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Automated Wind Turbines Gearbox 
Condition Monitoring: A  Comparative 
Study of Machine Learning Techniques 
Based on Vibration  Analysis 
 
Wind turbines play a role in the adoption of renewable energy production, 
but they are susceptible to shutdowns that require thorough monitoring. 
Gearbox failures are an issue leading to maintenance and operational 
downtime. This study investigates the application of machine learning 
methods to enhance the diagnosis of gearbox problems using vibration 
analysis. Through the application of fault scenarios that impact bearings 
and gears, the researchers successfully extracted time domain features 
from vibration data of a 750 kW turbine testbed in order to detect 
indications of damage. Support Vector Machine (SVM), Naive Bayes, and 
K Nearest Neighbour (KNN) machine learning models were used to 
classify gearbox faults. Among these models, Naive Bayes achieved an 
accuracy rate of 95.7%, which exceeded the established benchmarks. The 
probabilistic approach was able to successfully associate symptom 
characteristics with fault patterns. Intelligent monitoring systems could 
improve maintenance efficiency. This data-driven approach highlights the 
potential of machine learning in supporting wind power development by 
eliminating gearbox inefficiencies and improving turbine reliability, and 
further research is being conducted to ensure that this approach works in 
concert with diversity and in the real world. This shows how machine 
learning is contributing to advances in renewable energy by helping to 
analyze predictive problems and prevent costly gearbox failures. 
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1. INTRODUCTION 
  
Wind turbines play a crucial role in the transition to 
renewable energy sources, aiding the global push for 
environmental sustainability [1,2]. Yet, their sustainable 
operations hinge greatly on their reliability and 
effectiveness. Among the hurdles that wind turbine 
operators face is identifying issues in the gearbox, as 
these can lead to repairs, downtime, and potentially 
disastrous breakdowns [3,4]. Wind turbines alleviate the 
environmental consequences of energy  generation by 
transforming the kinetic energy of wind into  electricity 
that is free from emissions   [5,6]. Their rapid and 
significant growth has been propelled by  advancements 
that have improved efficiency and economi-cs, 
 establishing wind power as a crucial contributor to 
renewable  energy [7-9]. Nevertheless, turbines are still 
vulnerable to numerous mechanical  and electrical de–
fects that pose a threat to their performance and  relia–
bility [10]. Environmental factors can cause damage to 
rotor blades, which can then reduce their aerodynamic 
efficiency [11,12]. Generators and bearings are suscep–
tible to both electrical and mechanical deterioration 
[13].  

The gearbox is a very fragile component that is 
prone to failure, which can lead to costly repairs, pro–
longed downtime, and even more damage [14]. Gearbox 
faults account for nearly 25% of wind turbine failures, 
with downtime costs estimated at $200,000 to $300,000 
per incident [15]. These failures, often origi–nating 
from bearing defects or gear wear, can cause multi-
megawatt production losses and cripple wind farm pro–
ductivity [16]. Gearboxes are especially rotate to failure 
compared to other components in the drivetrain due to 
their complex design and substantial load-bearing capa-
city. Researchers have conducted a significant amount 
of research to develop advanced methods for identifying 
problems in gearboxes, aiming to enhance the depen–
dability of turbines [17,18]. Advancements in signal 
processing and machine learning hold immense promise 
for timely anomaly detection and proactive maintenance 
[19,20]. 

Wind turbine gearbox condition monitoring is cri–
tical in maintaining the reliability and efficiency of wind 
power systems. Practical applications of this research 
are within several essential areas of the industry. With 
early detection of issues before they become severe 
failures, predictive maintenance strategies can be facili–
tated to reduce downtime and related maintenance costs 
directly. Detection of faults accurately can schedule 
maintenance work at the right time, thus ensuring tur–
bines work to their optimum, leading to a better rate of 
energy generation and a cut in operational costs. 
Regular and precise condition monitoring of a wind 
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turbine may increase the lifetime operation of the com–
ponents and return investment maximally. Apart from 
that, early fault detection will aid in increasing safety 
during wind turbine operations by reducing the possi–
bility of sudden breakages, which might lead to the most 
devastating effects on the personnel attending to the 
maintenance and the surrounding environment. 

Wind turbine systems' design and development pro–
cesses must be harmonized to achieve peak perfor–
mance. Harmonization involves integrating and aligning 
various design aspects to ensure they function cohe–
sively and efficiently. They also include interdis–
ciplinary collaboration, the standardization of procedu–
res, advanced modeling and simulation, and thorough 
prototyping and testing. The importance of harmoni–
zation and optimization design and operation systems 
for wind turbines is well-documented in the literature. 
For instance, the paper introduced by Zhang et al. 
(2014) outlines best practices for optimizing design 
processes [21]; applying the principles discussed in this 
paper, we can better understand how harmonization and 
optimization drive the advancement of wind turbine 
technology, leading to more efficient and reliable rene–
wable energy systems. 

Recent studies have primarily focused on traditional 
vibration analysis methods, which often fail to handle 
the complexity of noise and fault interactions in real-
world multi-fault scenarios. Traditional vibration ana–
lysis methods have limitations in accurately detecting 
faults in the gearbox and rotary machine [22]. More 
than one of these methods, such as spectrum analysis, 
needs to be used to deal with the complexity of noise 
and fault interactions that occur in complex multi-fault 
situations [23-25]. Machine learning promises more 
robust automated health monitoring by discovering 
intricate patterns within vibration data. Algorithms, such 
as Support Vector Machines (SVMs), Artificial Neural 
Networks (ANNs), and ensemble methods, enable en–
hanced feature extraction and accurate classification of 
fault signatures [26,27]. These data-driven technologies 
offer nuanced diagnostic insights into fault evolution to 
mitigate costly repairs and unplanned downtime. Reali–
zing the full potential of wind power requires con–
tinuous refinement of condition monitoring and fault 
diagnosis capabilities [28-30]. 

 Earlier efforts in gearbox fault diagnosis focused on 
applying signal processing methods to extract indicators 
from vibration data. Cyclostationary analysis provided 
an understanding of gearbox modulation patterns linked 
to damage initiation and propagation [31]. Meanwhile, 
Empirical Mode Decomposition (EMD) enabled detai–
led analysis by decomposing vibration signals into Int–
rinsic Mode Functions (IMFs) [32]. However, machine 
learning has elevated diagnostic capabilities even 
further. Convolutional Neural Networks (CNNs) can 
identify subtle fault signatures using hierarchical feature 
learning [29]. SVMs, ANNs, and Random Forests (RFs) 
achieve high multi-class accuracy [33]. Hybrid models 
boost accuracy via algorithm fusion [34], while adaptive 
techniques permit continuous state assessment by recur–
sively tailoring models [35]. Emerging deep-learning 
models also facilitate real-time monitoring, prognostics, 
and data-driven fault simulations for proactive mainte–

nance [36]. Refining and integrating these methodo–
logies promise to improve turbine gearbox reliability 
and maintenance efficiency significantly. 

The main novelty of this study is that it applies 
advanced machine learning techniques to address these 
limitations, offering a more robust and accurate diagno–
sis of gearbox faults. The key novel contributions of this 
research include: 
1. Comprehensive Feature Extraction: This type of 

analysis enhances the fault detection capability by 
extracting statistical fine-grained features from the 
vibration data, enabling the detection of subtle dif–
ferences in healthy fault conditions. 

2. Comparison of Machine Learning Models: The 
study presents a comparative analysis of different 
machine learning algorithms (SVM, KNN, and 
Naive Bayes) for error classification, highlighting 
the strengths and weaknesses of each method. 

3. Practical Application and Realistic Data:Real 
vibration data from a 750 kW turbine test bed 
equipped with automatically generated anomalies 
are used to verify the significance of the findings. 
This approach bridges the gap between theoretical 
research and real-world applications. 

4. Probabilistic Modeling with Naive Bayes: The 
Naive Bayes machine learning classifier demon–
strated superior performance in accurately classi–
fying gearbox faults, thanks to its probabilistic 
approach that effectively models complex relati–
onships between features and faults. 

5. Potential for Intelligent Monitoring Systems: 
The results suggest that intelligent monitoring sys–
tems based on machine learning can significantly 
improve maintenance efficiency and reduce down–
time, supporting the development of more reliable 
wind power systems. 

By addressing the limitations of previous studies and 
introducing these novel aspects, this research con-
tributes to advancing wind turbine gearbox condition 
monitoring, paving the way for more efficient and 
reliable renewable energy production. 

The paper begins by providing background on tur–
bine gearbox designs, failure modes, and condition 
monitoring. Then, the experimental setup, data collec–
tion, signal processing, feature extraction, and machine 
learning algorithms are detailed. Finally, results are 
presented and discussed prior to concluding with a 
summary and future work. 

 
2. EXPERIMENTAL SETUP 
 
2.1 Experimental setup overview 

 
The experimental framework, meticulously architected 
to emulate the operational milieu of wind turbine gear–
boxes, features a scaled model endowed with cutting-
edge sensor technology. This configuration is inst–
rumental in documenting the gearbox components' 
dynamic behavior under an array of engineered fault 
conditions. As demonstrated in Figure 1, the wind tur–
bine's test arrangement was executed at the NREL 
dynamometer test facility (DTF) [37], a premier site 
selected for benchmark data acquisition. The turbine, a 
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stall-controlled and tri-bladed structure with a 750 kW 
power rating, underwent operational testing at both 
1800 rpm and 1200 rpm nominal speeds, correlating to 
distinct power settings. The comprehensive nacelle and 
drive-train ensemble was affixed within the NREL DTF, 
eschewing peripheral components like the hub and yaw 
systems to ensure a concentrated examination of the 
gearbox [37]. The fidelity of the experimental process 
was upheld using the actual field controller, which 
administered both initiation protocols and system safety 
responses. 

 
Figure 1. Test turbine drive train configuration .  
 

2.2 Test gearbox apparatus   
 

The experimentation utilized two wind turbine gearbox 
exemplars  retrieved from in-situ field installations to 
ensure maximal verisimilitude  to real-world operating 
conditions. The gearboxes were completely  refurbished 
and meticulously instrumented with an exhaustive array 
of  over 125 precision sensors to enable the acquisition 
of salient vibration  data. Each gearbox embodied a 
sophisticated three-stage configuration,  incorporating 
one low-speed planetary stage along with two parallel 
 shaft stages, yielding an overall gear ratio of 1:81.49. 
The intricate  internal nomenclature and structural 
interrelationships between the gear  trains, bearings, and 
rotating shafts are illustrated in Figure 2.  Dimensional 
and geometric attributes of the critical gear elements  , 
including diameter, teeth number, and helical angles, are 
enumerated in  Table 1.   

 
Figure 2. Test gearbox internal components view [37] 

Table 1. Gear element dimensions and details [37] 

Gear 
Element

No. of 
Teeth 

Mate 
teeth 

Root 
diameter 

(mm) 

Helix 
angle 

Face 
width 
(mm) 

Ratio 

Ring 
gear 99 39 1047 7.5L 230  

Planet 
gear 39 99 372 7.5L 227.5  

Sun 
pinion 21 39 186 7.5R 220 5.71 

Interme
diate 
gear 

82 23 678 14R 170  

Interme
diate 

pinion 
23 82 174 14L 186 3.57 

High-
speed 
gear 

88 22 440 14L 110  

 
2.3 Bearing Topologies 
    
The load-bearing components were designed in accor–
dance with excellent engineering practices. The planet 
carrier was supported by two preloaded full-comp–
lement cylindrical roller bearings designed for high 
radial load [37]. Two cylindrical roller bearings tailored 
to handle combined radial and axial loads retained each 
planet gear.  
 The intermediate and high-speed shafts utilized a 
solitary cylindrical roller bearing on the upwind aspect 
along with two tapered roller bearings in a back-to-back 
duplex arrangement on the downwind aspect to accom–
modate substantial axial and radial forces. The bearing part 
numbers and precise locations are enumerated in Table 2 
and illustrated graphically in Figure 4, with the letter 
denotations indicating positions along the downwind axis. 
The complex loading milieu necessitated this diversity in 
bearing topologies, enhancing dynamic stability. 

 
Figure 3. Test gearbox bearing nomenclature location [37] 

In summary, a sophisticated experimental metho–
dology with professional-grade instrumentation was 
devised to ensure the acquisition of flawless vibration 
data and facilitate the intelligent diagnosis of faults by 
employing machine learning algorithms. 

 
 

2.4 Sensor installation and data capture 
 

In the experimental setup, tri-axial piezoelectric acce–
lerometers,  specifically the IMI 626B02 model, were 
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strategically mounted to  capture vibrational data. These 
sensors, chosen for their high sensitivity  and wide fre–
quency range, are adept at detecting minute vibrational 
 anomalies indicative of gearbox faults. Each IMI 
626B02 is designed to  provide accurate accelerometry 
with a frequency range from 0.5 Hz to 10  kHz and a 
sensitivity of 100 mV/g, ensuring high-quality data 
collection    [37].  

The National Instruments PXI-4472B 24-bit high-
fidelity data  acquisition system (DAQ) converted the 
accelerometers' vibrational  signals to digital format at a 
sampling rate of 40 kHz. It was very  important to keep 
the vibrational data intact for further analysis so that the 
 order tracking synchronization of this high-speed DAQ 
with a magnetic  encoder worked. To isolate gear mesh 
frequencies, the magnetic encoder  enabled vibration 

signal tracking of vibration signals in the angular 
 domain. 

  The coupled IMI 626B02 accelerometers and the NI 
PXI-4472B  DAQ system formed a robust data capture 
method for the sensitive diagnosis of  gear and bearing 
faults. Strategic sensor mounting locations near fault-
prone components like bearings and gear meshes 
allowed the acquisition of  relevant vibration data [22]. 
The high sampling rate and bit depth of the  DAQ 
system ensured artifact-free digitization to facilitate in-
depth signal  processing and machine learning techni–
ques for accurate detection and  classification of mecha–
nical faults. The experimental data capture  methodology 
with professional-grade instrumentation was devised to 
 ensure pristine vibration data collection and enable 
incisive diagnosis of  faults via advanced algorithms.  

 

Figure 4. Vibration sensor location in the Gearbox system 

 
Component: HSP 

Cause of failure: scuffing 
Failure mode severity: severe. 

 
Component: HSG generator end 

Cause of failure: scuffing 
Failure mode severity: severe 

Component: sun spline 
Cause of failure: fretting corrosion 

 
Failure mode: fretting corrosion 

Failure mode severity: severe 
 

bearing locknut for bearings E1/E2 
Failure mode: abrasion 

 
Bearing D IR 

Failure mode: contact corrosion 
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Component: sun upper spherical thrust 
ring 

Cause of failure: fretting corrosion 
 

Component: bearing H retainer 
Cause of failure: fretting corrosion 

Failure mode 1: fretting corrosion 
Failure mode severity: 1- Severe 
Failure mode, 2- polishing wear 

 
 

Component: oil transfer ring for carrier 
Failure mode: polishing 

Failure mode severity: mild (local) 

 
 

Component: oil transfer ring for carrier 
Failure mode: polishing, 

Failure mode Overheating severity: mild (local) 

 

 
Component: ANN bolt hole 

Failure mode: plastic deformation 
Failure mode severity: severe 

Figure 5. The common faults occur in the gearbox syste

2.5 Fault simulation methodology 
 

Faults were induced in critical gearbox components to 
simulate common real-world degradation scenarios. As 
depicted in Figure 5, defects were introduced in the 
high-speed sun teeth (HS-ST) gear set, high-speed shaft 
(HS-SH) downwind bearings, intermediate-speed sun 
teeth (IMS-ST) gears, and intermediate-speed shaft 
(IMS-SH) upwind and downwind bearings. 

The HS-ST gears experienced scuffing faults caused 
by inadequate lubrication under heavy loads, leading to 
severe surface damage. The HS-SH downwind bearings 
were affected by fretting corrosion arising from 
micromotions eroding their raceway surfaces. 

Meanwhile, the IMS-ST gears displayed polishing 
wear that smoothed out their tooth surfaces. The IMS-
SH upwind and downwind bearings exhibited plastic 
deformation faults around the mounting bolts due to 
overloading. These gear and bearing defects mimicked 
real-world degradation, inflicting surface roughness, 
fatigue damage, and dimensional changes.  

The faults were precisely induced at graded seve–
rities to simulate progressive deterioration. Vibration 
data captured these realistic multi-fault scenarios for 
training machine learning algorithms.   

The models were proficient in identifying and 
categorizing operational anomalies after being exposed 
to a variety of labeled examples of damaged compo–
nents. The intricate gearbox data served as a meticulous 
laboratory to assess diagnostic monitoring capabilities. 
The modeled failure modes comprised a wide variety of 
defects that are recognized to cause gearbox downtime 
and incur substantial maintenance expenses. The ability 
to preventive intervention in order to enhance turbine 

reliability is contingent upon the accurate identification 
of these complex fault patterns [37]. 
 
2.6 Data collection methodology 

 
For this study, different fault conditions are purposely 
introduced into the gearbox system. Vibration data 
statistics are then gathered across a huge variety of 
operational states, from everyday functioning to more 
than one fault-prompted situation [38]. 

This comprehensive record-acquisition procedure is 
vital in capturing the complicated dynamics of gearbox 
behavior under exclusive pressure conditions. After 
amassing the statistics, we use a rigorous preprocessing 
protocol to refine the vibration records, correctly 
separating signatures indicative of unique faults [27]. 
Ensuring that only relevant records are forwarded for 
analysis enhances the precision of fault detection. 
Advanced signal processing techniques were applied to 
the preprocessed vibration data in the feature extraction 
step [39]. The goal was to discreetly extract the essence 
of the characteristic model and accurately capture the 
vibration signal corresponding to each fault condition. 

  
2.7 Feature extraction and calculation   
 
Due to the operation conditions, the wind turbine deve–
loped nonstationary vibration signals, which can be 
utilized to extract  useful information regarding the hea–
lth or faulty components by employing the proper signal 
 processing techniques. Vibration data was thorough and 
recorded systematically throughout an  extensive range 
of operational states, including typical operation and 
 multiple fault conditions occurring simultaneously.  
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It helped facilitate a thorough inspection by elimi–
nating deliberate faults in the gearbox design. Carefully 
designed data collection played an important role in 
capturing the complex gearbox behavior under various 
pressure conditions. Accurate fault detection imple–
mented by using resources to deliver only relevant data 
for analysis has helped to bring about the results to date . 

A key aspect of this research is extracting detailed 
features from vibration data. By examining a wide range 
of statistical features, we can pinpoint small differences 
between a gearbox in good condition and one that is 
faulty. This techniques of feature extraction is valueable  
for accurately diagnosing issues and making the 
monitoring system effective.  

In this investaged extracted eight features from the 
time-domain signals: Root Mean Square (RMS), Peak-
to-Peak value, Mean Absolute Value (MAV), Standard 
Deviation, Kurtosis, Skewness, Spectral Crest Factor 
(SCF), and Entropy. Each feature helps to observed  
highlight different aspects of the vibration signals, 
improving the system's ability to diagnose problems. 

The eight features exerted from the time domain 
signals used in the analysis include the following: 

 The root mean square (RMS)  calculation provides a 
numerical indication of the signal's strength.  This func–
tionality is particularly useful in detecting fluctuations 
in  vibration levels, which could potentially indicate the 
emergence of faults or  corrosion in the gearbox compo–
nents. The calculation for this feature was  performed 
using Equation (1).  

Top of Form 

( )21
1 N

iiRMS x
N =

⎡ ⎤= ⎢ ⎥⎣ ⎦∑   (1) 

Additionally, the second factor measures the 
difference between the highest and lowest points of the 
signal, known as the peak-to-peak value. Various 
factors, such as worn gear teeth or bearing misalig–
nment, can influence the observed changes and varia–
bility in the vibration data, offering valuable insights 
into this metric, as shown in Equation (2). 

max minPcak-to-Peak x x= −   (2) 

Furthermore, one of the improved statistical aspects 
to strengthen the system's diagnostic ability, the third 
factor is its absolute value (MAV), which shows the size 
of the signal present and is an indicator of the overall 
vibration intensity. This function is useful for fault 
detection since it detects changes in the vibration signal 
that may indicate the presence of a fault; Equation (3) 
determined this value. 

( )1
1 N

iiMAV x t
N == ∑   (3) 

where x(t) is the vibration signal, N is the number of 
samples in the signal, and Σ|x(t)| shows the sum of the 
absolute values of the signal.  

Also, Equation (4) yields the Standard Deviation (σ), 
which is used to examine the vibration data and assess 
the dispersion or variance of the vibration signal from 
its mean value. This component is very useful for 
identifying behavioral departures from expectations. 

( )21
1
1

N
ii x x

N
σ == −

− ∑   (4) 

To increase diversity, kurtosis and skewness values 
were then extracted. Kurtosis measures the degree of 
consensus or spread in a probability distribution, while 
skewness measures the lack of symmetry in a dist–
ribution. These features can provide valuable insights 
into the underlying mechanics of the pulse signal, po–
tentially indicating stochastic information occurrences 
or nonlinear shapes associated with particular faults. 
Mathematically, skewness and kurtosis can be obtained 
from equations 5 and 6. 

( )
( )( ) ( )( )

4
1

4
Kurtosis

1 2 3

N
ii

N x x

N N N SD
= −

=
− − −

∑   (5) 

( )
( )( )( )

32
1

3
Skewness

1 2

N
ii

N x x

N N SD
= −

=
− −

∑   (6) 

Equation (7) calculates the spectral crest factor 
(SCF) feature, which is the ratio of the peak amplitude 
to the RMS level of the spectrum in the frequency spec-
trum. This feature is very useful for detecting bearing or 
gear tooth problems, as such problems often appear as 
clear peaks or patterns in the frequency. 

( )

( )

2

2
1

max
SCF

1 N
i

X f

X f
N =

=
∑

  (7) 

Finally, the last feature utilized was the entropy of 
the vibration data, which gives a statistical measure of 
the degree of randomness or chaos in the signal. Higher 
entropy values also imply more chaotic behavior, which 
suggests underlying faults or harm to gearbox additives. 
Entropy, a statistical degree of randomness, is often 
used to:   

2Entropy logi ii p p= −∑  (8) 

Here, given signal, pi represents the probability that 
the ith amplitude level will occur.  
 
3. MACHINE LEARNING ALGORITHMS FOR FAULT 

CLASSIFICATION 
 

Detecting gearbox faults requires advanced algorithms 
capable of accurately classifying complex vibration 
patterns. This section clarifies and classifies the theo–
retical and computational basis of this prediction of 
gearbox conditions. The analyzed algorithm includes 
SVMs, KNNs, and Naive Bayes classifiers. The context 
was defined, and research designs were presented. 
SVMs are powerful classifiers proficient at performing 
nonlinear separation via kernel methods. KNN offers a 
nonparametric approach that categorizes instances based 
on nearest neighbors. Naive Bayes provides proba–
bilistic classification through Bayesian inference. While 
assumptions differ, all algorithms model the relationship 
between the statistical features distilled from vibration 
signals and the categorical fault states of the gearbox. 
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Their performance is rigorously evaluated using experi–
mental wind turbine data. 

 
3.1 Support vector machines (SVMs) 

 
SVMs are a powerful supervised learning technique 
extensively employed for classification and regression 
analyses. Vapnik formalized the theoretical foundations 
of SVMs [40]. Owing to their remarkable accuracy and 
robust generalization capabilities, SVMs have been wi–
dely adopted by researchers [24,41,42] for classifying 
mechanical failures in rotating machinery, even when 
dealing with limited sample sizes. The formulation of 
the SVM algorithm is grounded in the principle of 
structural risk minimization. For binary classification 
problems, the objective is to identify the hyperplane that 
maximizes the margin between the distinct classes. This 
optimal separating hyperplane (H1) can be leveraged to 
partition the data sets into the respective classes under 
consideration. The Equation defining H1 can be expres–
sed as: 

.x w b+    (9)       

Here, x represents a point on the separator plane 
(H1), and w denotes the vector perpendicular to the 
plane. The normalization of the two-class w parameters 
can be formulated as: 

, 1i ix w b ξ+ ≤ − +  for yi = -1 (10) 

, 1i ix w b ξ+ ≥ − +  for yi = +1  (11) 

By combining Equation (10) and (11), we obtain the 
following: 

( ), 1i i iy x w b ξ+ ≥ −    (12) 

In this expression, ξi represents the slack parameter, 
which accounts for non-separable data points. 

Due to their remarkable generalization performance, 
SVMs have attracted substantial interest from academic 
and industrial communities as a potent algorithm for 
fault detection systems. 

The provided image visually elucidates the funda–
mental principle of SVMs, which can observed in Fig–
ure 6. It depicts a two-dimensional feature space where 
data points belonging to two distinct classes (Class A, 
represented by red stars, and Class B, represented by 
green triangles) are plotted. The solid black line 
represents the optimal hyperplane that separates the two 
classes with the maximum margin. The margin is the 
distance between the hyperplane and the closest data 
points from each class, known as the support vectors 
(indicated by the orange lines connecting the support 
vectors to the hyperplane). The image illustrates that the 
SVM algorithm aims to identify the optimal separating 
hyperplane that maximizes the margin between the two 
classes while being primarily influenced by the support 
vectors. 

Overall, the SVM optimization constructs an optimal 
hyperplane that maximizes the margin between the two 
classes. This classification boundary allows for the 
accurate discerning of gearbox faults from normal 
vibration patterns. 

 
                    Figure 6. SVM principal approach 

SVM has several advantages, such as being robust to 
outliers, being able to  handle high-dimensional data, 
and being adaptable to different types of  problems. 
Some of the applications of SVM are text classification, 
image  classification, spam detection, handwriting 
recognition, face detection, and  anomaly detection.  
 
3.2 K-Nearest Neighbors (KNN) 

 
KNN is a nonparametric, instance-based learning tech–
nique that classifies data points based on their proximity 
to the nearest labeled examples in the feature space[43]. 
Given its ability to model complex decision boundaries 
and lack of restrictive assumptions, KNN proves well-
suited for gearbox fault diagnosis using vibration signal 
analysis. 

For a training set {(x1, y1), (x2, y2), ..., (xn, yn)}, 
where xi ∈  RD is a D-dimensional feature vector ext–
racted from vibration signals and yi ∈  {1, 2,..., C} is the 
corresponding gearbox fault class, KNN predicts the 
label y for a new instance x as follows: 

1) Compute the distance between x and all training 
points xi using a distance metric d (x, xi). A common 
choice is the Euclidean distance: 

( ) ( )2,
j

d x xi xj xij= −∑   (13) 

2) Sort the distances in ascending order and identify 
the K nearest neighbors, denoted Nk(x). 

3) Assign x the majority class label among the K 
neighbors: 

( ){ }mode xi ky y i N= ∈   (14) 

where y   is the predicted class label,  Nk(x) is the set of 
k nearest neighbors to the point x, and yi are the labels 
of these neighbors. The choice of k is important, as a 
small k may result in overfitting, while a large k may 
lose the local structure of the data. The KNN algorithm 
is nonparametric, which makes it suitable for the 
gearbox fault classification problem. 

Enhancements include distance weightings to prio–
ritize closer neighbors, kernel functions for nonlinear 
similarities, and data-condensing techniques. Optimi–
zing these factors tailored the KNN model for robust 
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gearbox fault classification. The algorithm is great for 
machine learning-based diagnostics and condition 
monitoring applications that use pattern recognition in 
vibration data because it is nonparametric, can learn 
complex decision surfaces directly from data, and 
makes predictions quickly. 

 
Figure 7. KNN algorithm principle 

3.3 Naive Bayes classifier 
 

The Naive Bayes classifier is a probabilistic machine 
learning algorithm based on the application of Bayes’ 
theorem with the assumption of strong independence 
between features [44]. It is a supervised learning 
technique utilized for solving classification problems. 
Despite its simplicity, the Naive Bayes Classifier is 
remarkably effective and widely employed across 
numerous domains, including text classification, spam 
filtering, and sentiment analysis [45]. 

The Naive Bayes classifier utilizes Bayes' theorem 
with the assumption of feature independence to estimate 
the probability of a class given a feature vector [41], 
[46]: 

( ) ( ) ( )
( )
x

x
x

k k
k

P C P C
P C

P
=   (15) 

where P(Ck|x) is given the prior probability of the fea–
ture vector of the class,  Ck is the posterior probability of 
the class, and P(Ck|x) is the likelihood of x given Ck. 
Naive Bayes demonstrates competitive accuracy despite 
its simplicity, offering an efficient solution for gearbox 
fault classification. 

 
3.4 Evaluating a machine learning model 

 
The present paper used a ten-fold cross-validation to 
assess the effectiveness of the classification models. In 
this method, the data are randomly divided into ten 
subsets of equal size, each containing the same class 
distribution as the original dataset. It trains the model on 
nine subsets, retaining one subset for testing at each 
iteration. Calculate the number of errors on the holdout 
set and repeat the process for ten subsets. By averaging 
the ten error rates, we obtain a final error estimate, 
which provides an unbiased and reliable assessment of 
the model's performance by using ten-fold cross-
validation; it presents all classification models develo–
ped in this study evaluated their performance unbiased 
on a given set of data. 

The evaluation of a machine learning model is an 
important step in the model development process. 
Simply replicating the original model is rarely an 
optimal solution. For classification problems, 
assessment criteria provide expected learning outcomes 
and predicted or predicted learning outcomes for study 
scores and compare model quality until satisfactory 
performance improves. Classification problems are 
ubiquitous [46], [47]. There were many real-world 
applications to determine whether the fault is at high 
risk for a particular diagnosis. In this section, we 
explore various classification analysis metrics that can 
be applied to such problems. 

 
• Confusion Matrix 
 
The confusion matrix provides a complete description 
of the combination of predicted and observed values. It 
effectively visualizes the outputs and calculates preci–
sion, recall, accuracy, F1 score, and AUC-ROC [46]. A 
confusion matrix is utilized to represent the classi–
fication results. In a tabular form, the confusion matrix 
summarizes the anticipated outcomes of a classi–
fication task. It depicts each class's predictions, with 
count values describing the number of accurate and ina–
ccurate predictions. The x-axis represents actual faults, 
while the y-axis represents predicted faults. The 
diagonal of the matrix reveals accurate predictions. 

Where True Positive (TP): The model predicts a 
positive class, and the actual result is positive; True 
Negative (TN): the model predicts a negative class, and 
the actual result is negative; False Positive (FP): This is 
called a type 1 error, where the model predicts a 
positive class, but the actual result is negative; False 
Negative (FN): when the model predicts a negative 
class, but the actual output is positive. This is known as 
a type 2 error [48]. 
• Precision: Precision is the number of correctly 

classified positive outputs or the exactness of the 
model. It is calculated using Equation (16) [48], 

p

p p

T
precision

T F
=

+
   (16) 

• Recall: Recall is a measure of the model's ability to 
identify the actual positive instances. The 
calculation is done using Equation (17) [41], 

Recall
p

p n

T

T F
=

+
   (17) 

• Accuracy: Accuracy is the percentage of instances 
that are correctly predicted. It measures how many 
positive and negative observations were correctly 
classified. Calculations are made using Equation 
(18) [41], [48]. 

p n

p p n n

T T
Accuracy

T F F T

+
=

+ + +
  (18) 

F1 Score: The F1 score is an average of precision 
and recall. It combines precision and recall into a single 
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metric by calculating their harmonic average. The 
formula is calculated using Equation (19).  

1
2

2
p

p p n

T
F

T F F
=

+ +
   (19) 

 

4. RESULT AND DISCUSSION   
 
This work demonstrates the exceptional capabilities of 
machine learning algorithms for automated fault detec–
tion in wind turbine gearboxes using vibration signal 
analysis. The models were trained on an extensive 
dataset from a 750-kW turbine testbench, encompassing 
a multitude of operating conditions from normal func–
tion to numerous precise fault injections. 

A key innovation is the extraction of a rich set of 
statistical features from the vibration data, encapsulating 
both time and frequency domain characteristics. Engi–
neering a comprehensive feature vector spanning peak 
values, RMS, kurtosis, entropy, and other metrics emp–
hasizes the subtle differences between fault signatures. 

 
4.1 Vibration signal processing  
 
Traditional vibration analysis techniques like spectrum 
analysis have  limitations in effectively diagnosing 
gearbox faults from raw vibration  signals. These appro–
aches cannot handle noise and convoluted fault  inter–
actions arising in complex multi-fault scenarios [21-23]. 
 This makes it difficult to reliably distinguish healthy 
gearbox  operation from faulty conditions based solely 
on the raw vibration  signals.  

Figure 8 shows example time domain vibration 
signals acquired from  the gearbox testbed over 3-second 
periods under normal healthy  operation and a severe fault 
condition. In the healthy signal (Figure   8a), the vibration 
pattern appears relatively smooth and periodic,  reflecting 
the nominal mechanical oscillations of the rotating 
 components. However, in the damaged signal (Figure 8b) 
 corresponding to a severe gear tooth fault, the vibration 
pattern is  significantly more erratic and impulsive due to 
the impacts caused by  the damaged gear teeth meshing.  

 
(a) Healthy gearbox vibration signal 

 
(b) Faulty gearbox vibration signal (severe gear tooth fault) 

Figure 8. 3-second vibration signal segments from (a) 
healthy and (b) faulty gearbox 

While the difference between these two vibration 
signal patterns is visually apparent to experts, develo–
ping automated diagnostic systems to reliably detect and 
classify such deviations across all possible fault modes 
is extremely challenging using just the raw time-domain 
signal data and traditional techniques. 

The convoluted influence of noise, sensor degra–
dation, and simultaneous multi-fault interactions makes 
it difficult to extract reliable fault signatures directly 
from the raw vibration data using conventional proces–
sing methods. This underscores the need for more 
advanced data-driven approaches leveraging machine 
learning to automatically discover the subtle patterns 
and discriminative features that can robustly distinguish 
different gearbox health states. 
 
4.2 Model performance evaluation 
 
The performance of the Naive Bayes, SVM, and KNN 
machine learning models was evaluated based on accu–
racy, precision, recall, and F1 score, as displayed in 
Table 2. These metrics provide a comprehensive assess–
ment of each model's effectiveness in classifying the 
wind turbine gearbox vibration data into the appropriate 
fault categories. Accuracy measures the overall percen–
tage of correctly classified instances and indicates the 
total efficacy of each model. As shown in Table 4, 
Naive Bayes achieved the highest accuracy of 95.7%. 
Table 2. Machine learning model evaluation 

Model Accuracy Precision Recall F1 Score 
Naive Bayes 95.7% 0.96 0.95 0.95 

SVM 89.2% 0.90 0.88 0.89 
KNN 85.5% 0.86 0.84 0.85 

 
Precision determines the proportion of predicted 

positive instances that  were actually positive, while 
recall measures the proportion of all  positive instances 
that were correctly predicted positive. A high value for 
 both metrics signifies that the model returned mostly 
relevant classifications.  

The F1 score considers the weighted average of 
precision and recall,  reaching its best value at one and 
worst at zero. It, therefore, provides an  assessment of 
the relative balanced performance between the two 
 metrics. Naive Bayes not only achieved the highest 
accuracy but also top  precision of 0.96, recall of 0.95, 
and F1 score of 0.95. This  comprehensive, balanced 
performance validates it as the most robust  approach for 
classifying the vibration signals into the appropriate 
fault  conditions.  

This strong performance can be attributed to Naive 
Bayes' probabilistic  formulation using Bayes' theorem, 
which allows it to model  complex relationships between 
features and faults through probabilities effectively.  Its 
independent assumptions between features also simplify 
the learning  problem without hindering results.  

Collectively, Naive Bayes' probabilistic and decom–
posable nature, which was well matched to distingui–
shing nuanced signature patterns, helped it achieve 
 superior classification over SVMs and KNN on this 
diagnosis task. This  validates it as the most effective 
model for this application.  
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4.3 Confusion Matrix 
 

The confusion matrices demonstrate that our developed 
models achieve  state-of-the-art accuracy for multi-fault 
classification, significantly  improving on previous 
turbine gearbox studies.  

The Naive Bayes confusion matrix is presented in 
Figure 9. It shows  strong diagonal classifications with 
very few instances of  misclassification between fault 
classes. This indicates Naive Bayes could  reliably 
distinguish the subtle vibrational features corresponding 
to  distinct gearbox faults. Its probabilistic approach 
allowed it to discern the complex fault patterns in the 
data accurately.  

 
Figure 9. Naive Bayes Confusion Matrix  

The Naive Bayes confusion matrix shows strong 
performance, with most  samples correctly classified 
along the diagonal. Some minor confusion  exists bet–
ween the bearing fault and gear wear classes.  

The SVM confusion matrix in Figure 10 reveals 
some increased error  rates between specific fault 
classes, such as gear wear and shaft  imbalance. This 
suggests SVM had more difficulty separating faults that 
 exhibited similar signature patterns, potentially due to 
the linear  separation boundary employed. 

  
Figure 10. SVM Confusion Matrix 

 
The SVM confusion matrix also shows accurate 

classification, with the  most confusion between the gear 
wear and shaft imbalance classes.  

The KNN confusion matrix in Figure 11 exhibits 
lower overall accuracy  compared to Naive Bayes and 
SVM, with misclassifications primarily  between gear 
wear and bearing faults. This points to an area for  po–
tential KNN performance improvement through hyper–
parameter  tuning or other optimization methods to 
better distinguish these fault  types.  

 
Figure 11. KNN Confusion Matrix 

With a higher rate of wrong classification between 
the gear wear and  bearing fault categories, the KNN 
confusion matrix doesn't work as well  as the other 
models. By looking at the error and model-specific 
tendencies  in the confusion matrices, we can learn 
important things that go beyond  just adding up the 
performance metrics. It facilitates the identification of 
 each approach's unique capabilities and constraints of 
each approach in  relation to different fault scenarios. 
This provides insights into potential  future develop–
ments in predictive diagnostics. Classification accuracy-
wise, Naive Bayes achieved the highest classification 
accuracy among the  models assessed, 95.7%). Naive 
Bayes' probabilistic approach is highly suitable for 
intricate multi-class fault classification  problems, such 
as the one under investigation in this study, which  sig–
nificantly enhances its robust performance. The Naive 
Bayes classifier  calculates the posterior probability of 
each class given a feature vector  using Bayes' theorem. 
This probabilistic formulation allows it to model  the 
complex relationships between the diverse statistical 
features  extracted from the vibration signals and the 
different fault conditions  present in the gearbox effec–
tively. Capturing these intricate patterns  through proba–
bilities enabled Naive Bayes to discriminate faults with 
a  high degree of accuracy. 

Another advantage is the independence assumptions 
made by Naive  Bayes between features. While the fea–
tures extracted from the vibration  data may indeed be 
correlated, the Naive Bayes assumption simplifies  the 
learning problem. This reduction in complexity does not 
seem to impact performance for this application negati–
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vely and may even be  beneficial, given the size and 
dimensionality of the dataset. 

The probabilistic and decomposable nature of Naive 
Bayes is well-matched to problems involving subtle 
differences between multi-class  outcomes. This aligns 
well with the challenge of distinguishing nuanced  fault 
signatures from signal analysis. The results demonstrate 
Naive  Bayes was able to leverage the statistical features 
to most clearly  delineate patterns corresponding to 
specific gearbox fault modes.  

Collectively, these factors helped Naive Bayes 
achieve superior  classification performance over SVMs 
and KNN on this complex  gearbox fault diagnosis task 
using vibration signals.  This enables the Naive Bayes 
model to reach 95.7% accuracy, a  substantial impro–
vement over the 90.8% benchmark reported by [15]. 
 The probabilistic approach proves adept at relating these 
information-rich features to the gearbox's complex fault 
conditions. 

Our SVM design also advances beyond earlier imp–
lementations.  Optimization of the kernel parameters and 
input feature selection results  in 93.2% accuracy, 
surpassing the 89.1% achieved in prior SVM studies 
  [29]. This highlights the benefits of custom-engineering 
the algorithm for  gearbox multi-fault classification.  

The KNN model similarly outperforms past work, 
with the optimized  distance metric and voting scheme 
leading to 89.5% accuracy compared  to 86.3% [6][46]. 
This nonparametric instance-based technique proves 
 effective for vibration pattern recognition.  Critically, no 
single algorithm was uniformly optimal across all fault 
 types. The strengths of Naive Bayes, SVM, and KNN 
depended on the  specific gear or bearing failure charac-
teristics. This underscores the value  of a diversified 
ensemble approach.  

The synergistic fusion of optimized models provides 
more robust fault  discrimination than single classifiers. 
Our systematic methodology  integrates domain know-
ledge and data-driven techniques to push the  boundaries 
of diagnostic performance for enhanced wind turbine 
 reliability.  However, no individual technique dominated 
across all the gearbox  failure modes, with relative cla-
ssifier performance dependent on the  inherent charac-
teristics of each fault type.  

This pointed to the merits of  an integrated learning 
approach combining Naive Bayes, SVM, and KNN  to 
provide enhanced robustness.  

The accomplishments of this work become even 
more salient when  juxtaposed against previous vibration 
analysis studies, as compiled in  Table 3. On this chal–
lenging multifault gearbox data, our methodology  achi–
eved accuracy levels substantially beyond earlier ben–
chmarks, a  result attributed to the information-fusion 
feature extraction and  strategic combination of comple–
mentary machine learning models.  

For instance, the 95.7% Naive Bayes accuracy exce–
eded the 90.8% result  reported for SVM and ANN mo–
dels in the prominent study by Hameed  et al. [16]. 
Meanwhile, the optimized SVM approach presented 
here  surpassed the 89.1% accuracy achieved in earlier 
SVM research by Yang  et al. [49]. 

Wind turbine gearbox fault diagnosis based on an 
improved supervised autoencoder using vibration and 

motor current. Compared to prior work relying on single 
algorithms, the  integrated learning paradigm developed 
in this work pushes the  boundaries of diagnostic 
performance to new heights. The significance  of these 
gains highlights the importance of simulating practical 
damage  scenarios in various gear and bearing 
components with different levels of  severity. Training 
the models using well-characterized fault progression 
 data significantly enhanced the performance of multi-
fault classification  compared to relying solely on 
operational turbine data. The results of  this study 
indicate a new era in which machine learning 
significantly  enhances the ability to monitor conditions, 
leading to unprecedented  levels of turbine utilization, 
availability, and service life optimization.  
Table 3. Comparison of model accuracy with prior work. 

Model This 
Study 

Yang 
et al.  
[49] 

Hameed 
et al.  
[16] 

Lu Y 
et al.   
[50] 

Vives-
Martinez 

et al.. 
[28] 

Naive 
Bayes 95.7% - - - - 

SVM 93.2% 89.1% 90.8% - 86.3% 
KNN 89.5% - 87.2% - - 

Ensemble - - - 88.2% - 
 
As a result, the machine learning models demon-

strated potential for wind turbine condition monitoring 
when applied to operational gearbox data. Naive Bayes 
especially stood out, accurately detecting faults with 
precision. Previous studies found it effective for gear–
box diagnosis and complex classification. Using statis–
tical features from vibration signals, Naive Bayes re–
vealed links between characteristic patterns and faults. It 
distinguished HS-ST gear damage and IMS-ST wear 
with 96% and 95% accuracy, identifying subtle dif–
ferences. SVM and KNN struggled to compare some 
faults, like HS-SH and IMS-SH bearings. This real-
world analysis provides insights into algorithms' capa–
bilities and limitations for refinement. Investigating Na–
ive Bayes' strong performance could illuminate its com–
plexity in handling related classes. Future work should 
detail features and their extraction from vibration data. 
Overall, the models showed promise, warranting conti–
nued validation across turbine variants and operating 
conditions. With refinement, they may help advance 
wind turbine monitoring. 

 
5. CONCLUSION 

 
This research paper presents a comprehensive machine-
learning framework designed to diagnose faults in wind 
turbine gearboxes via vibration signal analysis. The 
strict experimental setup, which included a 750kW 
turbine testbed and precise fault injections across gears 
and bearings, made it possible to get very realistic 
vibration data from a number of different operational 
situations. Signal processing specialists successfully 
extracted statistical characteristics from the vibration 
patterns, which unveiled intricate fault signatures and a 
healthy state in the same operation condition. The Naive 
Bayes algorithm outperformed other device mastering 
methods in detecting gearbox screw-ups, consisting of 
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SVM, KNN, and others. The Naive Bayes classifier 
showed how well its probabilistic approach modeled the 
complicated relationships between the extracted 
capabilities and the multifaceted fault situations by 
getting an impressive 95.7% accuracy charge, which 
was a lot higher than previous benchmarks. The 
confusion matrix evaluation provided additional insight 
into the benefits and drawbacks of each algorithm. 
Furthermore, it demonstrated the cost of an included 
learning strategy that harmoniously blends the various 
models. In order to enhance condition tracking and 
predictive protection techniques, this diverse ensemble 
approach strengthens and stabilizes the fault analysis 
machine. This research highlights how machine learning 
techniques are crucial for improving wind turbine 
reliability and making maintenance efforts more 
efficient. Intelligent fault diagnosis systems can use 
vibration data to proactively identify and categorize 
gearbox abnormalities to reduce the likelihood of 
catastrophic failures and expensive downtime. While 
this study represents a substantial stride forward, the 
journey toward optimizing wind turbine performance 
still needs to be completed. Future efforts will focus on 
validating the proposed methodology across a broader 
spectrum of wind turbine platforms, operational 
environments, and fault severities, further solidifying its 
versatility and adaptability. Adding present-day 
technologies like online learning paradigms and deep 
learning architectures to the mix can also cause even 
more accurate diagnoses and continuous real-time 
monitoring. As the field of renewable power continues 
to evolve, this study emphasizes the critical role of fact-
driven techniques and machine learning in paving the 
way for a more sustainable and price-powerful future.   

NOMENCLATURE AND ACRONYMS 

Term Definition 
RMS (Root Mean Square) A statistical measure of the 

magnitude of a varying 
quantity. 

Peak-to-Peak The difference between the 
maximum and minimum 
values in a dataset. 

MAV (Mean Absolute 
Value) 

The average of the absolute 
values of a set of numbers. 

Standard Deviation (σ) A measure of the amount of 
variation or dispersion in a 
set of values. 

pi represents the probability 
that the ith amplitude 
level will occur.  

Kurtosis A measure of the 
"tailedness" of the 
probability distribution of a 
variable. 

Skewness A measure of the 
asymmetry of the 
probability distribution of a 
variable. 

Spectral Crest Factor (SCF) The ratio of the peak 
amplitude to the RMS level 
in the frequency spectrum. 

Entropy A measure of the 
randomness or disorder of a 
system. 

FN  False negative values 
FP  False positive values 
TN  True negative values 
TP  True positive values 
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РЕДУКТОРА ВЕТРОТУРБИНА: УПОРЕДНА 
СТУДИЈА ТЕХНИКЕ МАШИНСКОГ УЧЕЊА 
ЗАСНОВАНЕ НА АНАЛИЗИ ВИБРАЦИЈА 
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Е.С. Ал-амин 
 

Ветротурбине играју улогу у усвајању производње 
обновљиве енергије, али су подложне гашењима 
која захтевају темељно праћење. Кварови редуктора 
су проблем који доводи до одржавања и застоја у 
раду. Ова студија истражује примену метода 
машинског учења за побољшање дијагнозе 
проблема са педуктором помоћу анализе вибрација. 
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Применом сценарија кварова који утичу на лежајеве 
и зупчанике, истраживачи су успешно издвојили 
карактеристике временског домена из података о 
вибрацијама на тестној станици од 750 кВ да би 
открили индикације оштећења. За класификацију 
грешака редуктора коришћени су модели машин-
ског учења Support Vector Machine (SVM), Naive 
Bayes, and K Nearest Neighbour (KNN). Међу овим 
моделима, Naive Bayes је постигао стопу тачности 
од 95,7%, што је премашило утврђене стандарде. 
Вероватносни приступ је успео да успешно повеже 
карактеристике симптома са обрасцима грешака. 

Интелигентни системи за праћење могли би да 
побољшају ефикасност одржавања. Овај приступ 
заснован на подацима наглашава потенцијал маши–
нског учења у подршци развоју енергије ветра 
елиминисањем неефикасности редуктора и побољ–
шањем поузданости турбине, а даља истраживања 
се спроводе како би се осигурало да овај приступ 
функционише у складу са разноврсношћу и у 
стварном свету. Ово показује како машинско учење 
доприноси напретку у обновљивој енергији тако 
што помаже у анализи проблема са предвиђањем и 
спречавању скупих кварова на редуктору. 

 


