.01. Hence from 
eq. (A7):  

)08.0(077.001.0058.003.004.0 2222 =+++=yfϑ
 

The cov for service pulsating and endurance stren–
gths is a combination of the cov of the basic strengths 
and the cov of the effective strength correction factor of 
Eq. (22). The cov associated with the service approxi–
mate pulsating strength is: 

22
yfsoC ϑϑϑ += 2208.0 soϑ+=   (A8) 

The cov for the basic accurate pulsating strength 
model of Eq. (11) is: 

( )22222

4

1
44 seutsekoutO ϑϑϑϑϑϑ ++++≈   (A9) 

The service accurate pulsating strength cov is: 

2 2 2 20.08OC O yf OC Oϑ ϑ ϑ ϑ ϑ≈ + ≈ +  (A10) 

The cov for the basic approximate endurance strength 
based on endurance ratio, from Eq. (10b) is obtained as: 

22
eutse αϑϑϑ +=  (A11) 
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For the service approximate endurance strength 
capability: 

22
seyfS ϑϑϑ +=  2208.0 seS ϑϑ +=  (A12) 

A5 Fatigue Ratios and Design Factors 

The bending endurance ratio of steel is in the range of 
0.4 to 0.6 [13, 14], with an average value of 0.50. The 
bending endurance ratio of gray cast iron is in the range 
of 0.4 to 0.5 [40] with 0.45 average. The bending endu–
rance ratios of ferritic and pearlitic grades of ductile cast 
iron are similar, decreasing from 0.5 to 0.4 with 
increasing strength within each grade. For tempered 
martensite matrices, the endurance ratio decreases from 
0.5 to 0.3. The average value is 0.425 for ductile cast 
iron [52]. Available data show that the endurance ratio 
of CGI ranges from 0.44 to 0.58, though values as low 
as 0.37 are reported [53]. The average value of endu–
rance ratio for CGI is evaluated as 0.463. From data 
provided by Zanardi [54], the endurance ratio of ADI 
varies from 0.271 to 0.475 with average of 0.395.  
Endurance strength ratio is 0.35 for magnesium alloys, 
0.25 to 0.50 for copper alloys and 0.4 [22] for bronze 
(0.390 average), 0.35 to 0.50 (0.425 average) for nickel 
alloys, 0.45 to 0.65 (0.55 average) for titanium alloys, 
and 0.40 for aluminum alloys [13]. Fully reversed 
fatigue strength data have covs in the range of 0.04 to 
0.09 and a conservative value of 0.08 is commonly 
adopted [21] in machine design.  

The load cycles for the endurance strength for 
magnesium, copper and nickel alloys are 108 and 107 for 
titanium. That for aluminum is 5× 108 load cycles [13] 
and 3× 106 load cycles for steels is assumed.  

Table A2 summarizes the data discussed above and 
some other parameters computed from them. Columns 
2, 3 and 6 in the table summarize Table A1 and the 
foregoing discussions on variability of fatigue ratios. 
Values in column 3 of Table A2 are obtained from 
Table A1. Entries in column 4 of Table A2 are 
evaluated using Eq. (A13a) with values from column 2 
and 2.326, the normal variate at 99% reliability, as 
arguments. Entries in column 5 of the table are obtained 
from Eq. (13b), entries in column 6 are approximated as 
column 2 data range divided by the product of the mean 
and 6 (assuming the range is approximately equal to 6 
standard deviations) because the standard deviation of 
the lognormal distribution is approximately equal to the 
cov of the normal distribution for low values of cov not 
more than 0.3 [49]. Entries in column 7 of the table are 
derived from Eq. (A6). Note that the pulsating strength 
covs in the last column of Table A2 are less than 0.2. 

Table A3 shows results of analysis performed to 
obtain design factors and pulsating fatigue ratios for the 
materials being studied. In Table A3, the entries in 
column 2 are derived from Eq. (A8). The values in 
Column 3 of Table A3 are obtained using Eq. (18) and 
those of column 4 by using Eq. (19). Finally, the entries 
in column 5 of Table A3 are obtained from Eq. (16a). 

Table A2: Fatigue Ratios of Some Materials at 50% Reliability  

Material 
Endurance 

Ratio 

 ( eα ) 

Tensile 
Strength 

COV ( utϑ ) 

Mean 
Strength 

Factor ( ok ) 

Pulsating 
Ratio  

( oα ) 

Endurance Ratio 

COV ( eαϑ ) 

Pulsating 
Ratio COV 

( soϑ ) 

Gray cast iron 0.450 0.100 1.268 0.809 0.040 0.117 
Ductile cast iron 0.425 0.100 1.268 0.771 0.080 0.140 
Compacted graphite iron 0.463 0.100 1.268 0.827 0.060 0.127 
Austempered ductile iron 0.395 0.100 1.268 0.725 0.100 0.155 
Cast steel 0.450 0.080 1.208 0.801 0.040 0.100 
Copper alloys 0.390 0.080 1.208 0.689 0.112 0.154 
Nickel alloys 0.425 0.080 1.208 0.765 0.060 0.112 
Steel and alloys 0.500 0.060 1.152 0.860 0.040 0.085 
Titanium alloys 0.550 0.080 1.208 0.935 0.060 0.112 
Aluminum alloys 0.400 0.080 1.208 0.728 0.020 0.092 
Magnesium alloys 0.350 0.080 1.208 0.649 0.020 0.092 
Average 0.448 0.087 1.229 0.801 0.066 0.122 

Table A3: Nominal Pulsating Strength Factor for common Gear Materials at 99% Reliability 

Material Cϑ  ms  on  oβ   

Gray cast iron 0.140 0.319 2.210 0.366 
Ductile cast iron 0.160 0.328 2.263 0.341 
Compacted graphite iron 0.149 0.323 2.232 0.371 
Austempered ductile iron 0.173 0.335 2.303 0.315 
Cast steel 0.126 0.313 2.177 0.368 
Copper alloys 0.172 0.334 2.300 0.310 
Nickel alloys 0.136 0.317 2.200 0.348 
Steel and alloys 0.115 0.309 2.152 0.400 
Titanium alloys 0.136 0.317 2.200 0.425 
Aluminum alloys 0.120 0.311 2.164 0.336 
Magnesium alloys 0.120 0.311 2.164 0.300 
Average  0.145 0.322 2.226 0.359 
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Table A4: Nominal Endurance Strength Factor for common Gear Materials at 99% Reliability 

Material �S sm ne βe 
Gray cast iron 0.133 0.313 2.177 0.207 
Ductile cast iron 0.150 0.321 2.220 0.191 
Compacted graphite iron 0.140 0.316 2.195 0.211 
Austempered ductile iron 0.161 0.326 2.252 0.175 
Cast steel 0.118 0.308 2.144 0.210 
Copper alloys 0.158 0.325 2.243 0.174 
Nickel alloys 0.126 0.311 2.162 0.197 
Steel and alloys 0.106 0.303 2.119 0.236 
Titanium alloys 0.126 0.311 2.162 0.254 
Aluminum alloys 0.113 0.306 2.133 0.187 
Magnesium alloys 0.113 0.306 2.133 0.164 
Average  0.135 0.315 2.186 0.206 

 
From the analysis performed, the average value of 

the mean strength factor k0 for tensile strength is 1.23 
from the last row of column 4 in Table A2. The nominal 
design factor for approximate pulsating strength is n0 = 
2.23 from the last row of column 4 in Table A3. The 
average pulsating strength ratio is 0.359 (0.36) from the 
last row of column 5 of Table A3 for all the materials in 
the table.  

For the accurate model of Eq. (11), using all data 
for the materials considered and based on Eq. (A10), 

OC = 0.203. Since M = 0.293 from Appendix A1, then 
from Eq. (18): 

[ ])203.01)(293.01( 22 ++= Insm = 0.348 

From Eq. (19), for oz = 2.326 at 99% reliability: 

[ ]=×+= )348.05.0326.2(348.0expon 2.391 (2.40) 

The values of the design factor for the approximate 
and accurate pulsating strength are different due to vari–
ability differences in Eq. (A6) and Eq. (A9), respect–
tively. Because the average values for the whole data set 
is used for evaluating the design factors, they are gene–
ric and may be used accordingly. 
 
A6 Nominal Endurance Strength 

Table A4 shows results of similar analysis performed in 
Table A3 to generate design factors and endurance 
ratios for the material data set. From the analysis, the 
nominal design factor at 99% reliability for approximate 
endurance strength based on fatigue ratio is n0 = 2.19 
from the last row of column 4 in Table A4. The average 
fatigue ratio for endurance strength is 0.206 from the 
last row of column 5, for all the materials in the table. 

The mean strength factors at 99% reliability for the 
endurance and pulsating strength ration can be estimated 
from data in Table A2. From the last row of Table A2, 
αe = 0.66 and so = 1.22. From Eq. (A13a), for βe: 

)066.05.0326.2(066.0 ×+= ekoe = 1.1865 

Also, from Eq. (A13a), for oβ : 

)122.05.0326.2(122.0 ×+= ekop = 1.338 

From the last row of Table A2, βe  = 0.448 and βo = 
0.801. Therefore, the ratio of basic endurance strength to 
basic pulsating strength at 99% reliability is then: 

=×=×=
801.0

338.1

1865.1

448.0

o

op

oe

e
o

k

k β
βλ 0.631 

The computation above indicates that basic endu–
rance strength is about 63% of basic pulsating strength 
for most metals at 99% reliability. 
 
A7   Reliability Factor 

The nominal pulsating strength values evaluated in Table 
A3 are based on 99% reliability or a failure probability of 
1%. Therefore, it is necessary to adjust these nominal 
values for other reliability values. The reliability factor is 
evaluated based on lognormal standard deviation of sm = 
0.322, the average value for the materials in Table A3. 
Table A5 gives values of the reliability factor applicable in 
Eq. (23) for some other reliability levels and were 
estimated using the method of [31]. The difference 
between the reliability factor values in Table A5 and those 
of AGMA is that the former is based on the lognormal 
probability density function while the latter is based on the 
standard normal probability distribution function [55]. 
 
A8 Mean Strength Factor 

Most data available on yield and tensile strengths are 
quoted as minimum values. If these mechanical 
capabilities are treated as random variables approxi–
mated by the lognormal probability density distribution, 
the corresponding mean values can be estimated if the 
cov of the data is known. Fortunately, the cov data need 
not be very accurate for preliminary design. The mean 
value of tensile strength is given by Eq. (10a), 
reproduced below. 

*
0ut utS k S=    (10a) 

The mean value factor and associated cov are evalu–
ated from Eqs. (A13a) and (A13b), respectively [31]. 

( )0.5 20
0 0

zut ut
ko utk e zϑ ϑ ϑ ϑ+= ≈   (A13) 

Minimum strength according to American Society 
for Testing Metals (ASTM) corresponds to 1% failure 
level or reliability of 99% [14, 30] which has unit 
normal variate z0 = 2.326. A conservative value of ut 
would be 0.10 from Table A1, so that ko ≈ 0.02 from 
Eq. (A13b). 
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Table A5: Reliability Factor for Beam Strength 

Reliability Goal Normal Variate Reliability Factor 
50 0 2.115 
60 0.253 1.949 
70 0.526 1.785 
80 0.742 1.665 
90 1.288 1.397 
95 1.645 1.245 
99 2.326 1.000 

99.5 2.575 0.923 
99.9 3.091 0.782 

99.99 3.719 0.639 
99.999 4.265 0.536 

99.9999 4.753 0.458 
99.99999 5.201 0.396 

 
A9 Stress Interaction Factor and Variability 

The value of Yv is somewhat influenced by the comp–
ressive stress in contact meshes of gears. This was 
ignored in the original Lewis stress model but is 
considered in the revised Lewis stress model of Eq. (3). 
Equivalent values of Yv in modern versions of the Lewis 
stress model take the compressive stress into account.  
The stress combination factor for the virtual plane when 
compressive stress is neglected because it is already 
encapsulated in Yv, may be expressed as in Eq. (A14) 
based on [23, 24]. 

( )

2

2

tan

3 1 tan

n
b

t
v

b

km
b

k
Y k
k
τ

σ

ψ

ψ
κ

⎛ ⎞+⎜ ⎟
⎝ ⎠=
⎡ ⎤

+ +⎢ ⎥
⎣ ⎦

  (A14) 

The expression of Eq. (A14) contains the base helix 
angle which is a function of the normal pressure angle 
and the nominal helix angle in Eq. (1). In general, the 
nominal helix angle tolerance is largely dependent on 
applications. Typically, helix angle tolerance is ± 0.5° 
(±0.00873 rad.) [45]. The nominal helix angle is 
accurately evaluated in design computations [46]. A 
Japanese standard [47] specifies a maximum deviation 
of 40 µm over a facewidth of 4 mm for the nominal 
helix angle; that is a deviation of 1% for which a cov of 
0.3 to 0.4% may be assumed. From the above, the no–
minal helix angle is tightly controlled during manu–
facturing. The normal pressure angle is held to a very 
tight tolerance also, perhaps better than the helix angle. 
Therefore, variability of the nominal helix angle and 
normal pressure angle may be neglected: that is, they 
may be considered deterministic because very small 
manufacturing tolerances are allowed. Similarly, the 
base helix angle may be considered as deterministic.  

When angular parameters are treated as deterministic 
in Eq. (A14), then the variability analysis expression 
reduces to: 

22
1 3n v

t
km Y k

k
b k

τ

σκ
⎡ ⎤⎛ ⎞= + + ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
 (A15) 

The second term inside the square root on the right of 
Eq. (A15) is the main contributor to the variability of kt. 

Eq. (A15) may be analyzed through functional 
transformations and approximation as indicated below.  

Zkt =   21 YZ +≈  (A16) 

The cov of
tk and Z are expressed in Eqs. (A17a) and 

(A17b); respectively. 

Zkt ϑϑ 5.0=   
2

2

1

2

Y

Y Y

Z +
≈

ϑ
ϑ  (A17) 

Based on Eq. (A15) and Eq, (A16b), the variable Y 
is given by Eq. A18a and the cov of Y is given by Eq. 
(18b). 

σ

τ

κk

Yk
Y v3

=      2222
YvkkkY ϑϑϑϑϑ στ +++=  (A18) 

Assuming that kτ ≈ kσ and k ≈ Yv; Eq. (A18b) 
becomes Eq. (A19a). The cov ( kt) of kt 

is then 
approximated as in Eq. (A19b). 

)(2 22
YvkY ϑϑϑ σ +=  

2

2

1 Y

Y Y

kt +
≈

ϑ
ϑ  (A19) 

The parameter Yv
 
may be read from a graph where 

approximation and or reading error is unavoidable. Yv is 
taken as 0.03. Now, kσ ≈ 0.11 for shoulder fillet [30], 
and from Eq. (A19a): 

)03.011.0(2 22 +=Yϑ = 0.161 

Also, =τk 2.0 [23], =vY 0.4878, =κ 2.313 [24], and  

=σk 1.4 [25].  Therefore; from Eq. A(18a): 

522.0
4.1313.2

4878.0233
=

×
××

==
σ

τ

κk

Yk
Y v  

From Eq. (A19b): 

0345.0
522.01

161.0522.0
2

2

=
+

×
≈ktϑ  

The parameter
tY and its cov are expressed in Eqs. 

(A5a) and (A5b), respectively. Substituting values in 
Eq. (A5b): 

22 0345.003.0 +=Ytϑ =  0.046 (0.05) 

Because of the computational simplification and 
neglected tolerances on angular parameters in the 
analysis, the cov of Yt

 
will be taken as 0.05. 

 
 

ПРОЦЕНА ЧВРСТОЋЕ СНОПА МАТЕРИЈАЛА 
МЕТАЛНОГ ЗУПЧАНИКА 

 
E. Oсакуе, Л. Анетор 

 
Изрази за пулсирајућу снагу или јачину снопа 
многих популарних металних материјала зупчаника 
су изведени на основу затезне чврстоће и односа 
издржљивости. Предвиђене вредности чврстоће су 
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за поузданост од 99% при циклусима оптерећења 
која одговарају издржљивости материјала. Изрази су 
засновани на разматрању ревидиране формуле 
напрезања корена Левис-а зупчаника третирањем 
пројектних параметара као случајних променљивих 
повезаних са логнормалном функцијом густине 
вероватноће и применом Герберовог правила отказа 
замора. Предвиђања пулсирајуће јачине су 
упоређена са онима из АГМА процене за кроз 
каљене челике и друге материјале. Одступања 
између предвиђања модела и АГМА вредности за 
материјале од челика и дуктилног ливеног гвожђа су 
релативно ниске. Такође су примећене ниске 

варијације између вредности модела и АГМА за 
сиви ливени гвожђе високе чврстоће и ливену 
бронзу. Међутим, нађене су велике варијације 
између вредности модела и АГМА за сиви ливени 
гвожђе мале чврстоће и ливену бронзу. Све у свему, 
процене модела се сматрају довољно тачним за 
апликације прелиминарног дизајна где се генеришу 
почетне величине зупчаника. Студија је показала да 
је за многе металне материјале зупчаника просечан 
однос пулсирајуће чврстоће 0,36 уз поузданост од 
99%. Стога је оправдана сугестија Буцкингхама да је 
заморна чврстоћа зуба зупчаника приближно једна 
трећина (0,333) затезне чврстоће материјала. 

 
 

 
 

 

 


