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The study applies diverse methods of chaos detection to meteorological 
variable data (air temperature, relative humidity, surface pressure, 
precipitation, and wind speed for Ha’il, Saudi Arabia) to understand the 
nonlinear dynamics and to classify their nature. Additionally, Random 
Forest Algorithm model is used to predict the precipitation and wind 
speed. The results obtained by classical and modern approaches are 
compared. All the variables are found to be chaotic based on correlation 
dimension, approximate entropy, and 0–1 test. The chaos decision tree 
algorithm diagnoses air temperature, relative humidity, and wind speed as 
chaotic, while precipitation and surface pressure are identified as 
stochastic. This shows that the classical methods are well-validated with 
the modern methods. Nevertheless, some of them contradict modern 
methods. The analysis for 32 years of data showed no precipitation for 
92% of the time during the entire period based on the Random Forest 
algorithm.  
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1. INTRODUCTION 
 
Understanding the inherent dynamics of meteorological 
variables is vital for the optimum utilization of natural 
Renewable Energy Resources. Saudi Arabia covers the 
largest part of the Arabian Peninsula [1]. A vast arid 
land desert climate dynamics with scarce precipitation 
in many parts of the region. The regulation concerning 
greenhouse gas mitigation demands the utilization of 
clean and renewable energy sources in Saudi Arabia. 
Undoubtedly, the region is witnessing an increased 
power demand in the future due to population, indus–
trial, and economic growth [2].  

Studying dynamic variability, high fluctuations, and 
its relationship with climate change can be useful in 
weather forecasting [3]. Understanding the nonlinear 
behavior of meteorological variables using time series 
data is an important scientific area in the analysis and 
forecasting of spatiotemporal systems. The observations 
collected at fixed time intervals as a time series are a 
dynamic system. Nonlinear chaotic systems exhibit dy–
namic behavior sensitive to initial conditions, a pheno–
menon popularly known as the butterfly effect [4]. 
Linear methods cannot fully capture the dynamics of 
these systems, and studies relating to chaos theory have 
been extensively used in identifying and characterizing 
such systems. The work on nonlinear dynamics in 
weather forecasting has revolutionized the long-held 
belief that the climate is only random [4]. In climatic 
research, applying nonlinear dynamic theory can imp–
rove the understanding of the behavior of meteoro–

logical variables and their prediction [5-8]. The diff–
erence between stochastic and chaotic systems is that 
the former yields multiple outcomes to one input, which 
is studied under the probability distribution theory. The 
chaotic system is sensitive to initial conditions, and its 
solution reveals a strange attractor [9]. Because of the 
developments in nonlinear methods and advancements 
in computer technology, the detection of chaos in 
dynamic systems has become a reality.  

Some of the signatures of chaos are the nonlinear 
inter-dependence, order of degrees of freedom, comp–
lexity, deterministic nature, and a small perturbation 
resulting in a significant future behavior [10]. Advan–
cements in the analysis of time series data [11,12] and 
the development of computer-based forecasting algo–
rithms [13,14] have greatly contributed to chaos theory. 
The field has witnessed significant theoretical and 
methodological developments and extensive applica–
tions in interdisciplinary areas [10]. The chaos detection 
methods are classified as classical or modern. Insights 
into the behavior of time-varying systems and their 
modeling are essential in climate and weather fore–
casting and natural disasters such as flooding, tornadoes, 
and earthquakes [15]. The methods such as recurrence 
plot (RP) [16], recurrence quantification analysis (RQA) 
[17], Chaos decision tree algorithm (CDTA) [18], and 0-
1 test for chaos are relatively modern. 

There are several classical methods; among them, four 
methods, such as Correlation Dimension (CD),  Lyapunov 
exponent (LE), Approximate entropy (AE), and Phase 
Space Reconstruction (PSR), are taken into account. The 
CD is widely used for variables such as temperature [19-
21], wind speed [5,20,22], and preci–pitation 
[19,20,23,24]. Lyapunov exponent is another popular 
method that estimates the chaotic nature of the system. A 
positive value of divergence of trajectories (λ) indicates 
chaos [22, 25-26]. That also applies to rainfall [27] and 
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many meteorological variables [19,28-30]. Approximate 
entropy is a quantification measure of variable 
complexity. It is used to classify systems in several 
disciplines, including earth sciences [31], PSR provides 
visualization of trajectories [23] and is an appropriate tool 
for qualitative analysis of system dynamics [32].  

Chaos theory deals with systems evolution, which 
shows sensitivity to initial conditions. Its hallmark is a 
departure from stability to an unstable state or from 
order to chaos, such as a mechanical system. A single 
spherical pendulum in motion has decipherable 
behavioral patterns, and thus it is deterministic, whereas 
two-body systems such as double pendulums show 
chaotic behavior. Therefore, its future state is virtually 
unpredictable [33]. The existence of a strange attractor is 
qualitative proof of chaotic dynamics in a system, and it 
is quantified by methods such as CD, LE, and entropy. 
A promising outcome of the theory is a new research 
area called nonlinear science. Weather is a classic 
example of a chaotic system. The predictability of 
weather is only possible for a short time. 

Chaos is ubiquitous in nature, and engineering 
systems are no exception. It has been applied in the field 
of mechanical engineering. In structural dynamics, it has 
been used to analyze complex structures such as bridges, 
buildings, or airplane wings as they benefit from chaos 
theory [34]. The behavior of these structures can be 
modeled using nonlinear equations, which can lead to 
chaos under certain conditions. Engineers can predict 
and avoid potential failures or catastrophic events by 
analyzing chaotic behavior in these systems. Robotics is 
another area where chaos theory can also be used to 
design and control robotic systems [35]. 

By analyzing the chaotic dynamics of robotic 
systems, engineers can design better control algorithms 
to stabilize the system and reduce vibration or 
mechanical noise. Turbulent flows, such as those in 
fluid dynamics, are difficult to predict and control. 
However, chaos theory can help explain the complex 
behavior of turbulent flows and offer insights into how 
to model and control them. Chaos theory can be applied 
in the manufacturing process [36] to optimize 
production efficiency and reduce waste. By analyzing 
the chaotic behavior of manufacturing processes, 
engineers can identify areas where variability can be 
reduced, leading to higher-quality products and reduced 
costs. These are just a few examples of how chaos 
theory can be applied in mechanical engineering. The 
following are some of the direct applications of chaos 
theory to mechanical engineering problems: 

The application of chaos theory for predicting wind 
speed [37] has important implications for the design of 
wind turbines. Chaos analysis of a vehicle semi-active 
suspension system with uncertainties [38]. This study 
applies Chaos theory was applied to analyze the 
dynamic behavior of a vehicle's semi-active suspension 
system under various uncertainties [38]. These studies 
demonstrate the broad applicability of chaos theory in 
mechanical engineering, ranging from wind energy to 
vehicle suspension systems to gear tooth design.  

To our knowledge, no comprehensive study on 
meteorological parameters is reported in the literature. 
Moreover, a combination of classical methods with 

newly developed CDTA methods [18], recurrence ana–
lysis, and 0-1 tests for chaos in conjunction with 
classical methods in the Saudi Arabian context is used 
for the first time.  

The recent data set for 32 years has been used to 
understand the dynamics of these variables and their 
relationship with climate change.   

The Random Forest algorithm (RFA) is a wide–
spread robust, supervised computer algorithm. It is ver–
satile and can be used in both classification and reg–
ression problems. The rainfall in the Arabian Peninsula is 
scarce, and studies relating to it could contribute to 
understanding its dynamics and managing water resour–
ces in the region. Therefore, more consideration is given 
to the precipitation. Wind speed prediction is important 
from a renewable energy resources assess–ment and grid 
integrity point of view. Saudi Arabia is a signee of the 
GHG reduction protocol and has prio–ritized utilizing 
wind and solar sources to generate clean energy.   

This study aims to apply diverse methods to meteo–
rological variable data to understand the nonlinear 
dynamics involved and classify their nature. Further–
more, the study also attempts to predict two important 
variables, precipitation, and wind speed, as they are 
important renewable energy sources. The meteoro–
logical variables are daily air temperature, relative 
humidity, surface pressure, precipitation, and wind 
speed. These variables are important sources of a rene–
wable energy assessment, such as humidity [39], wind 
speed, and rainfall  [40,43,44- 49]. The proposed work 
has practical applications in weather and atmospheric 
science [50] and multi-disciplinary areas such as 
engineering, mathematics, and the stock market [51,52].  

 
2. SITE AND DATA DESCRIPTION  

 
The daily time series data between 1990 and 2022 
(11964 data points) was obtained for the Ha’il region 
from the POWER project’s hourly, v2.2.8 version 
MERRA-2 (Modern-Era Retrospective analysis for 
Research and Applications) [53]. MERRA-2 uses the 
resolution ½° latitude by ⅝° longitude with an average 
for 0.5 x 0.625-degree latitude/longitude region equi–
valent to 968.37 meters for data derivation. The latitude, 
longitude, and altitude of the Ha'il region are 
27.634602�N, 41.723572�E, and 991 meters, respecti–
vely. The area of the Ha’il region is 103,887 km². The 
air temperature and relative humidity are measured at 2 
meters, and wind speed at 10 meters above the ground 
level. Its climate is arid and hot, and rainfall is scarce. 
 
3. METHODOLOGY 

 
The schematic diagram map of the classification of 
chaos detection methods is illustrated in Figure 1. A 
description of the methods is given below.  

 
3.1 Classical Methods 

 
Dimension analysis and dimensionality of a time series 
estimate the number of variables responsible for a sys–
tem's dynamic evolution and the extent of their vari–
ations. A non-negative integer value of the dimension 
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implies the existence of a chaotic process, whereas a 
stochastic dynamic system produces an infinity. Grass–
berger-Procaccia algorithm [11] is among the popular 
algorithms used to compute CD of time-sequenced data 
in weather systems. CD can be estimated either by 
equation (1) based on the box-counting method or by 
Grassberger and Procaccia using equation (2) [11].  

 
Figure 1. Methodological approach for the detection of the 
chaos in meteorological variables.  
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where  is the length of the analyzed signal, ε is the 
threshold distance, xi, and xj are the adjacent trajectories, 
and Pi is the associated probability.  

However, LE measures the average exponential 
divergence of two adjacent trajectories (xi and xj). The 
largest exponent (λ > 0) is computed using equation (3). 

( )
( )1 21

0 1

1
logM k

k
M k

L t

t t L t
λ =

−

′
=

− ∑    (3) 

where M indicates the replacement steps L(tk-1): 
Euclidean distance between two points within the 
vicinity of a set threshold and L´(tk)is the length of L(tk-

1)tk at kth-time.  
A high value of AE implies higher nonlinearity 

[54]. If ‘X’ ∈{x1, x2, x3…,xn} random where ‘p(x)’ is its 
associated probability, then entropy is defined as in 
equation (4): 

( ) ( ) ( )logx XH X p x p x∈= −∑   (4) 

Unlike the first three methods (CD, LE, and AE), PSR 
is a qualitative visual tool representing a system's evo–
lution, and its coordinates describe the state completely at 
any given time [55]. It is used for nonlinear systems and 
is based on the delay-embedding method. The delay-
embedding technique converts a univariate time series to 
a multivariate system. The false nearest neighbor and 
mutual information estimate the embed–ding dimension 
and time delay, respectively. PSR plot captures the 
nonlinearity and unfolds the dynamics of the system. The 
complexity of many dynamical systems can be classified 
using PSR, including hydrologic systems [32].  

3.2 Modern Methods  
 

One of the modern methods CDTA used is developed in 
MATLAB [32]. It can be used for time series classifi–
cation in diverse fields in real and simulated systems 
with noisy data. The Recurrence Plot and the recurrence 
quantification analysis are emerging data analysis 
techniques [52]. The 0-1 test for chaos is a relatively 
new method employed to detect chaos in time series 
data [14]. The classical methods of detecting chaos in 
time series are the correlation dimension, Lyapunov 
exponent, approximate entropy, and phase space recon–
struction, including the 0-1 test for chaos. A Random 
Forest algorithm predicts rain/no rain as a predictive 
classification problem and wind speed prediction as a 
regression problem.   

One relatively recent advanced data analysis tech–
nique is the Recurrence Plot (RP) [16]. A recurrence 
plot is used to identify the nature of dynamical systems 
[55]. Multi-dimensional systems are projected using 
delay-embedding using a one-dimensional time series. 
The embedding unfolds complex dynamics [11, 56-57]. 
The Mutual Information algorithm is used to estimate an 
appropriate time delay τ [58]. The value for which the 
mutual information goes to zero is an optimum time 
delay. The recurrence analysis is the RP and RQ, which 
has been extensively applied in several disciplines, 
including weather sciences [8, 59]. 

To determine the chaotic nature of a deterministic 
dynamical system, the maximal LE ‘λ’ is estimated.   If 
λ > 0, then it implies chaos, a proof of the divergence of 
trajectories [60]. This can be done directly from a time 
series without using the PSR method [14]. One draw–
back of the classical methods is their high sensitivity to 
measurement noise [18]. The 0-1 test for chaos for 
univariate data uses equation (5), whose solution is 
given in equation (6) and is not sensitive to noise.   
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where ‘c’  ∈ (0, 2π),  ∈[-0.5, 0.5], and σ denote the 
level of noise. Two more tests are the z1 test by 
Gottwald-Melbourne [14] and the practical test by 
Bensaida [61].  
 
4. RANDOM FOREST FOR PRECIPITATION AND 

WIND SPEED PREDICTION 
 

RFA is an extension of bagging for decision trees that 
can be used for classification or regression. In predictive 
analytics, this algorithm is considered a very effective 
learning model in data science. It is an ensemble of 
simple trees. Individual trees in the algorithm are 
developed, and randomized samples with their features 
are selected [62]. The accuracy is the ratio of the correct 
classification to its total number [63]. The letters T, P, 
F, and N are used for true, positive, false, and negative 
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in TP, TN, FP, and FN, respectively. Classification 
Accuracy (CA) is given by equation (7): 

s

TP TN
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N
+

=    (7) 

where, Ns is the total number of samples and misclassi–
fication error = (1-classification accuracy). Cohen's 
Kappa Statistic (CKS) is given by equation (8): 
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The value A can be determined using equation (9): 
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Precision (positive predictive value) = TP
TP FP+

   (10) 

TP Rate (Sensitivity) = TP
TP FN+

        (11) 

FP Rate (1-specificity) = FP
FP TN+

          (12) 

The system's performance is measured using 
equations (7) – (12). Air temperature, surface pressure, 
precipitation, and humidity are input to predict wind 
speed. The precipitation is predicted using the rest of the 
variables as inputs. Due to the chaotic nature of the 
wind speed, the prediction horizon is short, and any 
accurate long-term prediction is almost impossible. 

 
5. RESULTS AND DISCUSSIONS 

 
The site-dependent long-term statistics of the variables 
are listed in Table A, Appendix A. The coefficient of 
variation values for all variables is less than 1, indi–
cating a low variance except for precipitation. The 
negative values of kurtosis for pressure and air tempe–
rature imply a light-tailed distribution that lacks outliers 
or extreme values. The kurtosis values of all the 
variables are in the range [-2,2] except for the higher 
precipitation. The high kurtosis value for the precipi–
tation indicates an outlier of 35.04 mm/day, whereas the 
number of zeroes is 92%. Kurtosis values of air 
temperature and surface pressure are negative, implying 
that the distribution is platykurtic. It indicates the pre–
sence of less extreme data in tails, as shown in Figures 
A(a) and A(d). The histogram Figure 2(a) shows the 
distribution of the values and related frequencies. 

The value of skewness of air temperature, Table A, is 
negative, which implies a negatively skewed distributi–on. 
This can be observed from the histogram, Figure A(a), 
with a fatter tail on the left. However, the skew–ness values 
of all the other variables are positive, which indicates that 
the right tail is longer, as can be seen from the histograms, 
except for the surface pressure. The surface pressure has a 
bin at the extreme left, which is an outlier. 

Mann-Kendall non-parametric trend test assessed 
trends in the time series data. The test failed to reject the 
null hypothesis at the alpha significance level of 0.05. 
Table 1 indicates the absence of a general trend in the 

data statistically, and the same can be observed in the 
time series plots, Figure 2 (a-e). Their statistics are 
provided in Table A, and further analysis is done using 
chaos theory. The absence of a trend in each data time 
series leads to an assumption that it is independent, 
identically distributed, and uncorrelated.  
Table 1. Mann-Kendall non-parametric trend analysis test 

Variable p-value Trend α = 0.05 
Air temperature (°C) 0.3223 No p > α 

Relative humidity (%) 0.6767 No p > α 
Precipitation (mm/day) 0.2160 No p > α 
Surface pressure (kPa) 0.0763 No p > α 

Wind speed (m/s) 0.8046 No p > α 
 

The annual maximum temperature of >30 � from 
May to September and the lowest relative humidity of 
<20% are observed. Precipitation data show over 90% 
zeros indicating no rains, as is typical in the Arabian 
Peninsula. The precipitation's mean and corresponding 
standard deviation values are 0.084 and 0.961. It 
indicates a high variation; about 68 % of the data is 
within the range of one standard deviation of the mean, 
and it is a skewed distribution. The prediction results are 
provided in section 4.4. 

 
a) Time series plot of air temperature (C). 

 
(b) Time series plot of relative humidity (%). 

 
(c) Time series plot of precipitation (mm/day) 
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(d) Time series plot of surface pressure (kPa). 

 
(e) Time series plot of wind speed (m/s). 

Figure 2. (a-e). Time series data plots of the meteorological 
variables for the Ha’il region of Saudi Arabia (1990-2022). 

The frequency distribution plots of the variables are 
provided, in Figure A, in the appendix.  

 
6. CLASSICAL METHOD-BASED ANALYSIS 

 
CD values range from 0.04 to 2.29, indicating low-
dimensional chaos. The highest value is observed for 
surface pressure and the lowest for precipitation. These 
values confirm the result obtained by the CDTA, except 
that precipitation and surface pressure data show 
random behavior. A non-integer value indicates chaotic 
behavior in time series, suggesting that the dynamics are 
governed by two to three variables  [10]. 

A positive value of LE represents chaos, as it is 
strong evidence of the chaotic nature of the system. The 
λ values are positive for three variables and negative for 
surface pressure and precipitation time-series data 
(Table 2). The precipitation and pressure are classified 
as stochastic by the CDTA. The value of  λ is 
approximately 1.65 and 1.41 for air temperature and 
relative humidity, respectively. The inverse of λ is 
related to the systems’ predictability of less than a day; 
however, the inverse of λ is associated with wind speed 
for one day. These values indicate the chaotic nature of 
the system and hence a rapid divergence of trajectories. 
A limited unpredictability horizon of chaotic systems is 
evidence of unstable behavior. The CD was used to 
detect chaos in the precipitation time series, and its 
value is 0.04 (Table 2) [27]. The calculated AE values 
lie in the range of [0.18, 2.10], as listed in Table 2. The 
lowest value corresponds to precipitation, whereas the 
highest value is related to wind speed. AE is related to 
inherent irregularity and lack of predictability in time 
series data. 

Table 2. The values of CD, LE, and AE. 

Variables CD Largest LE AE 
Air temperature 

(°C) 
1.75 1.65 0.73 

Relative humidity 
(%) 

1.37 1.41 1.18 

Precipitation 
(mm/day) 

0.04 -0.31 0.16 

Surface pressure 
(kPa)

2.29 -0.63 1.39 

Wind speed (m/s) 1.78 0.96 2.10 
 

PSR of air temperature, relative humidity, precipi–
tation, surface pressure, and wind speed (Figure 3a–e) 
are plotted using the estimated delays of 39, 28, 4, 3, 3, 
and embedding dimensions as 10, 10, 1, 10, and 10; 
respectively. The projection of a higher-dimensional 
time series into a phase space plot shows that the under–
lying dynamics appear to be dimensionally low chaotic. 
The plots reveal the presence of attractor-like structures 
in their complex dynamics. This complexity can also be 
attributed to high and low points. They also show low 
dimensional complexity as CD values are less than 4. 
The scattering of the attractors and the presence of 
outliers can be visually detected [7]. 

 
(a) Phase space reconstruction plot of air temperature. 

 
(b) Phase space reconstruction plot of relative humidity. 

 
(c) Phase space reconstruction plot of precipitation. 
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(d) Phase space reconstruction plot of surface pressure. 

 
(e) Phase space reconstruction plot of wind speed. 

Figure 3 (a-e). Phase space plots based on daily mean time 
series data. 

 
7. MODERN METHOD-BASED ANALYSIS   

 
RP is generated based on the calculation of three 
parameters: embedding dimension, time delay, and the 
threshold value. False nearest neighbor provides the 
value of the embedding dimension, and it is chosen 
when points in a neighborhood drop to zero. If the 
embedding dimension is 'n = 4', then it implies that a 
model of 4 state variables can be developed. It is used to 
calculate an optimal embedding dimension [63]. Mutual 
information is used to estimate the time delay value 
[64]. However, various methods are employed to 
calculate a threshold value [26].  

In this study, the method of 5-6% of the maximal 
space diameter is chosen for the threshold value, whe–
reas the embedding dimension and time delay values are 
used to reconstruct PSR.  

RPs are studied based on the presence of dots, lines, 
and homogeneous and non-homogeneous structures. 
Figures 4 (a–e) shows a variety of such structures. The 
structural patterns of parallel lines in Figures 4(a) and 
4(b) for air temperature and relative humidity are more 
prominent, indicating that the trajectories will re-visit 
the region of attraction. RQA values are listed in Table 
3, which shows a high recurrence rate for precipitation 
followed by humidity and temperature. The system is 
classified as either quasi-periodic or low-dimensional 
chaotic, as proven by their quantification using RQA 
and the methods of chaos detection. The surface 
pressure (Figure 4(d)) is considered random, as it has 
similar colors and is uniformly distributed, unlike other 
plots. However, the presence of parallel and vertical 

lines makes it difficult to classify it as completely 
random. LE describes the states as dynamical systems 
evolve [26]. The vertical lines can also be easily obser–
ved, implying some either invariant states or very slow. 
No definite trend is observed in all the time series due to 
the absence of fading in the lower left and upper left 
corners, as shown in Figure 4(a–e). This finding corro–
borates with the result obtained by Mann Kendall’s 
trend analysis presented in Table 1. Higher values of 
determinism (DET) and laminarity (LAM) are also 
indicators of the presence of deterministic structure, 
except for the wind speed, which has lower values. The 
wind speed exhibits relatively higher complexity due to 
the smaller values of the RQA. The numerical values of 
the RQA are listed in Table 3.  

A difference in the RQA values of surface pressure, 
air temperature, wind speed, and relative humidity for 
recurrence rate (RR), DET, and LAM is listed in Table 3. 
The highest variation is observed in entropy values and 
the mean length (LMEAN). Relative humidity shows the 
highest LMEAN; which implies low complexity 
dynamics [16]. The wind speed has the smallest RQA 
values (RR, DET, LAM), indicating high complexity 
compared to the other variables. The magnitude of these 
values is related to their complexity in their underlying 
dynamics. The presence of only scattered points is an 
indication of a random system. Random systems imply a 
lack of predictability and a higher degree of irregularity 
[7, 65]. The RP of wind speed, air temperature, and 
surface pressure contain structures, as shown in Figure 
4(a–e), which are somewhat similar to the periodic 
sinusoidal wave in spite of their chaotic nature. Based on 
visual textures and the higher RQA values of DET and 
LAM, these systems appear to be deterministic and have 
a possibility of short-term prediction of their future states.  

 
(a) Air temperature 

 
(b) Relative humidity 
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(c) Precipitation 

 
(d) Surface pressure 

 
(e) Wind speed 

Figure 4. (a-e). The recurrence plot of the time series data 
for all the meteorological variables showing time versus 
time,  [26], using visual recurrence analysis, Eugene 2003.  

Table 3. Comparison of RQA values of pressure, tempera–
ture, wind speed, humidity, and  precipitation for the Ha’il 
region of Saudi Arabia 

RQA  Air 
temperat

ure  
(�) 

Relative 
humidity 

(%) 

Precipitation 
(mm/day) 

Surface 
pressure 

(kPa) 

Wind 
speed 
(m/s) 

%RR 0.291 0.360 0.854 0.087 0.058 
%DET 0.949 0.886 0.987 0.376 0.123 
ENT 2.560 2.215 3.291 0.731 0.260 
LAM 0.969 0.928 0.804 0.503 0.162 

LMEAN 6.968 5.828 13.70 0.503 2.070 
 

The nature of the time series data is further exa–
mined and validated using CDTA [18]. The algorithm 
classified all variables as chaotic except the surface 
pressure and precipitation as stochastic (Table 4). The 
stochastic nature of these times series data are further 
tested using the multiple surrogate time series, and no 
difference was observed in the analysis.  

Table 4. Characterization of time series data (daily mean 
values) using Chaos Tree Decision Algorithm, [40]. 

Time series Classification Permutation 
entropy 

K-
value 

Air Temperature (�) Chaotic 4.99 0.772 
Relative humidity (%) Chaotic 6.76 0.995 
Precipitation (mm/day) Stochastic -- -- 
Surface Pressure (kPa) Stochastic  -- -- 

Wind speed (m/s) Chaotic 6.88 0.998 
 

A test for LE-based chaos is used to detect the 
chaotic nature of the meteorological variables [61]. The 
test revealed negative high λ values indicating the 
absence of chaos at a 5% confidence level, which means 
the data is stochastic. The result of this test contradicts 
the result obtained from the CDTA in which the air 
temperature, relative humidity, and wind speed data are 
classified as chaotic. However, the results obtained for 
precipitation and surface pressure data validate the same 
results by both algorithms.  

The 0 – 1 test for chaos concluded a chaotic nature 
of all the variables with λ values in the range of [0.9964, 
0.9983]. A value of 0 implies non-chaotic data [14]. The 
oversampling of data can lead to smaller values of λ 
despite being chaotic. The data has no oversampling, as 
the plots do not look smooth (Figures 2(a–e)).  
 
8. RFA-BASED PRECIPITATION AND WIND SPEED 

PREDICTION  
 

The RFA determines the occurrence of “Precipitation” 
or “No precipitation”. A train-test ratio of 80:20 (%/%) 
is used. The performance of the RFA model is obtained 
using the confusion matrix. The confusion matrix 
produced TP, TN, FP & FN values. Cohen’s kappa 
statistic reported 10686 cases of no rain, and 820 of 
rain, a measure of how balanced the data set is. Table 5 
shows the model's high performance with a 
classification accuracy of 92.96% and Cohen’s Kappa 
Statistic of 0.325. The confusion matrix of the model 
presented in Table 6 shows that there are 162 
misclassified instances. It also shows that the 
occurrence of precipitation could be better classified as 
a result of the bias of the dataset. Strikingly, 45 
instances of precipitation were correctly predicted, 
while 127 needed to be corrected. Thus, the RF model 
can be considered reliable in terms of "No precipitation” 
and unreliable in terms of “Precipitation”, [52]. 
However, there were two challenges, firstly, the issue of 
non-stationarity and secondly, nonlinearity that are 
inherent in precipitation data. Suggestions to improve 
the performance of RFA models for precipitation data 
may include the use of multiple output classes, such as 
"No precipitation”, “Moderate precipitation", and 
"Heavy precipitation”, based on the precipitation [67]. 
The classification accuracy is the ratio of the correct 
classification to the total number of classifications by 
RFA model [68]. 

In addition to predicting rainfall, the study also 
sought to investigate the performance of the RFA in 
forecasting wind speed. A train-test ratio of 70:30 
(%/%) is used. The performance of the model is 
obtained using perfor–mance measures for regression. 
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Table 7 shows the poor performance of the model for 
wind speed with a correlation coefficient of 30%, MAE 
of 89.5%, and RMSE of 1.122. 
Table 5. Performance of RFA model for precipitation 

Performance measure Model 
Classification accuracy (%) 92.96 
Misclassification error (%) 7.04 

Cohen’s Kappa statistic 0.325 
Precision 0.914 
TP rate 0.930 
FP rate 0.684 

Table 6. Confusion matrix for RFA model for precipitation 

Actual class 
Predicted class Totals 

No 
precipitation precipitation  

No 
Precipitation 

2094 35 2129* 

Precipitation 127 45 172# 
*Correctly classified instances = 2139 
#Incorrectly classified instances = 162 
 Table 7 Performance of RFA regression model 

Performance measure Model 
Correlation coefficient  30% 

MAE 89.5% 
RMSE 1.122 

  
A deeper understanding of the variation in global 

climate on a long scale provides important avenues to 
understand their impact on humans and in forecasting 
climate in the future [69-70]. 

 The CD, LE, PSR, AE, RP, RQA, and tests for 
chaos are employed to investigate the nature of the 
dynamics of the meteorological variables. Daily mean 
values of climatic variables, such as air temperature, 
relative humidity, surface pressure, precipitation, and 
wind speed for the Ha'il region from 1990 to 2022, are 
used. The results showed positive values of CD, LE, and 
AE. The chaotic nature is detected in air temperature, 
relative humidity, and wind speed, whereas surface 
pressure and precipitation showed stochastic nature. The 
0–1 test revealed negative LEs for all variables. This 
implies the stochastic nature, which contradicts the test 
obtained in the CDTA. Relatively smaller values of 
RQA for all variables, particularly for wind speed and 
its corresponding RP magnitudes shows a higher 
dimension complexity compared to the values of the 
other variables.  

The maximum temperature reached was over 30 oC 
from May to September, whereas the lowest relative 
humidity of (<20%) was observed during the same 
period. No definite trends are observed as per Kendall’s 
non-parametric trend analysis test. No precipitation is 
observed throughout the year except in January and 
April. The analysis showed that during 32 years, there 
was no precipitation for 92% of the total duration.  
 
9. CONCLUSIONS 

 
The diverse methods (classical and modern) of chaos 
detection are employed to understand the nonlinear 

dynamics and to classify the nature of meteorological 
variables (air temperature, relative humidity, surface 
pressure, precipitation, and wind speed). Some appli–
cations of the chaos theory in mechanical engineering 
have also been briefly described. The proposed techni–
ques are used to identify and characterize their inherent 
dynamic structures.  

Furthermore, two important variables (precipitation 
and wind speed) are predicted using RFA model. The 
obtained results are validated and compared with the 
reported values. Three methods (CD, AE, and CT) have 
classified all the variables as chaotic. LE classified 
pressure as non-chaotic, whereas other variables are 
chaotic. Temperature, humidity, and wind speed are 
classified as chaotic by CDTA method during preci–
pitation, and surface pressure as stochastic. These 
results revealed that the classical methods are very well 
validated with the modern methods. On the flip side, 
some contradict modern methods.    

The analysis also carries out the predictability of the 
precipitation and wind speed. It is shown that wind 
speed predictability is highly challenging. Similar 
results are obtained by recurrence analysis. The annual 
maximum temperature of >30 � from May to Sep–
tember and the lowest relative humidity of <20% are 
observed. According to the Mann-Kendall test, no defi–
nite trends are observed for all the variables. The 
analysis for 32 years of data showed no precipitation for 
92% of the time during the entire period based on the 
Random Forest algorithm. 

Based on these results, some dynamic systems are so 
complex that drawing inferences about their classi–
fication becomes challenging, whether a system is 
purely chaotic, random, or periodic. Some systems may 
exhibit mixed behavioral characteristics, such as par–
tially chaotic with some elements of randomness or 
periodicity with chaotic nature and weak chaos in 
dynamic variability. Future studies can be planned to 
explore more robust methods for high-dimensional 
meteorological variables. The study further recommends 
increasing forecasting efficiency for the optimum utili–
zation of natural clean energy resources using the 
proposed methodology.   
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NOMENCLATURE 

AE  approximate entropy 
°C Degree Celsius 
CA Classification Accuracy 
CD Correlation dimension 
CDTA Chaos decision tree algorithm 
CDTA Chaos decision tree algorithm  
CKS Cohen’s Kappa statistic 

CT Tests for chaos 
DET Determinism 
ENT Entropy 
FN False negatives 
FP False positives 
kPa kilopascal  
LAM Laminariy 
LE Lyapunov exponent 
LMEAN The average length of the diagonal line 
m/s Meter per second 

MERRA Modern-Era Retrospective Analysis for 
Research and Applications 

mm/day Millimetre per day 
PSR Phase space reconstruction 
RA Recurrence analysis 
RF Random forest 
RFA Random forest algorithm 
RP Recurrence plot 
RQA Recurrence quantification analysis 
RR Recurrence rate 
TF True positives 
TP True positives 

 
Appendix-A 

Table A. Descriptive statistics of the time series data 

Meteorological variable Mean Standard 
Deviation 

Coefficient 
of variation 

Variance Kurtosis Minimum Maximum Skewness 

Air temperature (C) 22.28 8.73 0.389 76.14 -1.18 -1.12 37.38 -0.290 
Relative humidity (%)  27.16 15.81 0.582 250.06 0.30 5.25 88 1.037 
Precipitation (mm/day) 0.08 0.92 11.09 0.84 505.28 0 35.04 20.087 
Surface pressure (kPa) 90.42 0.40 0.004 0.16 -0.56 89.41 91.91 0.208 

Wind speed (m/s) 3.99 1.16 0.290 1.34 0.59 1.25 10.58 0.662 

Figure A (a-e): 

 
Figure A(a). Histogram of air temperature 

 
Figure A(b). Histogram of precipitation 

 
Figure A(c). Histogram of relative humidity 

 
Figure A(d). Histogram of surface pressure 
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Figure A(e). Histogram of wind speed 

 
 
НЕЛИНЕАРНА ДИНАМИЧКА АНАЛИЗА 
МЕТЕОРОЛОШКИХ ПРОМЕНЉИВИХ ЗА 
РЕГИОН ХАИЛ, САУДИЈСКА АРАБИЈА, ЗА 

ПЕРИОД 1990-2022 
 

M.A. Maџид, М.С.М. Нурани, Ф.А. Разак 
 

Студија примењује различите методе детекције 
хаоса на метеоролошке променљиве податке (тем–
пература ваздуха, релативна влажност, површински 
притисак, падавине и брзина ветра за Хаил, 
Саудијска Арабија) да би се разумела нелинеарна 
динамика и класификовала њихова природа. Поред 
тога, модел алгоритма Рандом Форест се користи за 
предвиђање падавина и брзине ветра. Упоређени су 
резултати добијени класичним и савременим 
приступима. Утврђено је да су све променљиве 
хаотичне на основу димензије корелације, 
приближне ентропије и теста 0–1. Алгоритам 
дрвета одлучивања о хаосу дијагностикује 
температуру ваздуха, релативну влажност и брзину 
ветра као хаотичне, док су падавине и површински 
притисак идентификовани као стохастички. Ово 
показује да су класичне методе добро потврђене са 
савременим методама. Ипак, неки од њих су у 
супротности са савременим методама. Анализа 
података за 32 године показала је да није било 
падавина у 92% времена током читавог периода на 
основу алгоритма Рандом Форест. 

 

 


