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Neural Networks

Actuator fault poses a challenge to the attitude control of spacecrafft.
Fault-tolerant control (active or passive) is often used to overcome this
challenge. Active methods have better performance than passive methods
and can manage a broader range of faults. However, their implementation
is more difficult. One reason for this difficulty is the critical reaction time.
The system may become unrecoverable if the actual reaction time becomes
larger than the critical reaction time. This paper proposes using a
feedforward neural network to reduce the actual reaction time in the active
fault-tolerant control of spacecraft. Besides this improvement, using a
feedforward neural network can increase the success percentage. Success
percentage is the ratio of successful simulations to the total number of
simulations. Simulation results show that for 200 simulations with random
faults and initial conditions, the actual reaction time decreases by 73%,
and the success percentage increases by 25%. Based on these results, the
proposed controller is a good candidate for practical applications.
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1. INTRODUCTION

Research into the conditions and preparation for a space
flight to Mars has been especially actualized and inten—
sified in recent years [1-3]. Successful spacecraft atti—
tude control is crucial to the growth of this field. For
instance, for Mars orbiters to effectively complete their
missions, their attitude needs to be appropriately
adjusted. The subsystem responsible for attitude adjus—
tment is called ACS [4].

Despite taking measures to prevent faults, there are
always possibilities of fault occurrence in ACS [4]. If
not handled properly, the fault occurrence can lead to
performance degradation and even mission failure. For
these reasons, the literature studied spacecraft FTC ex—
tensively [5-14].

According to [4], the actuator fault is the most im—
portant reason for ACS failure. The partial loss of actu—
ator effectiveness [15] is considered the fault model.
Actuator saturation is considered in the controller design.

FTC is divided into two categories: active and
passive. PFTCs have a fixed controller structure and
need neither FDD nor RM. Therefore, their imple—
mentation is easier. However, they are too conservative
(from a performance point of view) and can deal with a
limited range of faults/failures. AFTCs have FDD and
RM. They are less conservative and can handle many
faults/failures. On the other hand, their implementation
is more difficult [16-19].

According to the literature, several papers have
considered the AFTC of rigid spacecraft [9-11]. These
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papers have considered sliding mode and backstepping
methods and have proposed novel ideas for the
spacecraft AFTC problem.

Due to constraints in the problem, e.g., actuator
saturation and final time interval, FTC may not tolerate
severe faults. Therefore, a quantitative measure should
be defined for the efficiency of RM. SP is used for this
purpose and is defined as the ratio of the number of
successful simulations to the total number of
simulations for various faults and initial conditions [20].
SP should be as large as possible.

When a fault occurs, there will be limited time to
reconfigure the controller before the system becomes
unrecoverable. This time is called CRT. The time
required for FDD to detect and diagnose the fault,
besides the time required for RM to reconfigure the
controller, is ART. Therefore, ART should be as small
as possible. If ART becomes larger than CRT, the
system may enter an unrecoverable state [17,18].

As stated previously, hard implementation is a chal—
lenge in AFTC design. Large ART is one factor that
leads to this challenge. As ART becomes larger, imple—
mentation becomes more difficult. Therefore, reducing
ART will make the AFTC implementation easier.

To the author’s knowledge, previous works have not
considered ART and SP in the spacecraft AFTC design
process. The main contribution is to consider these
important parameters explicitly in the AFTC design of
spacecraft and propose using feedforward NN [21] to
increase SP and decrease ART to a large extent. This
will make the proposed AFTC a suitable candidate for
applications, e.g., Ultraviolet Spectroscopic Explorer
Satellite accident, where the actuators malfunctioned
during the mission [6].

The rest of the paper comprises the following
sections: Section two describes the spacecraft attitude
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dynamics and base controller structure. Section three
presents the CLS, RM, and stability analysis. Section
four explains the fault scenario. Section five defines SP
and ART. Section six presents simulations to show the
advantages of the proposed method. Finally, section
seven ends the paper with a conclusion.

2. SPACECRAFT ATTITUDE DYNAMICS AND
CONTROLLER STRUCTURE

The rotational dynamic of rigid spacecraft in the
principal coordinate system is described by (1-7) [22]:
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Equations (8-10) show the relation between
(u1,up,u3) and (uf{,us,u3):

up =u /1 (®)
uy =uy /1, )
U§ :M3/I3 (10)

The following saturation function represents the
range of the control inputs:

u; i = SU; SUpay
sat(u;) =1 Upax if >, (11)
“Umax if Up < —Umax

According to [22], the following equation is present
among the quaternions:

2. 2. 2. 2
q0+4qi +q; +q5 =1 (12)

Considering constraint (12), knowing ¢;,92,q3, the
other elements of the quaternion vector (q,) will be
determined. Considering this fact, the output vector is
selected as:

y=[a 0 %]T (13)

In this case, the controller design will be easier
because the number of controlled outputs (three) is
equal to the number of inputs (three) [23].

The control inputs will appear in the second time
derivative of y. Consequently, the total relative degree
(six) and the number of states ([q1,92,93,01,02,@3]) Will be
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equal. Therefore, internal dynamic does not exist, and it is
possible to use input-output linearization easily [23].

Taking the second time derivative of y results in the
following equations:

pid 1 ’ ’ ’

qQ=xn +5(%”1 —q3uh + qyul) (14
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G2 =12 +E(Q3“1 +qouy —qu3) (15)
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Using feedback linearization, these equations will be
transformed into the following LTI form:

g =uf (23)
G =u3 (24
g3 =u3 (25)

Asymptotic stability of CLS will be guaranteed if
the components of u” are [24]:

=Gy g =k (9 —dra )=k (a1 —a1q) (26)
Wy =20~k (42 —doa )~k (02— 220) (27
u3 =34 —ky, (‘?3 ~q34 )—k% (43 ~B4 ) (28)
Consequently, the state-feedback control laws will be:
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where

fi=2(u-n) (30)
fo=2(u5- 1) 31
fi=2(u3-13) 32)

Euler angles and quaternions are related based on
the following equations [22]:

q3 =

(2ol (g2

tan(g) = §(42Z3 +6§oq1 )2
90 — 9 —92 T 43
sin(0) = -2(q193 ~ 9092 ) (38)
2(q192 +4043)
0%+t -5 — 43

37

tan () = 39)

3. AFTC MECHANISM
3.1 CLS

Fig. 1 shows the CLS. As shown in this figure, the
controller inputs are the quaternion error (and its
derivative), and angular velocity vectors (according to
(29)). FDD uses the plant input and output to detect the
fault.

RM receives FDD data and produces q; and its

derivatives via the procedure shown in Fig. 2.

l FDD [
q=[1 0 0 0 q,.4,.4, | Im,q,q
—— > | RM(40-42) *—)»O—)‘ Controller (29) —> Spacecraft —>
A
®.q
Q.4
Figure 1. AFTC structure.
Numerical o
i solver
. . o * %
Starting with . .
initi_al : Curve fitting £
solution : @ using splines £ a\
_ ! & o e é N
Node** ? E_: /
I (unknown) © 0_,
T @ IR T R e -
Final time
Spacecraft Quaternion to Euler constraints
» Actuator (8-11 I
(&11) Model (1-7) conversion (35-37) | (46 and 47)
u’ w.q.¢
Equations 1
(38-40)
(qQa-q4-4q )
N

* Data shown in the figures are typical.

** The nodes are the unknowns of the problem.

Figure 2. RM structure.
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3.2 RM structure

Fig. 2 shows the RM structure. According to Fig. 2, RM
works as follows:

The process begins with an “initial solution”. The
numerical solver uses this “initial solution” to produce
the continuous open-loop control commands via the
cubic splines. Then, based on FDD data, an actuator
model is constructed, and finally, based on the response
of the spacecraft model, final time constraints are
evaluated. One loop execution (LE) starts at # =0 and
ends at ¢ =t For example, in Fig. 2, one LE starts at t =
0 and ends at # = 10s. After the completion of one loop,
the other loop begins. This procedure continues until the
stopping criteria are satisfied. This process is equivalent
to one simulation. Therefore, one simulation comprises
several LEs.

Then, based on obtained open-loop control
commands (u ), and therefore (u') and state trajectories

(0®,9,q), RM produces desired quaternions and their
derivatives (q,4,q,,q,) according to the following
equations:

qa =k, (41 —q1q )+ kg, (ql ~q1q )

1 ’ ’ ’ (40)
+x + E(QOul —q3uy +qou3 )
Ga.a =ky, (42 =420 )+ kg, (02— 020
1 ! ! ! (41)
+X2 +E(Q3ul +qouy; —q1u3 )
G50 =ky (43~ dsa)+hy, (43— 434)
(42)

1 ! ’ !
+x3+ E(—fhul +qiuy +qous )

The value of each node and the value of the final
time (t) are the unknowns of this problem. The interval
(upper and lower values) of # is determined by the
mission requirements (58). Equations (50) and (51) are
used to determine the maximum and minimum values of
the nodes.

According to this discussion, the initial solution has
a direct influence on RM (and equivalently AFTC)
performance. Using a mechanism to obtain an initial
solution close to the final solution will increase the
performance of AFTC.

Stopping criteria consist of two parts: 1-Nonlinear
inequality constraints (48), (49), and 2-Maximum allo—
wable NLE per simulation. Satisfaction of the stopping
criteria shows that either inequality constraints are
satisfied or NLE in a simulation exceeds the maximum
allowable NLE per simulation.

Some points about cubic splines: The main reason to
use cubic splines instead of other functions, such as
polynomials, is that the coefficients of splines (nodes in
Fig. 2) can be set within the upper and lower limits of
the control commands. The accuracy of cubic spline
interpolation is dependent on the number of nodes. The
more nodes considered, the better will be the accuracy
of splines. However, increasing the number of nodes
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will increase the number of variables and increase the
complexity of the problem.

3.3 Stability analysis

If the following constraint equations are satisfied,

sy, =0 (43)
@y, =0 (44)
4, =[1 0 0 0] (45)

Then, based on (1-10), the following equalities will
be satisfied:

d)t:t =0 (46)
flz:z =0 47

Therefore, angular velocity and quaternion vectors
will reach the origin and remain there forever after ¢ = ¢,

Fortunately, satisfying the constraint (43) is
straightforward. It is sufficient to set the upper and
lower bounds of the nodes at 7 =t to zero. To satisfy
the other two constraints (44) and (45), the following
final time non-equality constraints are defined:

max (|a)1 w; Dz:t, <TOL, (48)

max (¢, 6].w1),_, < TOL suae (49)

aa)Za

Mission requirements specify angular velocity and
attitude tolerances ((59) and (60)).

4. FAULT SCENARIO

As the fault model, it is assumed that the actuators have
lost their effectiveness partially [15]:

U; if - Umax,n < u; < Umax,n
sat,, (ul- ) = Umax.n if ;> Uy (50)
_umax,n if u; < _”max,n

u is the post-fault actuator operating region and

max,n
given by (51):
Umax,n = @Umax (5D

a is a random number. More details about this parameter
will be given in the simulation section.

5. SUCCESS PERCENTAGE AND ACTUAL
RECONFIGURATION TIME

Two crucial parameters are introduced before analyzing
the simulation results: SP and ART.

SP is the number of successful simulations per total
number of simulations (for different faults and initial
conditions) multiplied by 100:

Sp = Number of successful simulations 8

- - 100  (52)
Total number of simulations
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Successful simulation is a simulation where the
nonlinear inequality constraints (48), and (49) are satis—
fied. As previously stated, each simulation consists of
several LEs. A high value of SP shows a high proba—
bility of success for RM.

NLE directly affects ART, i.e., as the NLE becomes
larger, ART will become larger. Therefore, to make the
AFTC easier to implement, NLE should be reduced.

In the simulation section, it will be shown that using
the feedforward NN to approximate the initial solution
will increase SP and decrease NLE to a large extent.

6. SIMULATION

The considered spacecraft has the following moments of
inertia [25]:

I, =449.5, I, = 264.6, I; =312.5 kg.m* (53)
The controller coefficients are selected as follows:

kq1 = qu = kq; =0.5 (54)
ky, =k, =kg =1 (55)

According to the appendix, these coefficients will
make the tracking error converge to zero as time goes to
infinity. Besides, based on the simulation results, these
controller coefficients will lead to an acceptable system
response.

Equation (56) gives the maximum torque that the
healthy actuators can generate:

u =10N.m (56)

max

According to the mission specifications, final time
interval, angular velocity, and attitude tolerances are:

tr €[20 50]sec (57)
TOL,, =0.1deg/ sec (58)
TOL 4ituge = 1deg (59)

The maximum allowable NLE per simulation is 200.
The spacecraft is assumed to be initially at rest i.e.

w(O) =0. The initial conditions of desired quaternions
(to integrate (40-42)) are:

as(0)=[t 0 0 0], 4,(0)=[0 0 0 o]

Equations (61) and (62) show the actuator effecti-
veness coefficients and initial conditions considered for
simulation:

@ =0.11,a5 =0.78,a3 =0.29 (60)
@y =—10.88 deg, Gy =—2.29 deg,y; =-3.43 deg (61)

Note 1: 200 simulations with random faults and
initial conditions are used to train the NN. Therefore,
the efficiency of the proposed method is evaluated for
200 simulations and not merely the values presented in
(60) and (61).

First, the controller performance is demonstrated
without adjusting the desired quaternions. Therefore, the

desired quaternion vector is: q; =[I 0 0 0]. Based
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on (37-39), this is equivalent to ¢, =6; =y,; =0. The
controller's response, in terms of Euler angles, angular
velocities, and control moments, is illustrated in Figs. 3-
5:

As shown in Figs. 3 and 4, when ¢, =6, =y,; =0,
the controller is not able to satisfy the mission
requirements (48) and (49). The reason is as follows: As
seen in Fig. 5, u, and u; converge to the origin in a short
time, while u; saturates all the time. Therefore, the
controller will not be able to exploit uy,u,,u; to satisfy
the mission requirements.
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Figure 5. Control moments for ¢, =6, =y, =0.
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In the second stage, RM (Fig. 2) is implemented.
Five nodes in equal time intervals are considered in
each axis between ¢t = 0 and ¢ = ¢ Since the value of
nodes at ¢ = ¢, should be zero (section 3-3), there will be
12 unknowns. The final time (f) is another unknown.
Therefore, there will be 13 unknowns in this problem.

Euler angles, angular velocities, and control
moments are illustrated in Figs. 6-8:

s —
D or. d
(5] N
= . N
- S
-0 i =
1 0
S° Y4
O | 4
g,
> Ll
—
S “ g
% - —

time (s)

Figure 6. Corrected actual and desired Euler angles.

Angular velocity (deg/sec)

time (s)
Figure 7. Corrected angular velocities.

According to Figs. 6-7, the proposed method can
satisfy the mission constraints (48) and (49). Fig. 8
shows the control moments. Compared to Fig. 5, no
saturation occurs, so the actuators operate normally.

Control moments (N-m)

o 5‘ 1‘0 1‘5 2‘0 25
time (s)

Figure 8. Corrected control moments.
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The following will show the effect of using
feedforward NN to increase the SP and decrease ART.

Note 2: R2020a neural network toolbox [21] is used
to model and train the neural network.

Faults and initial conditions are considered to be
normally distributed, with the following means and
standard deviations:

For ay,a,,a;: Mean = 0.5 and standard deviation =
0.1.

For initial Euler angles: Mean = 0 and standard
deviation = 0.1 rad.

Note 3: The normal distribution assumption for faul—
ts is considered in [26] and used in this paper.

6.1 Fault scenario (initial solution not adjusted)

In this scenario, the initial solution is: [0;.15, 20s]". The
numerical solver uses this initial solution to obtain the
desired quaternions (equivalently Euler angles) via the
procedure shown in Fig. 2. After 200 simulations, SP
and the average value of NLE per simulation will be
77% and 140, respectively. These data indicate that RM
succeeded in 77% of the simulations.

After performing these 200 simulations, the set of
inputs ([a; a, as (o 6y wo]") and outputs (12 nodes and
the final time) are used to train the feedforward NN.
Training algorithm is Levenberg-Marquardt. This algo—
rithm usually requires more memory and less time [21].

NN structure is shown in Fig. 9. As shown in this
figure; there are 6 inputs, 1 hidden layer with 10 nodes,
and 13 outputs.

Hidden Layer Output Layer

Input

Figure 9. Structure of the trained feedforward NN

Training: R=0.99988 Validation: R=0.99983
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Output ~= 1*Target + 0.0027
3
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\

0 5 10 15 20 o 5 10 15 20
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Figure 10. Neural network training regression

To evaluate NN performance, training regression is
presented in Fig. 10. As shown in this figure; regression
is near 1. NN training performance is also shown in Fig.
11. As shown in this figure; validation performance is
best at epoch 11.
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Best Validation Performance is 0.010907 at epoch 11

Train
= = +Validation
=== Test
....... Best

Mean Squared Error (mse)

10’3 c 1 1 1

1 1 1 1

Figure 11. NN training performance

6.2 Second Scenario (NN Used to Adjust the Initial
Solution)

The faults and initial conditions are identical to those in
the previous scenario. However, trained feedforward NN
is used in this scenario to determine the initial solu—tion.
Based on the simulations, SP and the average value of
NLE per simulation are 96.5% and 36.97, respectively.

Comparing the results of these scenarios, it is
concluded that using the feedforward NN to approxi—
mate the initial solution increases SP and decreases the
average value of NLE per simulation by about 25% and
73%, respectively.

These improvements in SP and the average value of
NLE (equivalently ART) per simulation are desirable
from a practical point of view.

As stated in the introduction, the proposed method
can be utilized in cases similar to Ultraviolet Spectro—
scopic Explorer Satellite accidents where actuators
malfunctioned.

7. CONCLUSION

Active fault-tolerant attitude stabilization of spacecraft
was considered in this paper. In comparison to PFTCs,
AFTCs are less conservative and can deal with a
broader range of faults. However, AFTCs are harder to
implement. To solve this challenge, ART and SP were
explicitly considered in the AFTC design, and
FEEDFORWARD NN was used to decrease the former
and increase the latter. This contribution makes the
proposed controller suitable for applications.
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NOMENCLATURE

[q 0,41,42-93 ] Quaternion vector

[q 1d 424 03 ] Desired quaternion vector

[, 05, 05] Angular velocity vector
11,15,15 Principal moments of inertia
[“1 Uy ,U3 ] Control moment vector
[ufuh,us] Control input vector

Sat Saturation function

[ g, kg, kg, | € R

Controller coefficients

[kql g kg, ] eR"

3,0, Euler angles (roll, pitch, yaw)
ty Final time
u Actuator effectiveness
Coefficient

Subscripts

d Desired

f Final

Acronyms

ACS: Attitude Control System
AFTC: Active Fault Tolerant Control
ART: Actual Reaction Time

CLS: Closed-loop system

CRT: Critical Reaction Time

FDD: Fault Detection and Diagnosis
FTC: Fault Tolerant Control

LE: Loop Execution

LTI: Linear Time Invariant

NLE: Number of Loop Executions
NN: Neural Network

PFTC: Passive Fault Tolerant Control
RM: Reconfiguration mechanism

SP: Success Percentage

APPENDIX

Considering (23-25) and (26-28):
Gt =g —kg (6 —dia )=k (th —d1q ) (62)
iy =20~k (d2—doa)—ke (02-024)  (63)
iy =dsa —ky (43— d3.0) kg (63— 43.0) (64)
The tracking error is defined as follows:
e=q,—¢, i=123 (65)

Considering (65), (62-64) can be rewritten as:

¢ +k,é+k,e =0, i=123 (66)

FME Transactions



The subscript i will be dropped for simplicity.
Taking the Laplace transform of this equation:

se(0)+e(0) +k,e(0)
S+ kys+k,

E(s) = (67)

Considering the proposed controller coefficients,
sE(s) will have no pole with zero or positive real part.
Therefore, according to the final value theorem [27]:

lim, , e(t)=lim_,,sE(s)=0 (68)

and the tracking error will converge to zero as time goes
to infinity.

IHHOBERAIBE IEP®@OPMAHCH AKTUBHE
KOHTPOJIE OTIIOPHE HA I'PELHIKE Y
CBEMUWPCKOJ JIETEJIMIIA KOPUIIITREIBEM
HEYPOHCKHUX MPEXKA

P. Mopaau

FME Transactions

KBap axTyaropa npencraBjba H3a30B 3a KOHTPOIY
IoJIoKaja cBeMUpcKe Jerenuie. Konrpona oTmopHa Ha
rpemike (aKTUBHA WM MAcCHBHA) C€ YECTO KOPHCTH 3a
NpeBasHIaKemhe OBOT M3a30Ba. AKTHBHE METO/E UMajy
0osbe meppopmMaHce OJf MACHBHHX METOJAa M MOTY
yIOpaBbaTH I[IHPUM CIEKTPOM Tpemaka. MehyTum,
BUXOBO cripoBoljemse je Texxe. JemaH of pasiora 3a OBy
noremkohy je KpUTHYHO BpeMme peakuuje. Cucrem
MOXK€ IIOCTaTH HEINONPaBJBHB aKO CTBapHO BpeMe
peakmyje mocraHe Behe OO KPUTHYHOT BpEMEHa
peakmmje. OBaj pan mpeake KOpUIIeme HEypOHCKE
MpeXe yHampel Ia OM ce CMamHIO CTBapHO BpeMe
peakiuje y aKTUBHOj KOHTPOJHM CBEMHPCKHX JIETEIHIA
Koja je TojepaHTHa Ha rTpemke. Ilopex oBor
no0oJblama, Kopuinheme HEYpOHCKE Mpexe YHaIpen
Moxxe moBehatm mpomenar ycmexa. [IpomeHar
YCIICITHOCTH je OJHOC YCHEUIHHWX CHMYyJanuja Ipema
YKynHOM Opojy cumynanuja. Pesynaratm cumynanuje
mokaszyjy na ce 3a 200 cumymamuja ca Ciy4ajHUM
rpenikaMa W II0OYETHHM YCJIOBHMa, CTBapHO BpeMe
peakunuje cmamyje 3a 73%, a TPOIEHAT yCHEIIHOCTH
pacre 3a 25%. Ha ocHOBY 0BHX pe3ynraTta, MpeIyIoKEeHN
KOHTPOJIE je 1o0ap KaHOUIAT 3a IPAKTHYHY IIPUMEHY.
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