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1. INTRODUCTION

Iraq

Design a New Hybrid Controller Based
on an Improvement Version of Grey
Wolf Optimization for Trajectory
Tracking of Wheeled Mobile Robot

Nonholonomic wheeled mobile robots are considered to be multi-input
multi-output systems that are performed in varying environments. This
work presents the trajectory tracking control of a nonholonomic wheeled
mobile robot (WMR). The Kinematic and the dynamic models of the robot
were derived. A new hybrid controller was designed, which consisted of
two controllers based on an optimization algorithm to solve the trajectory
tracking problem. The first controller is the Fractional order PID
controller, which is based on the kinematic model and has been applied to
control the linear and the angular robot velocities, while the second
controller is a linear quadratic regulator (LOR) and is based on the
dynamic model used to control the motors' torques. A new, improved
version of grey wolf optimization wasadopted to tune the parameters of the
hybrid controller. The main goals of this improvement are rapid
convergence towards a solution, reducing the effect of the wolves' random
motion, andbalancing exploitation and exploration processes. MATLAB
software was used to simulate the results under an S-shape trajectory and
to evaluate the robustness and performance of the proposed control unit.
The simulation results demonstrated the adopted control system's activity
and efficiency based on the mean square error (MSE) between the desired
and actual trajectory. The values of MSE of trajectory in the X and Y
directions and the orientation are [6.589*107%(m) 8.421*107(m)
0.00401(rad)]". Also, the adopted control system can generate smooth
values of the control input signals without sharp spikes. The performance
of the presented control system has been verified and compared with the
results obtained from the other two control systems, and the simulation
results have offered the superiority and effectiveness of the hybrid
controller of this work.
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trajectory tracking by using various approaches. In [5], a
hybrid controller was used to solve the motion control

In recent years, the research about the wheeled mobile
robot (WMR) increased excitingly because of their
theoretically regaled characteristics [1]. WMR is consi—
dered the most widely utilized mobile robot type [2].
WMR is utilized in many fields or applications, from
dangerous environments, such as mining and the nuclear
industry, to daily life applications, such as household
work and autopilot robots for cars. Also, WMR is suc—
cessfully applied in hazardous environments where
human life can be endangered, such as in explosive
detection operations [3]. Trajectory tracking control
means the ability of the robot to track a desired path or
trajectory [4]. Many studies solve the problem of
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of a WMR. The hybrid controller consisted of a back—
stepping controller (BSC) based on the kinematic model
and fractional order PID (FOPID) controller based on
the dynamic model. The gains' parameters of both BSC
and FOPID were tuned using a modified version of a
beetle swarm optimization. In [6], a nonlinear model
predictive controller NMPC) was presented to solve the
trajectory tracking problem of a continuum robot. A
particle swarm optimization (PSO) algorithm was
proposed to solve the limited computational burden of
the NMPC. A circular trajectory was chosen to test the
efficiency of the adopted controller. In [7], a neural
network with a PID controller was used to solve the
trajectory tracking of a mecanum WMR. The kinematic
and dynamic models of the robot were derived. An
adopted control system was applied to control the
robot's velocities. The stability of the control system
was tested by using the Lyapunov method. In [8], an
adaptive fractional order parallel fuzzy PID control was
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adopted for the tracking control of a WMR. The effect
of uncertainty, noise, and time delay was considered in
the robot's dynamic model. The gains' parameters of the
control system were evaluated and tuned using Grey
Wolf Optimization (GWO).In [9], a multi-objective
Grey Wolf Optimization (MOGWO) was adopted to
schedule the material transport systems relying on a
single WMR. The mathematical model of the MOGWO
included 13 fitness functions combined to perform an
optimal solution for the scheduling problem. In [10],
combined controllers consisting of BSC and Fuzzy-PID
were applied. BSC was used based on the kinematic
model of the WMR, while the Fuzzy-PID was utilized
based on the dynamic model. Infinity trajectory was
selected to test the performance of the combined
controller. In [11], the trajectory tracking problem of a
WMR was solved by using recursive integral BSC. The
stability of the control system was checked by using the
Lyapunov method. Two trajectories were chosen,
circular and lemniscate, to test the performance of the
control system. In [12], the trajectory tracking problem
of a WMR with the presence of slipping and skidding
phenomena was investigated. A nonlinear disturbance
observer was used to estimate the disturbance effect. An
integral sliding mode control was employed as a control
system. In [13], two robotic arms were developed and
designed to sort and classify objects. The vision system
conducted the classification process based on size and
shape. The experimental control system contained one
master and two slave microcontrollers. Two Arduino
microcontrollers were enslaved to control the speed of
the stepper motors, while Raspberry pi4 was employed
as a master to receive the commands from the vision
system. In [14], the scheduling problem of a WMR was
analyzed. The whale optimization approach (WOA) was
used to select an optimum path in order to carry goods,
materials, and parts in an industrial environment. A
modified mathematical model based on the WOA in
order was suggested to make a minimization to seven
fitness functions. In [15], a new NMPC was investigated
as a control system for the trajectory tracking of a
WMR. A set of enhancements in the cost function and
optimizer was applied to reduce posture errors. In [16],
a hybrid control system comprising BSC and fuzzy
sliding mode control was proposed. BSC was used
based on the robot's kinematic model, while fuzzy
sliding mode control was utilized based on the dynamic
model. The fuzzy logic system tuned the gains'
parameters of the sliding mode control. A circular
trajectory was adopted to test the performance of the
WMR control system. In [17], a fractional order state
feedback controller was applied for the trajectory
tracking of a nonholonomic WMR. The proposed
control system was considered based on the kinematic
and dynamic models of the robot. The stability of the
system was checked by using the Lyapunov method. In
[18], time-varying BSC was used based on the
kinematic model of the WMR. The Lyapunov stability
criteria were utilized to test the stability of the control
system. A circular trajectory was chosen to check the
performance of the adopted controller. In [19], an
integral BSC was applied theoretically and
experimentally to solve the trajectory-tracking problem

FME Transactions

of a WMR. A circular trajectory was selected to test the
control system's performance, and the results indicated
that the integral BSC's performance was better than the
conventional BSC's.

In this work, a hybrid controller is applied based on
the kinematic and dynamic models in order to solve the
trajectory tracking problem of a nonholonomic
WMR.FOPID controller is applied based on the kine—
matic model to control the robot's linear and angular
velocities, while the magnitudes of the motor torques
are controlled by using a linear quadratic regulator
(LQR) controller. An improved version of the gray wolf
optimization (IGWO) algorithm is adopted to tune the
gains parameters of the FOPID controller as well as the
parameters of the weighted matrices of the LQR
controller instead of selecting the parameters rapidly.

2. MATHEMATICAL MODEL OF THE WMR

This section presents the kinematic and dynamic models
of a nonholonomic WMR. It is supposed that the WMR
moves on a flat surface (without considering the effect
of the slipping). The robot consists of two driving
wheels fixed on the same axis and one caster wheel. The
basic schematic of the WMR is shown in figure (1).

Figure 1. Basic schematic of the WMR

2.1 Kinematic model:

The Kinematic of the mobile robots describes the rela—
tion between the robot's (body) velocities and the
wheel's angular velocities [2]. The motion of the WMR
is controlled by the angular speed of the right wheel
(or) and the angular speed of the left wheel (o). The
translation velocities of both the left and the right
wheels are evaluated as [2]:

Vg =r-og (D
Vi =r-o @)

where (r) represents the wheel's radius. The linear and
the angular velocities of the robot body (V and o) are
obtained as [3]:

Ve-vy,
w=—" 3
D )
VRivy
w=—01= 4
D @)
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where (D) is the distance between the two wheels. The
posture of the WMR with respect to the global
coordinate system is represented by a state vector
q=[Xa, Y, 0]", and the posture vector with respect to
the local coordinate system is q=[x, y., 8]". Point (C)
represents the center mass of the robot. The kinematic
equation of the robot with respect to the local
coordinates can be represented as:

r r
fL 2 2 o
yo (=0 0 (5)
. WR
0] |z -
D D

while the kinematic equation of the robot with respect to
the global coordinates can be represented as:

¢ cos@ 0

Ve |=R- Yol 6 0] v 6)
yG = w =|sm o

2] 0 1

where (R) is the matrix rotation matrix.
2.2 Dynamic model

The dynamic model of the robot describes the motion of
the robot, taking into account the effect of the system
inertia and the external forces. The dynamic model
equations are described according to that depicted in
figure (2) below.

¥
M: massof therobat

\&momentofimertia

Figure 2. Dynamic force representation of the WMR
FR + FL =m-a (7)

o= TR 4 ®)
2

where (m) is the robot mass, (F) and (F}) are the forces
applied to the right and the left wheels, respectively, (/)
is the mass moment of inertia, and () is the angular
acceleration. Now, the state space model of the robot
can be represented according to the kinematic and
dynamic models. The variables of inputs, outputs, and
states are chosen as follows:

x(t) =[x, %9, 53,54 | = [V, 0, 05, 0 ] 9
u(t)=[uy.ug,ug,uy | =[Fp,Fg.7p. 78] (10
y=[y-y2]1=l0op, o] (11)

where (7;) and (tz) are the left and the right motor
torques, respectively. From (9), one can obtain:
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X =V (12)

By taking the derivation of both sides of (12), the
following relation is obtained:

FR +FL)

i Za(t)z( (13)

m

According to the relation in (10), (13) can be rep—
resented as:

ap (1) =—u (1) +—uy (1) (14)
m m
Also, from (9), x, = w and its derivation are:
. - D
%y (t)za(t)=§ul (t)+5u2 (¢) (15)

The following relation can describe the motor's
torques:

TL:I‘(ZL'FF‘Q)L"FFLJ (16)
TRZI‘aR+F’a)R+FR7r (17)

where (F) is the friction force, and (or) and (oR) are the
wheel's angular acceleration. The equations of (x3) and

(x4 ) are obtained as below:

iy (1) = s (1)~ (1)~ (1) (s)
4 (1) = o () =5 s (1) = Ty (1) (19)

The general form of the state space equations is:
x=Ax+ Bu (20)
y=cx 21

The (14),(15),(18), and (19) can be written in a
matrix form as:

o _
- - — = 0 0
0 m m
i=lo o £ o |x()+ u(t) (22)
I - oo Ly
! I
00 o -L
L 1] 0__r()l
L ! 1]
0010() 23
= t
Y7o o 0 1"

3. TRAJECTORY TRACKING CONTROL DESIGN

This section has discussed the trajectory tracking cont—
rol of a WMR. A new hybrid controller is implemented
based on the kinematic and dynamic models of a non—
holonomic WMR. The new hybrid controller consists of
two controllers. The first controller is the Fractional
order PID (FOPID) controller, which is applied to
control the linear and the angular robot velocities, while
the second controller is a linear quadratic regulator
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(LQR) and is used to design the motors torques (tr) and
().

3.1 Fractional order PID (FOPID) controller:

A fractional order PID (FOPID) controller is a nonlinear
tuneable feedback control system [20]. The structure of
the FOPID controller contains five parameters which
are proportional gain (k;), integral gain (k;), derivative
gain (ky), integral order (o), and the derivative order (p).
(o) and (B) may not be integers. The basic equation of
the FOPID controller in the time domain is [20]:

w(t)=k,e(t)+k; D% (1) +kyDPe(1) (24)

where u(t) is the controlled signal, and e(t) is the error
signal. When WMR tracks a desired trajectory, some
tracking errors appear in X, Y, and 0 directions. The
mathematical model of the tracking errors is presented
as follows:

€, Xd—X
ey |=| Yy-Y (25)

z

The general ranges of each FOPID control parameter
are:

k, =[0-1.5],k [0-0.25],k; =[0~0.75]
a=[0-0.1], 4 =[0-0.125]

In this work, the FOPID controller is adopted to
control the magnitudes of the linear and the angular
robot velocities’, so two FOPID controllers are used.
The optimum magnitudes of the five FOPID parameters
are computed from the optimization algorithm in the
next section.

3.2 Linear quadratic regulator (LQR) controller

LQR control is considered an optimal and modern
control method [21]. LQR is utilized to minimize the
WMR tracking position errors according to the integral
of the quadratic performance index (J) that is written as
[21]:

J =éj§o(xTQx+uTRu)dt (26)
u=—-Kx 27

where u(t) is the controlled torque signal, (Q) is a
positive semi-definite symmetric matrix, (R) is a posi—
tive definite matrix, and (K) is the optimal gain matrix
that is evaluated as below [21]:

K=R'B'P (28)

where (P) is a positive definite matrix which is obtained
from the Riccati equation as below [21]:

AT"P+PA-PBR'BP+Q=0 (29)

where (A) and (B) are the state and the input matrices
that are described in (22).
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The (R) and (Q) matrices are represented as:

R, 0 0 0 0, 0 0 0
0 R 0 0 0 0 0
R 2 0= ()
0 0 Ry 0 0 0 Q5 0
0 0 0 R, 0 0 0 0

In this work, the main purpose of using LQR control
is to design the left and right motion torque.

Selecting the best or optimum parameters of mat—
rices (Q) and (R) is very important because it reflects on
the performance of the LQR controller. In the present
work, the parameters of matrices (Q) and (R) are not
selected arbitrarily, but instead of that, they are chosen
optimally by using the optimization algorithm that is
discussed in the next section.

4. IMPROVED GREY WOLF OPTIMIZATION (IGWO)
ALGORITHM

The grey wolf optimization (GWO) algorithm is a meta-
heuristic algorithm that emulates the gray wolf's beha—
vior. It was introduced in 2014 by Mirjalili and Lewis in
order to solve optimization problems [22]. It is iterative
and population based on other meta-heuristic algorithms,
like particle swarm optimization (PSO), artificial bee
colony (ABC), ant colony optimization (ACO), etc. The
mathematical model of the GWO consists of four basic
parts: social hierarchy, encircling prey, and hunting and
attacking prey. The social hie-rarchy of the GWO
contains four wolves' leadership kinds which are alpha
(o), beta (B), delta (5), and omega (®) [22]. Alpha (o)
kind is considered the strongest type, which is responsible
for the decision-maker in the group, while the beta (B)
kind is the advisor of alpha. Delta (5), as well as omega
(o), is placed in the third and fourth positions in the
hierarchy of the wolf, as illustrated in figure (3).

Strongest

HE‘W n

weakest

Figure 3. Hierarchy of the grey wolves [22]

GWO is considered a population-based inspired
algorithm because it builds an initial random population.
During the iterative procedure, the positions of the
search agents are changed to obtain better solutions. The
operation of the wolf (a)), wolf (B), and wolf (5) changed
by their positions continuously at the iteration, and the
equations that represent the encircling phase are [23]:

D=[C-Xp(1)-X(1) (30)
X(t+1)=Xp(t1)-4-D 31)

where A and C are the coefficient vectors, ?fp is the

position vector of the prey, X is the grey wolf position
vector, (t) is the current iteration, (t+1) is the next ite—

ration, and D is the distance between the grey wolf and
the prey. The coefficients 4 and C have depicted as [23]:
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=2ar —a

(32)
(33)

(SIIFN]

= 27‘2

where r; and r, are random vectors within the range

[0,1], and a represents a convergence factor that
decreases from 2 to 0 through the iterations, and its
equation can be defined as [23]:

2t

a=2-

(34

max

where T, 1S the maximum number of iterations.

The hunting behavior mechanism in GWO is guided
by (a,B,0) grey wolves. First, the prey's location is
unknown, but an assumption has been made that makes
the wolves know the location of the prey. The
mathematical model of the hunting process is defined as
[23]:

0

b, =[G X, -X|. By -[G;- X, -X

e — — (35)
D(;:‘Cg-xg—x‘

where D, ,

E and D_é: represent the distance bet—
ween the wolves a, B, and & and the pack wolf, res—
pectively.

The main outcome of the GWO is the solutions that
avoid trapping in the local minima. But, the problem of
balancing exploitation and exploration and making the
wolves' location as close as possible to the prey needs to
be enhanced. In the classical GWO, the updating
position of the grey wolf is defined by Eq.(31).
Therefore, a new, improved algorithm, i.e., Improved
Grey Wolf Optimization (IGWO), is adopted. The

parameters E and g in the classical GWO are random
vectors within the range [0,1] whose magnitudes are

considered to be decisive in adducing the balance
between the exploitation and exploration processes; in

addition, it is included in the account of the A vector
which enters into account of Eq. (31). So, a new mat—

hematical model for representing , and r, parameters
is expressed as below:

t

n =1 =0.835*rand(0,1)+0.165% N (36)
where (t) is the current iteration, and (N) is the number of
optimized parameters, equal to 11 parameters. From Eq.

(36), it can be seen that the E and g vectors are not

entirely random values such as in the classical GWO
optimization, i.e.,(Eqgs. 32 and 33) but it contains a part
t

0.365*eN (which is considered to be an adaptive part)
that is changed with each iteration. This modified
equation, i.e., (Eq. 36), achieves a sufficient balance
between the exploitation and exploration processes and
increases the chance of making the wolf close to the prey.

In the current work, IGWO is applied to compute the
optimum values of the (Q) and (R) matrices' elements of
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the LQR controller as well as the optimum magnitudes
of the FOPID controller parameters.

5. RESULTS AND DISCUSSIONS

This section verifies the adopted hybrid controller by
simulation work with MATLAB software. The physical
parameters of the WMR are selected based on the real
magnitudes found in [9] and summarized in Table (1)
below.

Table 1. Physical Parameters of the WMR

Parameter Value

r 0.05m

D 0.27m

m 4kg

I 2.5 kg.m’

The simulation is carried out by tracking WMR with
an S-shape trajectory. The trajectory consists of nine
segments (S;—Sy). Five of the nine segments are line
segments with a desired angular velocity ®s~=0 and a
desired linear velocity V4=0.15 (m/s). The other four
segments are arc segments with a desired linear velocity
V¢=0.15 (m/s) and a desired angular velocity ms=0.6
(rad/s). The following equations represent the S-shape
trajectory below:

1- For horizontal segments, the trajectory equations are:

Xq _xO +ug* t]
ya|=| Yo (37
Ga) L 0
2- For vertical segments, the trajectory equations are:
e T x ]
Yd |=| Yo tvg*t (38)
] L 0 ]
3- For arc segments:
xg xp + R cos(@)
ya |=| o +Rsin((9) 39)
Hd 2
6;+—
T

where (t) is the simulation time. Different initial
conditions for [Xy4, Vg, 04]" are required to generate the
desired trajectory. The values of the initial conditions
are listed in Table (2).

Table 2: Initial conditions for square trajectory

Trajectory Segment

Initial Condition

S, [000]"

S, [0.500]"

S, [0.75 0.25 n/2]"

S, [0.75 0.55 w/2]"

Ss [0.50.87]"

Se [08n]"

S; [-0.25 1.05 w/2]"
Ss [-0.25 1.3 w/2]"

S, [01.60]"
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The robot starts its movement from an initial position
which is represented by q=[0 0 0]", and figure (4) mani—
fests the tracking performance of the adopted controller.

1.2
—#— Robot Trajectory
= Do T ok |

08

¥ (m)
[=]
=

0.4 |

02

]
0.2 0.1 o 0.1 0.2 0.3 0.4 0.5 0.6 o7
X (m)

Figure 4. S-shape trajectory tracking performance

The above figure shows that the desired trajectory is
within the blue color, and the actual or robot trajectory
is within the red color. Also, it is clear from the above
figure that the WMR can achieve a very good matching
with the desired trajectory.

The optimum values of the FOPID controller and the
elements of R and Q matrices are:

kp =0.8215,k; =0.09875,k; =0.3265, = 0.02267

12,5569 0 0 0
0 112807 0 0
k=1 0 36584 0 |

0 0 0 7.5619
2.805 0 0 0
0 51181 0 0
=l 0 11147 0
0 0 0 4.6028

Figure (5) displays the position and orientation errors.

4 == = Error in X-direction (m)
= == Error in Y-direction (m)| |
1 ‘ Orientation Error (rad)

Errors Magnitudes
=)
S

0 5 10 15 20 25 30 35 40 45
Time(s)

Figure 5.Tracking errors behavior of the trajectory

The above figure reveals that all errors go to a zero
value after about three seconds. The maximum tracking
error in the (X) and (Y) directions at the beginning of the
simulation are 0.008 (m) and 7*10™* (m), respectively,
and these values after three seconds are decreased to zero
value. At the same time, the maximum orientation error is
about -0.025 (rad), which is decreased to zero after about
two seconds. Also, the values of the mean square error
(MSE) of trajectory in the X and Y directions as well as
the orientation, are [6.589*10-4 (m) and 8.421*10-5 (m)
0.00401(rad)]", respectively.
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Figure (6) illustrates the variation of the robot
velocities with the simulation time.

0.6

Forward Velocity (m/s)
Angular Velocity of the Robot (rad/s)

0.4

02

Robot Velocities
=}

-0.2

-04

08 . . . L .
o] 5 10 15 20 25 30
Time(s)

Figure 6.Linear and angular velocities of WMR

The linear velocity of the robot is with the red color,
while the angular velocity is with the green color. It can be
observed from the above figure that the WMR takes a short
time (about two seconds) to reach the desired velocities
(V=0.15 m/s and ©=0.6 rad/s) at each trajectory segment.
Figure (7) evinces the controlled torque's behavior.

0.2

Wheel 1
wheel 2 | 7

0.18

(=}
@

m
o
B

[—\_

S
N

e

[=}
=}
®

el

{

Wheels Torques (N.m)

= S
£ 8

[=}
o
R

o

I | I I \
0 5 10 15 20 25 30
Time(s)

Figure 7: The generated controlled torques behavior

The simulation results from figures (4) to figure (7)
demonstrate the activity and the efficiency of the adop—
ted control system by showing the ability of the control
system to generate the smooth values of the control input
signals (V, o, T) without any presence of sharp spikes.

To test the performance of the hybrid controller, that
is adopted in this work, a comparison study has been
done with the work of [11] that used recursive integral
backstepping control during the circular trajectory.
Figures (8) and (9) portray the simulation results of the
comparison study.

Figure 8. Trajectory tracking performance (a) by the pro—
posed controller of this work(b) by the controller that was
adopted in [11].
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Figure 9. Trajectory errors (a) by the proposed hybrid cont—
roller of this work (b) by the controller that was adopted in [11].

From figure (8) that is shown above, it can be noticed
that the desired trajectory is with the blue color, while the
robot trajectory is with the red color. Accor—ding to this
figure, a very good tracking performance is obtained from
the adopted controller of this work and the controller
proposed in [11] because the simulation tracking follo—
wed by WMR is considered almost coin—ciding. Figure
(9) elucidates the tracking errors from both controllers.

Figure (9a) depicts a very good trajectory response,
where all the errors go after about one second to a zero
value, while in figure (9b), the tracking errors in the (X)
and (Y) coordinates are not convergent to a zero value.
Still, instead of that, they fluctuate between zero and (-
0.01 m). This matter indicates that the controller's per—
formance adopted in the present work is better and more
robust than the controller proposed in [11].

The performance of the proposed hybrid controller
of this work is further tested with the hybrid controller
comprising backstepping and fractional-order PID
controller adopted in [5] during the 8-shape trajectory.
Figure (10) reveals the comparison study's simulation
results and trajectory performance.

1

o
o

4 Rebot Trijeckry

== Desred Trajeckry

N B S
@ L o <

Position in Y direction (m)

>

25 b

2 15 4 05 0 05 1 15 2
Position in X direction (m)

Figure10. Trajectory tracking performance (a) by the pro—
posed hybrid controller of this work and (b) by the hybrid
controller that was adopted in [5]
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Table (3) evinces the comparison results of the mean
square error (MSE) for the state error components (eX,
eY, e0) obtained from the hybrid controller of this work
(LQR-FOPID-IGwo) and the hybrid controller of the
work [5]. Figure (10a) illustrates a very good matching
between the desired and actual tracking, while there are
some small deviations between the reference and the
actual trajectory in figure (10b). Figure (10) exhibits the
hybrid controller methodology of the current work
having an effective performance and is better than the

hybrid controller in [5].

Table 3: MSE of the two controller methodologies for 8-
shape trajectory

Trajectory Controller MSE MSE MSE
Methodology (ex) (ey) (ep)
(m) m | (ad)
BSC- 1.642 5.087 4.051
8-shape FOPID [5] e-03 e-03 e-03
LQR- 6.225 e- 8.157 6.041
FOPID-IGWO 04 e-04 e-04
(current
method)

The results that are tabulated in the above table
indicate that the magnitudes of the MSE of the hybrid
controller methodology of the present work (LQR-
FOPID based on IGWO) are less than those of the
hybrid controller methodology adopted in [5] (BSC-
FOPID). This matter indicates that the performance of
the controller methodology of this work is better than
the hybrid controller [5].

6. CONCLUSIONS

In the current work, based on the kinematic and dy—
namic models of the WMR, a new hybrid controller
consisting of LQR and FOPID based on an optimization
algorithm is proposed to solve the trajectory tracking
problem. The new hybrid controller is utilized to find
the best control actions (robot velocity and the gene—
rated torques) with more stability and without any osci—
llation in the output response. A new modified version
of the GWO is adopted to tune and select the optimum
values of the control system parameters with a mini—
mum time. The main goals of this improvement are
rapid convergence toward a solution, reducing the effect
of the wolves' random motion, and balancing the explo—
itation and exploration processes. The S-shape tra—
jectory is selected to present the robustness of the adop—
ted control system. The simulation results elucidated
that the proposed hybrid controller can generate smooth
robot velocities (V=0.15 m/s and ©=0.6 rad/s) and
smooth motors torques which are not exceeded 0.2
(N.m) without any sharp spikes, as well asall position
and orientation errors go to a zero value after about
three seconds. The values of the MSE of S-trajectory in
the X and Y directions and the orientation are
[6.589%10-4 (m) and 8.421*10-5 (m) 0.00401(rad)]",
respectively. The robustness of the adopted hybrid
controller is verified and compared with two cases or
works, and all the comparisons are developed in
MATLAB software. In the first case, a comparison is
conducted with a work that used recursive integral
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backstepping control during a circular trajectory. The
simulation results showed that the performance of the
new hybrid controller of this work is better than that of
the recursive integral backstepping control through a
circular trajectory in terms of the position and the
orientation errors' values. The errors' values obtained
from the present new hybrid controller are convergent to
a zero value after 1 second, while the errors' values ob—
tained from the recursive integral backstepping control
fluctuate between (0 and -0.01 m) during all the simu—
lations. While in the second case, a comparison is car—
ried out with combined backstepping and FOPID cont—
rollers during an 8-shape trajectory. The MSE magni—
tudes obtained from backstepping and FOPID cont—
rollers of all errors are [1.642 e-03 (m), 5.087 e-03(m),
and 4.051 e-03 (rad)]", whereas the MSE magnitudes
obtained from the new hybrid controller of this work,
i.e., (LQR-FOPID-IGWO) are [6.225 e-04 (m), 8.157
e-04 (m) and 6.041 e-04]". This matter indicates that the
performance of the controller methodology of this work
(FOPID- LQR-IGWO) is better and more robust than
that of the controller systems adopted in the previous
works. Future work will focus on other interesting
problems, such as avoiding static and dynamic obstacles
in a complex environment and the trajectory tracking of
a holonomic WMR.
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Symbols

R The angular speed of the right wheel (rad/s)

) The angular speed of the left wheel (rad/s)

Vr Translation velocity of the right (m/s)

V. Translation velocity of the left (m/s)

r Wheel's radius (m)

\Y The linear velocity of the robot body (m/s)

) Angular velocity of the robot body (rad/s)

D The distance between the two wheels

C The point of the center mass of the robot

m The robot mass

Fr Forces applied to the right wheel (N)

I Forces applied to the left wheel (N)

I Robot mass moment of inertia

a Angular acceleration of the robot body
(rad/s2)

R The right motor torque (N.m)

T The left motor torque (N.m)

F Friction force

OR Right wheel angular acceleration (rad/s2)

or Left wheel angular acceleration (rad/s2)

u(t) The controlled signal

e(t) the error signal

e, Error in X-direction (m)

e Error in X-direction (m)

e, Orientation error (rad)

k, Proportional gain

k; Integral gain

kyq Derivative gain

Q Positive semi-definite symmetric matrix
R Positive-definite matrix

K Optimal gain matrix

P Riccati Matrix

A State matrix

B Input matrices

t Current iteration

T Total number of iterations

g’ g Random vectors

o Convergence factor

N Number of optimized parameters
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Abbreviations

WMR Wheeled Mobile Robot

BSC Backstepping controller

PID Proportional-Integral-Derivative
FOPID Fractional order PID

NMPC The nonlinear model predictive controller
PSO Particle swarm optimization

GWO Grey Wolf Optimization

MOGWO  Multi-objective Grey Wolf Optimization
WOA Whale optimization approach

LQR Linear quadratic regulator

JAU3AJHU HOBOI' XUBPUJIHOI' KOHTPOJIEPA
3ACHOBAH HA TIOBOJBINIAHOJ BEP3UJHU
OIITUMU3AIIUMJE CUBU BYK 3A ITPAREILE
IIYTAIBE MOBUJIHOI' POBOTA HA
TOYKOBHUMA

P.M. Xyceun

HexonoHomcku MOOWIHH poOOTH HA TOYKOBHMA CE
CMaTpajy CHCTEMHMa ca BHIIE ylia3a W BHUIIEC H3Ja3a
KOjH C€ M3BOJIE y Pa3IMYUTUM OKpyxemuma. OBaj pan
NpeNCcTaB/ba KOHTPOJy npahema IyTame HEeX0Io—
HOMCKOI MOOMIHOT pobora Ha ToukoBuMa (BMP).
V3BeneHn cy KUHEMaTHYKd M AWHAMHYKH MOJEIH
poborta. /In3ajHrpaH je HOBH XHOPUIHHA KOHTPOJIEP KOjU
ce cacrojao OJ [IBa KOHTpoJepa 3acHOBaHa Ha
ONITHMHM3AIIMjCKOM aJrOpPUTMY 3a pellaBame Ipodiema
npahemwa nyrame. [IpBu xouTponep je [TN]] xkonTpoiep
(pakMOHOT pesia, KOjH je 3aCHOBaH Ha KUHEMATHYKOM
MOJIeNly ¥ MPUMEHEH je 3a YIpaB/barbe JHMHCAPHUM H
yraoHuM Op3uHama po0OoTa, OK je APYTrd KOHTPOJIEp
nMHeapHH KBajpatHu peryiarop (JIKP) u 6a3upan je Ha
JMHAMHYKOM MOJEITY. KOPUCTH C€ 32 KOHTPOJIY OOPTHOT
MOMEHTa MoTopa. HoBa, mnoOoseimaHa  Bep3uja
ONTHMHU3AIIMje CHBOT ByKa je YCBOjeHa 3a MOJICIIABAE
napaMerapa XHOPHIHOT KOHTpojiepa. [JIaBHU LUJbEBH
OBOT MO0OOJBIIARKka Cy Op3a KOHBEPreHIHja Ka pPelewmy,
cMameme e(peKTa HACyMHYHOI KpeTamba BYKOBa H
OanaHcHpame mporeca eKCIUIoaTalyje U NCTPaKUBamba.
MATIJIAB codtBep je kopumtheH 3a cuMmylnanujy
pe3ynraTa noj tpajekropujom C-o0nMka U 3a IpoLEHY
poOycHOCTH ¥ MEepPOPMAHCH TPEJIOKEHE KOHTPOJIHE
jemunuie. Pesyntat  cumynamyje Cy —MOKa3aH
AKTHUBHOCT ¥  €(UKACHOCT  YCBOjEHOr  CHCTEMa
yIpaBbatba HAa OCHOBY CpPEIEC KBaJpaTHE TpelIKe
(MCE) u3mely >xesbeHe U cTBapHe IyTame. Bpennoctn
MCE nyrame y npaBnuma Kc u W u opujeHTanmje cy
[6,589%10-4(m) 8,421*10-5(m) 0,00401(pan)]T. Takobe,
YCBOjEHH CHCTEM YIpaBJbarkba MOXE Ja TeHepHIle
IJaTKe BPEIHOCTH KOHTPOJHHUX YJIa3HMX CUTHaia 0e3
OLITPUX CKOKOBa. IlepdopmaHce MpUKa3aHOT CHCTEMa
yhnpaBjbatha Cy BepudukoBane U ynopelheHe ca
pesyiatatuMa JTOOHjeHMM W3 Jpyra JBa CHCTEMa
yIpaBjbarkba, a Pe3yjTaTd CHMYJaluje Cy MOHYINIH
CYNEPHOPHOCT U e(EeKTUBHOCT XUOPHIHOT perysiaropa
OBOT paa.
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